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ABSTRACT 22 

Pavement assessment is a crucial process for the maintenance of municipal roads. However, the 23 

detection of pavement distress is usually performed either manually or offline, which is not only 24 

time-consuming and subjective, but also results in an enormous amount of data being stored 25 

persistently before processing. State-of-the-art pavement image processing methods executed on 26 

a CPU are not able to analyze pavement images in real time. To compensate this limitation of the 27 

methods, we propose an automated approach for pavement distress detection. In particular, GPU 28 

implementations of a noise removal, a background correction and a pavement distress detection 29 

method were developed. The median filter and the top-hat transform are used to remove noise 30 

and shadows in the images. The wavelet transform is applied in order to calculate a descriptor 31 

value for classification purposes. The approach was tested on 1549 images. The results show that 32 

real-time pre-processing and analysis are possible. 33 

  34 
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INTRODUCTION 35 

In recent years, the condition of municipal roads has deteriorated rapidly, leading to increased 36 

fuel consumption, thus increased emissions and environmental pollution, and even greater 37 

number of vehicle damages and traffic accidents [Spielman 2014]. To reduce the negative impact 38 

of deteriorated roads on the driving quality, roads need to be maintained in good condition, for 39 

example by repairing parts of the road surface where pavement distress, visible as cracks or 40 

potholes, is present. For this purpose, knowledge about the exact location of pavement distress is 41 

required and pavement assessment is an essential task [Orr 2015]. 42 

Several techniques for distress detection in asphalt pavement have been proposed in the last few 43 

years. The most intuitive approach is manual observation, during which an expert makes notes 44 

about the condition of the road by hand while walking over the road shoulder. The evaluation is 45 

performed with the help of manuals specifying criteria for pavement assessment and rating 46 

[NCHRP 2004]. There also exist methods which are based on the various types of pavement data 47 

being collected, such as sensor data or images of the pavement surface. Sensor devices are often 48 

utilized to measure parameters of the pavement surface. This approach is referred to as sensor-49 

based pavement assessment. On the other hand, visual data obtained by images or videos of the 50 

pavement surface is also used for pavement assessment. The so-called visual-based pavement 51 

assessment techniques analyze features of the images or video frames with respect to criteria 52 

identifying the presence of distress. Visual-based pavement assessment techniques have been 53 

widely applied recently, because they are less subjective and hazardous compared to manual 54 

observations [Koch et al. 2015]. 55 

Furthermore, these techniques can be classified as purely manual, semi-automated or automated 56 

based on the manner of processing the data. The observation by experts is an example of a purely 57 
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manual technique, while semi-automated and automated methods require only little or no human 58 

intervention. Despite of the advances in automated pavement assessment in recent years, there is 59 

still room for improvement. For example, video data is usually stored before it is actually 60 

processed. Considering the length of the municipal road network in Germany, which is 61 

approximately 610,000 km according to the German Association of Towns and Municipalities 62 

[DStGB 2014], the amount of stored data is large (approx. 5 gigabytes per kilometer). To reduce 63 

this amount of data, methods capable of analyzing the pavement surface in real time are required. 64 

Such methods could be employed in order to store only those images on which distress had been 65 

identified and discard all other images without distress, resulting in less memory requirements 66 

and less subsequent processing time needed compared to the state-of-the-art case. 67 

However, although the central processing unit (CPU) technology has evolved during the last 68 

decade, modern CPUs are still not able to cope with the requirement of real-time execution of 69 

related analysis methods, mainly due to the fact that image pre-processing is also needed. For 70 

instance, noise removal as well as correction of non-uniform background illumination needs to 71 

be applied to the images to enhance their quality in order to produce more accurate analysis 72 

results. 73 

Yet, the real-time processing requirement can be fulfilled by utilizing Graphics Processing Units 74 

(GPUs). Applied not only for graphic operations, but also for computational tasks, GPUs have 75 

proven their efficiency in diverse scientific fields in recent years [Owens et al. 2005]. 76 

In this work, GPUs were used to accelerate the pre-processing and the analysis of pavement 77 

surface images for the purpose of real-time pavement defect detection. In particular, a noise 78 

removal method, a shadow removal method and an approach towards pavement analysis based 79 

on the wavelet transform were implemented and validated. 80 
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The next two sections provide information on state of practice and research concerning pavement 81 

distress detection. Afterwards, GPUs are introduced. The approach is presented in thereafter, and 82 

then the implementation is described. Performance tests were carried out to evaluate the 83 

capability of the proposed implementation to process the images in real time. A case study was 84 

performed to validate the approach and is described in the “Case Study” section. The paper 85 

concludes with a summary of the main contributions and an outlook on future developments. 86 

 87 

STATE OF PRACTICE 88 

In the United States, the annual assessment and reporting of pavement conditions is currently 89 

performed by transportation departments. For example, the New York State Department of 90 

Transportation collects a variety of information about the pavement condition in cooperation 91 

with the Federal Highway Administration (FHWA) [NYSDOT 2010]. A pavement surface rating 92 

survey is conducted by a team consisting of a driver and a rater. The rater assesses the condition 93 

of the pavement based on what is seen on the pavement and photographs of the pavement at each 94 

rating point. As stated in New Yorks’s Pavement Condition Assessment Document [NYSDOT 95 

2010], the rater should be experienced in condition survey procedures and possess knowledge of 96 

road construction. 97 

In Germany, the state of practice is similar. For example, in Bochum in 2013 seven teams with 98 

15 employees have manually been assessing the pavement condition using portable computers 99 

[Buske 2013]. The current data is entered in a database by extending very detailed road maps. 100 

According to Carlos dos Santos [Buske 2013], this procedure is very laborious and one team 101 

consisting of two employees can only assess two kilometers of road per day. 102 



 

6 
 

Obviously, the surveys are mostly conducted manually, but as technology improves, automated 103 

assessment should become possible in the near future. For instance, a rule requiring rear 104 

visibility technology in all new vehicles by May 2018 has been issued by the U.S. Department of 105 

Transportation’s National Highway Traffic Safety Administration (NHTSA) [2014]. This rule 106 

has been issued in order to expand the required field of view for all passenger cars, trucks, 107 

multipurpose passenger vehicles, buses, and low-speed vehicles with a gross vehicle weight of 108 

less than 10,000 lbs. According to this rule, an area behind the vehicle which encompasses 5 feet 109 

laterally from the longitudinal centerline of the vehicle and extends 20 feet rearward of the 110 

vehicle's rear bumper must be visible to the driver. 111 

 112 

STATE-OF-RESEARCH METHODS FOR VISION-BASED PAVEMENT DISTRESS 113 

DETECTION 114 

Pre-processing 115 

In order to guarantee accurate analysis results, pre-processing operations are applied to the 116 

pavement images. An issue related to distress in pavement images is the existence of noise. 117 

Varadharajan et al. [2014] calculated the blur magnitude of the images and selected only images 118 

for which the blur magnitude was below a certain threshold value. Gaussian smoothing was 119 

applied by Li et al. [2014] for denoising. 120 

Median filter 121 

The most commonly applied method for noise removal is median filtering [Lokeshwor et al. 122 

2013, Radopoulou and Brilakis 2014]. The median filter is an order-statistics filter used very 123 

often for noise reduction [Gonzalez and Woods 2006]. It introduces less blurring to the image 124 

than linear filters of the same size and it is particularly effective in the presence of salt-and-125 
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pepper noise. Experimental results have shown that the median filter has a good performance in 126 

gray and RGB images [Ahmed et al. 2015]. The median filter replaces the value of the pixel on 127 

which the kernel is centered by the median value of the gray levels in the neighborhood of that 128 

pixel. To apply the median filter, the gray level values of the pixels in the neighborhood 129 

including the value of the pixel itself are sorted in an ascending or descending order. Then, the 130 

value in the middle of the sorted sequence is taken and assigned to the pixel in the center of the 131 

kernel. Yet, the median filter is characterized by a high computational cost. The computational 132 

complexity for sorting n values, a basic step within median filtering, with efficient sorting 133 

algorithms is O(n*log n). 134 

Another problem related to pavement images is the non-uniform background illumination. 135 

Commonly, the images are taken under various lighting conditions because of different weather 136 

conditions or varying times of day. This results in a non-uniform background illumination and 137 

lets shadows exist in the images. Since most of the analysis methods are based on the assumption 138 

that distress pixels, such as crack pixels, have a darker intensity than pixels belonging to the 139 

undamaged background, non-uniform background illumination could induce misleading results. 140 

Several methods to handle this problem have been proposed. Varadharajan et al. [2014] selected 141 

for the analysis only images taken under good weather conditions (i.e., when the weather was 142 

overcast or mostly cloudy). However, the selection of the images is also a manual and time-143 

consuming process and all images have to be stored before the analysis can begin. Zou et al. 144 

[2012] presented a geodesic shadow-removal algorithm which is able to preserve the cracks in 145 

the images while removing shadows in the background. Cheng and Miyojim [1998] proposed an 146 

image enhancement algorithm which corrects non-uniform background illumination by dividing 147 

the image into rectangular windows. For each window, the average light intensity is calculated 148 
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and multipliers are generated for all pixels based on the window average intensity and a common 149 

base intensity.  150 

Top-hat transform 151 

The top-hat transform [Gonzalez and Woods 2006] with a larger structuring element can be used 152 

to estimate the background and subtract it from the image. It has been shown [Jähne and 153 

Haussecker 2000; Solomon and Breckon 2010; Wu et al. 2008] that the top-hat transform can be 154 

used for mitigating illumination gradients and producing evenly illuminated images without 155 

shading variations. It is useful for enhancing details in the presence of shading. Opening the 156 

image with a structuring element large enough so that it does not entirely fit within the details, 157 

here within the distress area, produces an estimate of the background across the image. By 158 

subtracting the background (i.e. the opening) from the original image, an image with more 159 

uniform background can be obtained.  160 

The opening 𝑓 ∘ 𝑏 of an image f  by a structuring element b is denoted as 161 

 𝑓 ∘ 𝑏 = (𝑓ө𝑏)⨁ b ( 1 ) 

where ө and ⨁ denote erosion and dilation, respectively. Erosion and dilation are morphological 162 

operations that consist in convoluting an image with a kernel called structuring element 163 

[Gonzalez and Woods 2006]. In case of dilation, the maximal gray level value overlapped by the 164 

structuring element anchored at a certain pixel in the image is used to replace the value of this 165 

pixel. As a result of the dilation, bright regions within the image become larger. Hence, the 166 

operation is called dilation. In case of erosion, the minimal value is used, resulting in bright 167 

valued areas getting thinner in a manner similar to erosion in geomorphology and geology. 168 
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As in the case with the median filter, the main drawback of the top-hat transform is its 169 

computational complexity. The size of the structuring element required to preserve the edges or 170 

details in the images leads to a vast number of pixels being considered for each anchor point. 171 

Image analysis 172 

A range of methods for distress detection in pavement images has been proposed in recent years. 173 

Most of them have been specifically developed for particular types of distress, such as cracks, 174 

potholes or patches. The role of digital image processing as a tool for pavement distress 175 

evaluation was described by Georgopoulos et al. [1995]. A critical assessment of available 176 

distress segmentation methods for crack detection and classification was presented by Tsai et al. 177 

[2010]. 178 

Cracks are the most common distress type and, consequently, the majority of the methods 179 

presented recently consider cracks. An automatic crack detection system was proposed by 180 

Oliveira & Correia [2013]. The system is capable of crack type characterization and a 181 

methodology for the assignment of crack severity levels was introduced. Subirats et al. [2006] 182 

used wavelet transforms for crack detection, while Vivekanandreddy et al. [2014] utilized Hough 183 

transforms for this purpose. Morphology-based methods have also been applied. For example, 184 

Tanaka and Uematsu [1998] suggested black pixel extraction, saddle point detection, linear 185 

feature extraction and connecting processing for crack detection in road surface images. Fang et 186 

al. [2014] presented a crack detection technology based on an improved K-means algorithm. 187 

Zou et al. [2012] built a crack probability map using tensor voting to enhance the connection of 188 

crack fragments. After sampling a set of crack seeds from the crack probability map, minimum 189 

spanning trees are defined from a graph model of these seeds and recursive tree-edge pruning is 190 

applied to identify cracks. Li et al. [2014] classified image pixels into two categories: pixels that 191 
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belong to cracks and pixels that do not belong to cracks. Then, they applied Otsu’s segmentation 192 

method to separate the foreground from the background. The images containing cracks are 193 

afterwards classified to distinguish between linear and alligator cracks using binary trees and 194 

back propagation neural networks. Varadharajan et al. [2014] also adopted machine learning 195 

approaches. Considering images, which can contain cars, traffic signs and buildings, they 196 

segmented the ground plane out from the rest of the image and calculated feature descriptors 197 

based on the color and texture of the pixels. Using data annotated by humans, they trained a 198 

support vector machine capable of classifying the images. Moussa and Hussain [2011] used 199 

machine learning, namely support vector machines, and applied graph cut segmentation to 200 

segment an image into crack and background pixels. They extracted seven features from a binary 201 

vector created after segmentation. The features were used to classify the crack type as transverse 202 

cracking, longitudinal cracking, block cracking, or alligator cracking. In addition, they also 203 

proposed an approach to calculate the extent and severity of the crack. An algorithm based on the 204 

Gabor filter was proposed by Salman et al. [2013]. After convolution with the filter, the real 205 

component of the resulting image was thresholded and a binary image was obtained. Huang and 206 

Xu [2006] divided the image into cells for classification purposes. Each cell was classified as a 207 

crack or non-crack cell depending on its contrast. 208 

Compared to cracks, approaches towards patch detection in pavement images are fewer in 209 

number. Radopoulou and Brilakis [2014] applied morphological operations to segment out patch 210 

regions. Texture information was also used to generate feature vectors of both intact and patch 211 

regions. Cafiso et al. [2006] applied a clustering method to analyze pavement images with 212 

respect to patches. 213 
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Koch and Brilakis [2011] proposed a method for pothole detection in asphalt pavement images. 214 

They first used histogram shape-based thresholding to segment an image into defect and non-215 

defect regions. The potential pothole shape was approximated based on morphological thinning 216 

and elliptic regression. An improved method capable of tracking potholes in subsequent frames 217 

is presented in [Koch et al. 2013]. Buza et al. [2013] also employed image processing and 218 

spectral clustering for identification and rough estimation of potholes. In addition, they estimated 219 

the surface of the potholes. Yu and Salari [2011] introduced an approach for pothole detection 220 

and severity management based on laser imaging. The proposed algorithm also analyses the 221 

severity of the pothole. 222 

Methods exist capable of identifying pavement distress in general. Some of them, namely multi-223 

resolution texture analysis techniques using wavelet, ridgelet, and curvelet-based texture 224 

descriptors, were compared in [Nejad and Zakeri 2001]. The curvelet-based method 225 

outperformed all other multi-resolution techniques for pothole distress, while the ridgelet-based 226 

yielded the most accurate results for cracks.  227 

Most of the presented methods were developed solely for a specific type of distress. Since the 228 

idea of this work is to roughly assess the condition of the pavement surface, methods capable of 229 

detecting all types of distress need to be investigated. Thereby, it is not important whether the 230 

methods distinguish between the different distress types, but rather if they are suitable for 231 

parallel implementation. In order to enable real-time distress detection, we considered only 232 

methods which achieved good results for all types of distress and do not require many 233 

computational steps that depend on each other. 234 

Wavelet transform for pavement distress detection 235 
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In this work, we chose a method based on the wavelet transform for pavement distress detection 236 

and evaluation as it fulfills the requirements mentioned above. The method was proposed by 237 

Zhou et al. [2006] and tested on 81 images. According to the developers of the method, it 238 

achieved 100% reliability for these 81 images. Initially applied for signal processing, the wavelet 239 

transform is used to decompose an image into a set of different-frequency components. Based on 240 

the frequency, the components are arranged in groups called subbands. The subband components 241 

are calculated by applying low pass (L) and high pass (H) digital filters to the image. (The 242 

original image can be reconstructed from the wavelet components.) After one pass of the filters, 243 

the image is decomposed into four subbands: three detail subbands (HL, LH, HH), and one 244 

approximation subband (LL), whereby each subband has a width of ½ of the original image 245 

width and a height of ½ of the original image height. The detail subbands contain detail 246 

components with different orientation. HL contains the horizontal, LH the vertical, and HH the 247 

diagonal components. An example of an image before application of the wavelet-transform is 248 

presented in Figure 1. The horizontal details of the crack image are represented in the horizontal 249 

subband HL. The approximation subband is further decomposed into four subbands. In this way, 250 

different levels of decomposition can be achieved. In Figure 2, the 3-level wavelet transform is 251 

presented. The LL3 subband contains approximation coefficients and is most similar to the 252 

original image before applying the wavelet transform. 253 

Several wavelet families, i.e. sequences of functions that are performed to transform an image 254 

into the wavelet domain, exist. The most commonly used are the Haar wavelet [Haar 1910] and 255 

the Daubechies wavelet [Daubechies 1990]. The Haar wavelet is highly suitable for parallel (or 256 

GPU) implementation. Hence, it was chosen for the real-time detection of pavement distress in 257 

this work. The Haar transform is based on a technique called averaging and differencing 258 
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[Mulcahy] which only makes use of the simple mathematical operations addition, subtraction 259 

and division by two. First, the average sum and the average difference of each pair of neighbor 260 

elements in a row of the image are calculated. The sum is stored as a coefficient in the L 261 

subband, while the difference is stored in the H subband. This step is performed for all rows of 262 

the image. Afterwards, the same step is performed column-wise for all vertical neighbors in the 263 

image. The horizontal and vertical step can be combined and executed at once, as shown in 264 

Figure 3, where A, B, C, and D denote pixels and the corresponding wavelet coefficients are 265 

highlighted in the transformed “image” on the right. 266 

When applying the wavelet transform on pavement images, Zhou et al. observed that a 267 

homogeneous background is transformed into the approximation subband, while distress is 268 

represented in the detail subbands. Considering the latter observation, Zhou et al also developed 269 

three statistical criteria for distress detection: standard deviation of wavelet coefficients (STD), 270 

high-frequency energy percentage (HFEP), and high-amplitude wavelet coefficient percentage 271 

(HAWCP). STD and HAWCP correctly detected all the distresses in the images. However, 2.6% 272 

of the images which actually do not contain distress were incorrectly isolated by STD as distress 273 

images, while HAWCP did not isolate any image wrongly. Hence, HAWCP is used in the work 274 

presented in this paper. 275 

HAWCP is calculated only at the first level of the wavelet transform, which results in a reduced 276 

number of required wavelet transform operations. HAWCP represents a measure of the number 277 

of wavelet coefficients in the detail subbands that are larger than a threshold used as an index for 278 

pavement distress. To calculate HAWCP, first the wavelet modulus M is obtained as 279 

 
M(p, q) =  [HL2(p, q)  + LH2(p, q)  +  HH2(p, q)]

1
2 

( 2 ) 

where (p,q) is the position of the coefficient in the corresponding subbands. 280 
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Then, the modulus is binarized according to Equation ( 3 ): 281 

 282 

 
D(p, q) =  {

1 if M(p, q) ≥ Cth

0 if M(p, q) < Cth
 

( 3 ) 

where D is the binarized modulus and Cth is a threshold value estimated by wavelet thresholding. 283 

Finally, HAWCP is calculated as 284 

 

HAWCP =  ∑ ∑ D(p, q)

H 2⁄

q=0

W 2⁄

p=0

(
W

2

H

2
)⁄  

( 4 ) 

where W  and H represent the width and height of the image, respectively. 285 

The HAWCP value ranges between 0 and 1 (or 0% and 100 %), where a value near 0 indicates a 286 

good pavement surface, and high HAWCP values represent pavement distress. 287 

 288 

GRAPHICS PROCESSING UNITS 289 

During the last few years, GPUs have emerged as powerful computational hardware available at 290 

low prices [Owens et al. 2005]. The utilization of GPUs for general-purpose computing 291 

(GPGPU) has gained interest among developers of non-graphical applications. Often combined 292 

with a CPU, GPUs are used to accelerate scientific, analytics, engineering, consumer or 293 

enterprise applications [Nvidia Corporation 2015]. While CPUs are remarkably suitable for 294 

control-intensive applications, such as searching or sorting, due to branch predictions, data-295 

intensive applications like image processing are appropriate for GPUs [Gaster et al. 2013]. 296 

The most common GPU programming frameworks are the Compute Unified Device Architecture 297 

(CUDA) and the Open Computing Language (OpenCL). CUDA was developed by Nvidia and 298 

supports only Nvidia devices, while OpenCL can be executed on diverse platforms produced by 299 

different vendors, such as AMD, Intel, Nvidia, and others. OpenCL was developed by the 300 



 

15 
 

Khronos Consortium in 2008 and is often referred to as the industry standard for heterogeneous 301 

computing [Khronos OpenCL Working Group 2013]. 302 

In OpenCL, a single host is defined that is responsible for the coordination of code execution on 303 

one or more devices [Gaster et al. 2013]. The host also interacts with the environment external to 304 

the OpenCL program, for example with the user. The device can be a CPU, a GPU, a digital 305 

signal processor (DSP), or another processor supported by OpenCL. Streams of instructions 306 

called kernels (not to be confused with convolution kernels) are executed on the device. A 307 

portion of the code, called host program, runs on the host and defines kernels or collections of 308 

kernels that are submitted to the devices by issuing a command for execution. An instance of the 309 

kernel is executed for each point of an index space in parallel. 310 

The kernels operate on the values of memory objects. Five distinct memory regions are defined 311 

in OpenCL, namely host memory, global memory, constant memory, local memory and private 312 

memory. They are used for different purposes. For example, global memory can be accessed by 313 

all kernel instances in contrast to local and private memory. 314 

Stürmer et al. [2012] and Sharma and Vydyanathan [2010] proposed GPU implementations of 315 

the wavelet transform. However, in both cases the wavelet coefficients of the wavelet transform 316 

are calculated at all decomposition levels. The method proposed by Zhou requires only the 317 

values of the first wavelet decomposition level. Therefore, the computational overhead due to 318 

unnecessary further decomposition should be eliminated for the purpose of real-time pavement 319 

distress detection. Moreover, the computation of the HAWCP criterion could also be carried out 320 

on GPU, as shown in this paper. 321 

 322 

PROBLEM STATEMENT AND OBJECTIVES 323 
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Despite of the advances in vision-based pavement distress detection, gaps still exist in research 324 

which we try to address in this paper. First, pavement assessment is usually carried out either 325 

manually or by using special dedicated vehicles. Second, the data acquired for pavement distress 326 

detection is mostly processed offline, which results in a huge amount of data being stored 327 

persistently. 328 

To address the aforementioned problems, the following two research questions have to be 329 

answered: 330 

1. How can we automate the pavement distress detection process, while using inexpensive 331 

vehicles? 332 

2. How can we reduce the amount of data saved for offline processing? 333 

 334 

APPROACH 335 

This paper addresses the issues described previously by presenting an approach which is founded 336 

on common vehicles. Instead of using dedicated vehicles, the idea pursued hereby is to use 337 

vehicles which drive daily on the roads, such as buses and taxis. Nowadays, such vehicles are 338 

equipped with built-in cameras, for example backup cameras, which can be used not only to 339 

support the driver while parking, but also for other tasks, particularly in this case for road distress 340 

detection. 341 

In order to address the second research question, we propose online processing of pavement 342 

images in real-time. With the aim of reducing storage consumption, only images which contain 343 

distress will be stored, while images of good pavement surface will be discarded directly after 344 

they have been taken and processed. However, to enable real-time pavement distress detection 345 

while driving, either methods which do not require a long execution time need to be developed 346 
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or existing methods should be enhanced or implemented for faster architectures. In this work, 347 

GPUs are utilized to enhance the performance of existing pavement image pre-processing and 348 

analysis methods. As a result, real-time pavement distress detection is possible. 349 

The approach proposed here is presented in Figure 4. To remove the noise, the images are first 350 

convolved with a median filter. Second, the top-hat transform is applied to produce a more 351 

uniform background. The third step in the pipeline is transforming the image into the wavelet 352 

domain. Then, the high-amplitude wavelet coefficient percentage is calculated. HAWCP is used 353 

as a descriptor for classification. Based on a previously generated classification model, the image 354 

is classified as a good pavement image or an image containing distress. This classification model 355 

is created in advance using existing machine learning algorithms. To this end, training images 356 

are acquired and manually labeled and a data mining tool is used to induce general rules that map 357 

pavement images to the two aforementioned categories. Currently, all steps, except 358 

classification, are implemented on GPU. An example of a processed image is presented in Figure 359 

5. 360 

 361 

IMPLEMENTATION 362 

An overview of the implementation is depicted in Figure 6. First, the input image data that is 363 

initially located only on the host (CPU) needs to be transferred to the device (GPU). For this 364 

purpose, the image data is copied into a global memory buffer on the device. A kernel performs 365 

median filtering on this data and the result (denoised image) is saved in another memory buffer 366 

on the device. Then, a top-hat transform kernel is executed. The latter is used to correct the 367 

background of the image and the result is also saved in a buffer on the device. The wavelet 368 

transform and the calculation of the HAWCP descriptor are combined in one pavement analysis 369 



 

18 
 

kernel. The wavelet coefficients are stored in local memory to achieve better performance. The 370 

HAWCP descriptor value is saved in global memory and, at the end, transferred to the host. In 371 

the current implementation, this value is submitted to a third-party learning machine called 372 

WEKA [Witten et al. 2011] and the image is classified based on a classification model generated 373 

by the learning machine with the help of the HAWCP values of training images. 374 

Median Filter 375 

There exist several implementations of the median filter on GPUs [Banger and Bhattacharyya 376 

2013, Intel Corporation 2012]. Both implementations provide very good results in terms of 377 

performance enhancement. Since an Intel GPU is used for testing in this work, we adopted the 378 

implementation proposed by Intel. It uses partial bitonic sorting to perform median filtering. 379 

Top-hat transform 380 

Naïve implementation 381 

The top-hat transform is performed by subtracting the opening of an image from the input. The 382 

opening is obtained by dilating the eroded image. Since there are no global synchronization 383 

barriers among different workgroups in OpenCL, at least two kernels are required for the GPU 384 

implementation of the top-hat transform. To guarantee that the erosion is completed for all pixels 385 

in the image, it is defined in its own kernel. After the kernel had been executed, a dilation kernel 386 

can be started. The last operation in the top-hat transform (i.e. the subtraction of the opening 387 

from the original image) can also be performed in the dilation kernel. The erosion and dilation 388 

kernels are implemented in a manner similar to the median filter. However, instead of computing 389 

the median value of the neighborhood, the minimal and maximal value are taken. This 390 

implementation is presented in Figure 6. 391 

Separable filter implementation 392 
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Two-dimensional convolution operations can, in some cases, be separated into two one-393 

dimensional filters, namely a horizontal and a vertical filter. The horizontal filter is first applied 394 

to the image row by row. Then, the vertical filter is applied column-wise to the result of the 395 

horizontal convolution. The separable convolution is associative, so the one-dimensional filters 396 

can be applied in reverse order. Separating the single 2D convolution into two 1D convolutions 397 

usually results in reduced execution time even on the CPU when the convolution is executed 398 

sequentially. This performance improvement can be explained if we look at Equations 5 and 6. 399 

For example, for a rectangular image convolution kernel, the 2D convolution requires a total of 400 

 (K*L)*(M*N) ( 5 ) 

pixel accesses, where K and L denote the width and height of the convolutional kernel, 401 

respectively, and M and N represent the width and height of the image, respectively. 402 

When the 1D horizontal convolution is performed, the number of pixel accesses is only 403 

 K*(M*N) ( 6 ) 

for the 1D vertical convolution it is 404 

 L*(M*N) ( 7 ) 

If we execute these convolutions consecutively, we obtain 405 

 (K + L)*(M*N) ( 8 ) 

pixel accesses. 406 

Theoretically, this leads to an improvement factor of 407 

 K*L/(K+L) ( 9 ) 

Since the top-hat transform is based on erosion and dilation, it can be implemented as a 408 

combination of consecutive horizontal and vertical filters. An overview of the improved 409 

implementation is presented in Figure 7, in analogy to Figure 6. 410 
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Still, the number of sorting/search operations required to find the minimum or maximum element 411 

in the one-dimensional filters is also lower than in case of the two-dimensional convolution. This 412 

allows for improvement factors even greater than expressed in Equation 9. 413 

Wavelet transform and HAWCP 414 

The wavelet kernel is executed for each group of four adjacent pixels in the image. For example, 415 

if we consider Figure 3, the same computations would be performed in parallel for the groups (A, 416 

B, E, F), (C, D, G, H), (I, J, M, N), and (K, L, O, P). The detail coefficients (i.e. LH, HH, and 417 

HH) are calculated using addition and subtraction. Then, the modulus at the certain position is 418 

calculated according to Equation 2. The value of the modulus is compared to the threshold value 419 

and if it exceeds it, the HAWCP value is incremented. Atomic operations are used to increment 420 

the HAWCP value. A schematic of the implementation is presented in Figure 8. 421 

 422 

PERFORMANCE EVALUATION  423 

To evaluate the computational speed-up achieved by implementing the median filter, the top-hat 424 

transform and the wavelet transform on GPU, performance tests were carried out. The objective 425 

pursued was to measure the time required to execute the different pavement distress detection 426 

steps on different architectures and to compare them. In particular, a sequential version of the 427 

methods executed on a CPU, an OpenCL parallel version executed on the same CPU, the 428 

OpenCL version executed on an integrated GPU, and the OpenCL implementation executed on a 429 

discrete GPU were compared. In case of the OpenCL implementations of the median filter and 430 

the top-hat transform, both the times for the 2D and for the separable convolution were 431 

measured. As recommended in [Intel Corporation 2013], the same set of operations was wrapped 432 

in the sequential and OpenCL implementations in order to make sure that the observed code 433 
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patterns are as similar as possible. Moreover, to guarantee accurate results, the methods were 434 

invoked on 1000 images and the average value of all the 1000 executions was taken for 435 

performance evaluation. 436 

Profiling events were used to measure the OpenCL execution time. The data transfer time (i.e. 437 

the time required to write data to the device or read data from the device) and the kernel 438 

execution time were tracked separately due to the following two reasons. First, both the data 439 

transfer time and the kernel execution time are highly dependent on the hardware. The time 440 

needed to transfer data between a host and an integrated GPU is usually much lower than the 441 

time required to transfer the same data between the host and a discrete GPU. Second, if we 442 

consider Figure 4, it is obvious that only the input image data and the HAWCP results need to be 443 

transferred between the host and the device. All other intermediate results are saved in memory 444 

buffers on the device. Thus, only the kernel execution times are relevant for the overall 445 

performance evaluation of the real-time pavement assessment approach. 446 

The OpenCL initialization time, i.e. the time required to create a program, a context, command 447 

queues, the kernels, and set the kernel arguments, is also not considered, because these 448 

initialization steps are executed only once at application startup and are not repeated for each 449 

frame or image that has to be processed. 450 

The following hardware was used for the performance evaluation tests: a 2.10 GHz Intel Core i7-451 

4600 CPU, an integrated Intel HD Graphics 4400 GPU, and a dedicated Nvidia Tesla C2070 452 

GPU. In addition, the approach was tested on images of different sizes, namely 256x256, 453 

512x512, 1024x1024, and 2048x2048 pixels, because universal rear view cameras have different 454 

resolutions. Resolutions of 500x500 pixels are common nowadays, but vehicle manufacturers 455 

have already developed rear view cameras with 1,300,000 pixels [Nissan Motor Corporation 456 
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2014]. The speed-up achieved by implementing the approach on GPUs was computed, . This 457 

speed-up is defined as shown in Equation 10. 458 

 Speed-up = Sequential C++ time / Best OpenCL time ( 10 ) 

Data transfer 459 

The data transfer time differs depending on what kind of device is used. The time required to 460 

transfer the image data to the integrated Intel GPU and the dedicated Nvidia GPU are illustrated 461 

in Figure 9. The transfer to the discrete GPU is significantly slower than the transfer to the 462 

integrated GPU for large images. 463 

The difference between the times required to transfer the HAWCP value of a single image is not 464 

so considerable, because only one value needs to be transferred.  465 

Median Filter 466 

In our work, we used a median filter with a square structuring element of a size 3x3. The 467 

execution times in milliseconds are shown in Table 1. 468 

Top-hat transform 469 

The top-hat transform was tested with a structuring element of a size 10x10. The performance 470 

evaluation results are presented in Table 2 in milliseconds. For all image sizes, the separable 471 

implementation executed on the dedicated Nvidia GPU was the fastest one. In contrast to the 472 

median filter, a considerable performance improvement was achieved by using separate 473 

horizontal and vertical filters. 474 

Wavelet transform and HAWCP 475 

The wavelet transform execution time, including the time required to calculate the HAWCP 476 

descriptor, is presented in Figure 10. The operations were executed approximately 109 times 477 

faster on the Nvidia GPU compared to the sequential CPU. As shown in Figure 10, the 478 
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calculation takes more than 8 milliseconds when executed sequentially, which makes it 479 

unsuitable for real-time processing of videos taken at high speeds. In contrast, all GPU 480 

implementations require less than one millisecond, so there is sufficient time for pre-processing 481 

operations. 482 

Overall enhancement 483 

To compare the execution of the different implementations on the CPU and the two GPUs, the 484 

total execution times were calculated. As can be seen in Figure 11, in case of an image size of 485 

2048x2048, the data transfer time is approximately 0.72 milliseconds, which is about 50% of the 486 

total execution time. However, the Nvidia execution still significantly outperforms all other 487 

implementations. 488 

The total execution times for all image sizes are shown in Table 3. The speed-up calculated 489 

according to Equation 10 is also presented. In case of the Nvidia GPU, the total execution time is 490 

below 1.5 milliseconds. Theoretically, this allows processing more than 650 images per second. 491 

 492 

CASE STUDY 493 

To validate the approach, a case study was conducted. A road segment located in Bochum, 494 

Germany, was chosen for validation due to the presence of parts of the road with a good 495 

pavement surface and parts with pavement distress. The length of the road segment is 496 

approximately 24 kilometers. The road segment includes different types of pavement. An 497 

example of two different road surface textures is presented in Figure 14. To collect video data, a 498 

Basler acA2040‐180kc camera was mounted on a rear door back carrier. As a variety of rear 499 

view cameras and vehicles exist, there are different ways and positions to mount the cameras. 500 

While license mounted cameras are easy to install on the existing license plate, surface mounted 501 
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cameras are commonly mounted higher and would be a better choice for larger vehicles 502 

[Rearview Camera Reviews]. The setup of the camera in this case study tries to imitate state-of-503 

the-art rear view camera setups as far as possible. The position and orientation of the camera are 504 

presented in Figure 12. The camera is capable of acquisition with a frame rate of up to 180 505 

frames per second, which are currently not achievable by rear view cameras. However, we 506 

anticipate that in the near term vehicle manufacturers will use rear view cameras with even 507 

higher frame rates. The pitch angle of the camera is approximately -70 degrees, which is almost 508 

perpendicular to the road surface. The camera is placed at a height of 1.16 m above the road 509 

surface. 510 

In order to enable the validation of the applied methods, all images were saved. Under real 511 

conditions, the images on which no distress was identified would be discarded and only images 512 

on which pavement defects were detected would be saved. To test the classification, 1549 images 513 

were selected. Both images of a good pavement surface as well as images containing cracks, 514 

potholes and patches were considered (Figure 13). 515 

The images were manually labeled and ten-fold cross validation was performed in order to get a 516 

reliable error estimate. For this purpose, the data was split into ten approximately equal 517 

partitions. Each of these partitions was used for testing once, while the remaining data was used 518 

for training. Three algorithms were used for classification, namely the C4.5 [Quinlan 1993] 519 

algorithm, Multilayer Perceptron [Witten 2011], and Rotation Forest [Rodriguez 2006]. The 520 

results of the classification are presented in Table 4. The confusion matrix for the test images 521 

classified with the Rotation Forest algorithm is presented in Table 5. The time required to test the 522 

tree models on the training split was 0.02 seconds for C4.5, 0.66 seconds for Multilayer 523 

Perceptron, and 0.14 seconds for Rotation Forest. 524 
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The 5% of the images that were classified incorrectly are 77 images in total. Out of them, 15 525 

images without distress were classified as images containing distress (false positives). In Figure 526 

14, an example of a correctly classified intact pavement image (left) and an intact pavement 527 

image that was incorrectly classified as image containing distress (right) is presented. 528 

Nevertheless, this is still a promising classification result, because the objective of the rough 529 

distress detection stage described in this paper is to identify potential distress locations. In a 530 

further step, these potential locations will be assessed in detail by more comprehensive 531 

algorithms. 532 

Vice versa, the other 62 images which actually contain distress were classified as distress free 533 

images (false negatives), mainly because of the different types of road surfaces considered in the 534 

case study. Consequently, the locations these images were acquired at would not be taken into 535 

account within the fine analysis. In order to counteract such errors, the methodology presented 536 

here will be extended by incorporating textural features. 537 

 538 

CONCLUSION 539 

Pavement condition assessment is a key component of pavement maintenance programs. 540 

Currently, pavement distress is detected during observations by trained personnel and reported 541 

manually. State-of-the-art automated methods for pavement distress detection utilize special 542 

vehicles equipped with sensors and cameras and try to compensate the limitations of the manual 543 

distress detection process. However, the need to reduce the amount of required memory to 544 

capture all pavement related data is still present. 545 

With the aim of enabling real-time pavement image processing and, thus, reducing the amount of 546 

stored data, this paper proposed an approach based on graphics processing units (GPUs). 547 
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Specifically, GPU implementations of a noise removal, a background correction and a pavement 548 

distress detection method were developed. In order to remove noise in the images and correct 549 

their non-uniform background, the median filter and the top-hat were used. The wavelet 550 

transform was applied in order to calculate a descriptor value for classification purposes. Based 551 

on this value, the images were classified as good pavement images or images containing distress. 552 

To compare the performance of the GPU implementations against sequential applications and to 553 

validate the classification methodology, the approach was tested on 1549 images. The results 554 

show that by exploiting the computational power of the GPU it is possible to do pre-processing 555 

and analyze pavement images with a resolution of 2040 x 2048 pixels in real time. In addition, it 556 

has been demonstrated that the wavelet transform can successfully be applied on pavement 557 

images for the purpose of distress detection. Based on the high-amplitude wavelet coefficient 558 

percentage descriptor, 95% of the images used for testing were classified correctly by the 559 

Rotation Forest algorithm. 560 

Yet, some images containing small cracks were incorrectly classified as good pavement images. 561 

The approach presented in this paper can be improved by combining multiple descriptors to 562 

obtain a more accurate representation of the distress. Future steps include the implementation of 563 

other pavement distress detection techniques on the GPU, as well as the employment of Graphics 564 

Processing Units for further pre-processing steps, such as the Bayer pattern de-mosaicing. 565 
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Table 1: Median filter execution times in milliseconds 725 

 256x256 512x512 1024x1024 2048x2048 

Sequential 14.3 57.936 230.758 889.876 

OpenCL Intel CPU 0.108943 0.327316 1.22963 4.77966 

OpenCL Intel GPU 0.013582 0.049675 0.193708 0.769058 

Nvidia GPU 0.002747 0.010321 0.0399 0.156663 

 726 

Table 2: Top-hat transform execution times in milliseconds 727 

 256x256 512x512 1024x1024 2048x2048 

Sequential 203.007 765.11 2980.79 11611 

OpenCL Intel CPU Naïve 1.13034 5.03241 18.0581 76.2757 

OpenCL Intel CPU Separable 0.431628 4.80577 15.9215 58.1489 

OpenCL Intel GPU Naïve 0.584406 2.31147 8.23475 25.4106 

OpenCL Intel GPU Separable 0.0851977 0.314928 1.25112 5.08258 

Nvidia GPU Naïve 0.025724 0.0961443 0.370388 1.4927 

Nvidia GPU Separable 0.00853265 0.0301136 0.11383 0.43868 

 728 

Table 3: Total execution times of all implementations 729 

 256x256 512x512 1024x1024 2048x2048 

Sequential 217.407 823.436 3213.158 12509.4564 

OpenCL Intel CPU 1.29138047 5.51308102 19.8314412 83.2016187 

OpenCL Intel CPU Separable 0.57764077 5.22357002 17.2738532 63.4995187 

OpenCL Intel GPU 0.6230764 2.44574345 8.64068146 26.7954523 
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OpenCL Intel GPU Separable 0.1264993 0.45310435 1.66696046 6.49687731 

Nvidia GPU 0.03927566 0.14796738 0.58636053 2.4431657 

Nvidia GPU Separable 0.02226623 0.08221098 0.33134483 1.3884667 

Speed-up 9763.97715 10016.1317 9697.32345 9009.54728 

 730 

Table 4: Results of the classification of the pavement images 731 

Algorithm Correctly classified in % Precision Recall 

C4.5 95 0.949 0.950 

Multilayer Perceptron 87 0.880 0.872 

Rotation Forest 95 0.950 0.950 

 732 

Table 5: Confusion matrix for the test images classified with the Rotation Forest algorithm 733 

Image containing 

distress 

Good pavement 

image 

Classification outcome 

Actual condition 

306 62 Image containing distress 

15 1166 Good pavement image 
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