

GPU-enabled pavement distress image classification in real time 1

 2

Kristina Doycheva (Corresponding Author) 3

Ruhr-University Bochum 4

Universitätsstr. 150, Gebäude IC 6-69, 44801, Bochum, Germany 5

kristina.doycheva@rub.de 6

+49 (2) 234 32 24640 7

 8

Christian Koch 9

University of Nottingham 10

Room B27 Coates Building, University Park, NG7 2RD, Nottingham, UK 11

christian.koch@nottingham.ac.uk 12

+44 (0) 115 84 68933 13

 14

Markus König 15

Ruhr-University Bochum 16

Universitätsstr. 150, Gebäude IC 6-59, 44801, Bochum, Germany 17

koenig@inf.bi.rub.de 18

+49 (2) 234 32 23047 19

 20

 21

Manuscript Click here to download Manuscript revised_manuscript.docx

http://www.editorialmanager.com/jrncpeng/download.aspx?id=124840&guid=a8257cb4-e42e-4cc5-8ec3-e2f0f6fb1a7d&scheme=1
http://www.editorialmanager.com/jrncpeng/download.aspx?id=124840&guid=a8257cb4-e42e-4cc5-8ec3-e2f0f6fb1a7d&scheme=1

2

ABSTRACT 22

Pavement assessment is a crucial process for the maintenance of municipal roads. However, the 23

detection of pavement distress is usually performed either manually or offline, which is not only 24

time-consuming and subjective, but also results in an enormous amount of data being stored 25

persistently before processing. State-of-the-art pavement image processing methods executed on 26

a CPU are not able to analyze pavement images in real time. To compensate this limitation of the 27

methods, we propose an automated approach for pavement distress detection. In particular, GPU 28

implementations of a noise removal, a background correction and a pavement distress detection 29

method were developed. The median filter and the top-hat transform are used to remove noise 30

and shadows in the images. The wavelet transform is applied in order to calculate a descriptor 31

value for classification purposes. The approach was tested on 1549 images. The results show that 32

real-time pre-processing and analysis are possible. 33

 34

3

INTRODUCTION 35

In recent years, the condition of municipal roads has deteriorated rapidly, leading to increased 36

fuel consumption, thus increased emissions and environmental pollution, and even greater 37

number of vehicle damages and traffic accidents [Spielman 2014]. To reduce the negative impact 38

of deteriorated roads on the driving quality, roads need to be maintained in good condition, for 39

example by repairing parts of the road surface where pavement distress, visible as cracks or 40

potholes, is present. For this purpose, knowledge about the exact location of pavement distress is 41

required and pavement assessment is an essential task [Orr 2015]. 42

Several techniques for distress detection in asphalt pavement have been proposed in the last few 43

years. The most intuitive approach is manual observation, during which an expert makes notes 44

about the condition of the road by hand while walking over the road shoulder. The evaluation is 45

performed with the help of manuals specifying criteria for pavement assessment and rating 46

[NCHRP 2004]. There also exist methods which are based on the various types of pavement data 47

being collected, such as sensor data or images of the pavement surface. Sensor devices are often 48

utilized to measure parameters of the pavement surface. This approach is referred to as sensor-49

based pavement assessment. On the other hand, visual data obtained by images or videos of the 50

pavement surface is also used for pavement assessment. The so-called visual-based pavement 51

assessment techniques analyze features of the images or video frames with respect to criteria 52

identifying the presence of distress. Visual-based pavement assessment techniques have been 53

widely applied recently, because they are less subjective and hazardous compared to manual 54

observations [Koch et al. 2015]. 55

Furthermore, these techniques can be classified as purely manual, semi-automated or automated 56

based on the manner of processing the data. The observation by experts is an example of a purely 57

4

manual technique, while semi-automated and automated methods require only little or no human 58

intervention. Despite of the advances in automated pavement assessment in recent years, there is 59

still room for improvement. For example, video data is usually stored before it is actually 60

processed. Considering the length of the municipal road network in Germany, which is 61

approximately 610,000 km according to the German Association of Towns and Municipalities 62

[DStGB 2014], the amount of stored data is large (approx. 5 gigabytes per kilometer). To reduce 63

this amount of data, methods capable of analyzing the pavement surface in real time are required. 64

Such methods could be employed in order to store only those images on which distress had been 65

identified and discard all other images without distress, resulting in less memory requirements 66

and less subsequent processing time needed compared to the state-of-the-art case. 67

However, although the central processing unit (CPU) technology has evolved during the last 68

decade, modern CPUs are still not able to cope with the requirement of real-time execution of 69

related analysis methods, mainly due to the fact that image pre-processing is also needed. For 70

instance, noise removal as well as correction of non-uniform background illumination needs to 71

be applied to the images to enhance their quality in order to produce more accurate analysis 72

results. 73

Yet, the real-time processing requirement can be fulfilled by utilizing Graphics Processing Units 74

(GPUs). Applied not only for graphic operations, but also for computational tasks, GPUs have 75

proven their efficiency in diverse scientific fields in recent years [Owens et al. 2005]. 76

In this work, GPUs were used to accelerate the pre-processing and the analysis of pavement 77

surface images for the purpose of real-time pavement defect detection. In particular, a noise 78

removal method, a shadow removal method and an approach towards pavement analysis based 79

on the wavelet transform were implemented and validated. 80

5

The next two sections provide information on state of practice and research concerning pavement 81

distress detection. Afterwards, GPUs are introduced. The approach is presented in thereafter, and 82

then the implementation is described. Performance tests were carried out to evaluate the 83

capability of the proposed implementation to process the images in real time. A case study was 84

performed to validate the approach and is described in the “Case Study” section. The paper 85

concludes with a summary of the main contributions and an outlook on future developments. 86

 87

STATE OF PRACTICE 88

In the United States, the annual assessment and reporting of pavement conditions is currently 89

performed by transportation departments. For example, the New York State Department of 90

Transportation collects a variety of information about the pavement condition in cooperation 91

with the Federal Highway Administration (FHWA) [NYSDOT 2010]. A pavement surface rating 92

survey is conducted by a team consisting of a driver and a rater. The rater assesses the condition 93

of the pavement based on what is seen on the pavement and photographs of the pavement at each 94

rating point. As stated in New Yorks’s Pavement Condition Assessment Document [NYSDOT 95

2010], the rater should be experienced in condition survey procedures and possess knowledge of 96

road construction. 97

In Germany, the state of practice is similar. For example, in Bochum in 2013 seven teams with 98

15 employees have manually been assessing the pavement condition using portable computers 99

[Buske 2013]. The current data is entered in a database by extending very detailed road maps. 100

According to Carlos dos Santos [Buske 2013], this procedure is very laborious and one team 101

consisting of two employees can only assess two kilometers of road per day. 102

6

Obviously, the surveys are mostly conducted manually, but as technology improves, automated 103

assessment should become possible in the near future. For instance, a rule requiring rear 104

visibility technology in all new vehicles by May 2018 has been issued by the U.S. Department of 105

Transportation’s National Highway Traffic Safety Administration (NHTSA) [2014]. This rule 106

has been issued in order to expand the required field of view for all passenger cars, trucks, 107

multipurpose passenger vehicles, buses, and low-speed vehicles with a gross vehicle weight of 108

less than 10,000 lbs. According to this rule, an area behind the vehicle which encompasses 5 feet 109

laterally from the longitudinal centerline of the vehicle and extends 20 feet rearward of the 110

vehicle's rear bumper must be visible to the driver. 111

 112

STATE-OF-RESEARCH METHODS FOR VISION-BASED PAVEMENT DISTRESS 113

DETECTION 114

Pre-processing 115

In order to guarantee accurate analysis results, pre-processing operations are applied to the 116

pavement images. An issue related to distress in pavement images is the existence of noise. 117

Varadharajan et al. [2014] calculated the blur magnitude of the images and selected only images 118

for which the blur magnitude was below a certain threshold value. Gaussian smoothing was 119

applied by Li et al. [2014] for denoising. 120

Median filter 121

The most commonly applied method for noise removal is median filtering [Lokeshwor et al. 122

2013, Radopoulou and Brilakis 2014]. The median filter is an order-statistics filter used very 123

often for noise reduction [Gonzalez and Woods 2006]. It introduces less blurring to the image 124

than linear filters of the same size and it is particularly effective in the presence of salt-and-125

7

pepper noise. Experimental results have shown that the median filter has a good performance in 126

gray and RGB images [Ahmed et al. 2015]. The median filter replaces the value of the pixel on 127

which the kernel is centered by the median value of the gray levels in the neighborhood of that 128

pixel. To apply the median filter, the gray level values of the pixels in the neighborhood 129

including the value of the pixel itself are sorted in an ascending or descending order. Then, the 130

value in the middle of the sorted sequence is taken and assigned to the pixel in the center of the 131

kernel. Yet, the median filter is characterized by a high computational cost. The computational 132

complexity for sorting n values, a basic step within median filtering, with efficient sorting 133

algorithms is O(n*log n). 134

Another problem related to pavement images is the non-uniform background illumination. 135

Commonly, the images are taken under various lighting conditions because of different weather 136

conditions or varying times of day. This results in a non-uniform background illumination and 137

lets shadows exist in the images. Since most of the analysis methods are based on the assumption 138

that distress pixels, such as crack pixels, have a darker intensity than pixels belonging to the 139

undamaged background, non-uniform background illumination could induce misleading results. 140

Several methods to handle this problem have been proposed. Varadharajan et al. [2014] selected 141

for the analysis only images taken under good weather conditions (i.e., when the weather was 142

overcast or mostly cloudy). However, the selection of the images is also a manual and time-143

consuming process and all images have to be stored before the analysis can begin. Zou et al. 144

[2012] presented a geodesic shadow-removal algorithm which is able to preserve the cracks in 145

the images while removing shadows in the background. Cheng and Miyojim [1998] proposed an 146

image enhancement algorithm which corrects non-uniform background illumination by dividing 147

the image into rectangular windows. For each window, the average light intensity is calculated 148

8

and multipliers are generated for all pixels based on the window average intensity and a common 149

base intensity. 150

Top-hat transform 151

The top-hat transform [Gonzalez and Woods 2006] with a larger structuring element can be used 152

to estimate the background and subtract it from the image. It has been shown [Jähne and 153

Haussecker 2000; Solomon and Breckon 2010; Wu et al. 2008] that the top-hat transform can be 154

used for mitigating illumination gradients and producing evenly illuminated images without 155

shading variations. It is useful for enhancing details in the presence of shading. Opening the 156

image with a structuring element large enough so that it does not entirely fit within the details, 157

here within the distress area, produces an estimate of the background across the image. By 158

subtracting the background (i.e. the opening) from the original image, an image with more 159

uniform background can be obtained. 160

The opening 𝑓 ∘ 𝑏 of an image f by a structuring element b is denoted as 161

 𝑓 ∘ 𝑏 = (𝑓ө𝑏)⨁ b (1)

where ө and ⨁ denote erosion and dilation, respectively. Erosion and dilation are morphological 162

operations that consist in convoluting an image with a kernel called structuring element 163

[Gonzalez and Woods 2006]. In case of dilation, the maximal gray level value overlapped by the 164

structuring element anchored at a certain pixel in the image is used to replace the value of this 165

pixel. As a result of the dilation, bright regions within the image become larger. Hence, the 166

operation is called dilation. In case of erosion, the minimal value is used, resulting in bright 167

valued areas getting thinner in a manner similar to erosion in geomorphology and geology. 168

9

As in the case with the median filter, the main drawback of the top-hat transform is its 169

computational complexity. The size of the structuring element required to preserve the edges or 170

details in the images leads to a vast number of pixels being considered for each anchor point. 171

Image analysis 172

A range of methods for distress detection in pavement images has been proposed in recent years. 173

Most of them have been specifically developed for particular types of distress, such as cracks, 174

potholes or patches. The role of digital image processing as a tool for pavement distress 175

evaluation was described by Georgopoulos et al. [1995]. A critical assessment of available 176

distress segmentation methods for crack detection and classification was presented by Tsai et al. 177

[2010]. 178

Cracks are the most common distress type and, consequently, the majority of the methods 179

presented recently consider cracks. An automatic crack detection system was proposed by 180

Oliveira & Correia [2013]. The system is capable of crack type characterization and a 181

methodology for the assignment of crack severity levels was introduced. Subirats et al. [2006] 182

used wavelet transforms for crack detection, while Vivekanandreddy et al. [2014] utilized Hough 183

transforms for this purpose. Morphology-based methods have also been applied. For example, 184

Tanaka and Uematsu [1998] suggested black pixel extraction, saddle point detection, linear 185

feature extraction and connecting processing for crack detection in road surface images. Fang et 186

al. [2014] presented a crack detection technology based on an improved K-means algorithm. 187

Zou et al. [2012] built a crack probability map using tensor voting to enhance the connection of 188

crack fragments. After sampling a set of crack seeds from the crack probability map, minimum 189

spanning trees are defined from a graph model of these seeds and recursive tree-edge pruning is 190

applied to identify cracks. Li et al. [2014] classified image pixels into two categories: pixels that 191

10

belong to cracks and pixels that do not belong to cracks. Then, they applied Otsu’s segmentation 192

method to separate the foreground from the background. The images containing cracks are 193

afterwards classified to distinguish between linear and alligator cracks using binary trees and 194

back propagation neural networks. Varadharajan et al. [2014] also adopted machine learning 195

approaches. Considering images, which can contain cars, traffic signs and buildings, they 196

segmented the ground plane out from the rest of the image and calculated feature descriptors 197

based on the color and texture of the pixels. Using data annotated by humans, they trained a 198

support vector machine capable of classifying the images. Moussa and Hussain [2011] used 199

machine learning, namely support vector machines, and applied graph cut segmentation to 200

segment an image into crack and background pixels. They extracted seven features from a binary 201

vector created after segmentation. The features were used to classify the crack type as transverse 202

cracking, longitudinal cracking, block cracking, or alligator cracking. In addition, they also 203

proposed an approach to calculate the extent and severity of the crack. An algorithm based on the 204

Gabor filter was proposed by Salman et al. [2013]. After convolution with the filter, the real 205

component of the resulting image was thresholded and a binary image was obtained. Huang and 206

Xu [2006] divided the image into cells for classification purposes. Each cell was classified as a 207

crack or non-crack cell depending on its contrast. 208

Compared to cracks, approaches towards patch detection in pavement images are fewer in 209

number. Radopoulou and Brilakis [2014] applied morphological operations to segment out patch 210

regions. Texture information was also used to generate feature vectors of both intact and patch 211

regions. Cafiso et al. [2006] applied a clustering method to analyze pavement images with 212

respect to patches. 213

11

Koch and Brilakis [2011] proposed a method for pothole detection in asphalt pavement images. 214

They first used histogram shape-based thresholding to segment an image into defect and non-215

defect regions. The potential pothole shape was approximated based on morphological thinning 216

and elliptic regression. An improved method capable of tracking potholes in subsequent frames 217

is presented in [Koch et al. 2013]. Buza et al. [2013] also employed image processing and 218

spectral clustering for identification and rough estimation of potholes. In addition, they estimated 219

the surface of the potholes. Yu and Salari [2011] introduced an approach for pothole detection 220

and severity management based on laser imaging. The proposed algorithm also analyses the 221

severity of the pothole. 222

Methods exist capable of identifying pavement distress in general. Some of them, namely multi-223

resolution texture analysis techniques using wavelet, ridgelet, and curvelet-based texture 224

descriptors, were compared in [Nejad and Zakeri 2001]. The curvelet-based method 225

outperformed all other multi-resolution techniques for pothole distress, while the ridgelet-based 226

yielded the most accurate results for cracks. 227

Most of the presented methods were developed solely for a specific type of distress. Since the 228

idea of this work is to roughly assess the condition of the pavement surface, methods capable of 229

detecting all types of distress need to be investigated. Thereby, it is not important whether the 230

methods distinguish between the different distress types, but rather if they are suitable for 231

parallel implementation. In order to enable real-time distress detection, we considered only 232

methods which achieved good results for all types of distress and do not require many 233

computational steps that depend on each other. 234

Wavelet transform for pavement distress detection 235

12

In this work, we chose a method based on the wavelet transform for pavement distress detection 236

and evaluation as it fulfills the requirements mentioned above. The method was proposed by 237

Zhou et al. [2006] and tested on 81 images. According to the developers of the method, it 238

achieved 100% reliability for these 81 images. Initially applied for signal processing, the wavelet 239

transform is used to decompose an image into a set of different-frequency components. Based on 240

the frequency, the components are arranged in groups called subbands. The subband components 241

are calculated by applying low pass (L) and high pass (H) digital filters to the image. (The 242

original image can be reconstructed from the wavelet components.) After one pass of the filters, 243

the image is decomposed into four subbands: three detail subbands (HL, LH, HH), and one 244

approximation subband (LL), whereby each subband has a width of ½ of the original image 245

width and a height of ½ of the original image height. The detail subbands contain detail 246

components with different orientation. HL contains the horizontal, LH the vertical, and HH the 247

diagonal components. An example of an image before application of the wavelet-transform is 248

presented in Figure 1. The horizontal details of the crack image are represented in the horizontal 249

subband HL. The approximation subband is further decomposed into four subbands. In this way, 250

different levels of decomposition can be achieved. In Figure 2, the 3-level wavelet transform is 251

presented. The LL3 subband contains approximation coefficients and is most similar to the 252

original image before applying the wavelet transform. 253

Several wavelet families, i.e. sequences of functions that are performed to transform an image 254

into the wavelet domain, exist. The most commonly used are the Haar wavelet [Haar 1910] and 255

the Daubechies wavelet [Daubechies 1990]. The Haar wavelet is highly suitable for parallel (or 256

GPU) implementation. Hence, it was chosen for the real-time detection of pavement distress in 257

this work. The Haar transform is based on a technique called averaging and differencing 258

13

[Mulcahy] which only makes use of the simple mathematical operations addition, subtraction 259

and division by two. First, the average sum and the average difference of each pair of neighbor 260

elements in a row of the image are calculated. The sum is stored as a coefficient in the L 261

subband, while the difference is stored in the H subband. This step is performed for all rows of 262

the image. Afterwards, the same step is performed column-wise for all vertical neighbors in the 263

image. The horizontal and vertical step can be combined and executed at once, as shown in 264

Figure 3, where A, B, C, and D denote pixels and the corresponding wavelet coefficients are 265

highlighted in the transformed “image” on the right. 266

When applying the wavelet transform on pavement images, Zhou et al. observed that a 267

homogeneous background is transformed into the approximation subband, while distress is 268

represented in the detail subbands. Considering the latter observation, Zhou et al also developed 269

three statistical criteria for distress detection: standard deviation of wavelet coefficients (STD), 270

high-frequency energy percentage (HFEP), and high-amplitude wavelet coefficient percentage 271

(HAWCP). STD and HAWCP correctly detected all the distresses in the images. However, 2.6% 272

of the images which actually do not contain distress were incorrectly isolated by STD as distress 273

images, while HAWCP did not isolate any image wrongly. Hence, HAWCP is used in the work 274

presented in this paper. 275

HAWCP is calculated only at the first level of the wavelet transform, which results in a reduced 276

number of required wavelet transform operations. HAWCP represents a measure of the number 277

of wavelet coefficients in the detail subbands that are larger than a threshold used as an index for 278

pavement distress. To calculate HAWCP, first the wavelet modulus M is obtained as 279

M(p, q) = [HL2(p, q) + LH2(p, q) + HH2(p, q)]

1
2

(2)

where (p,q) is the position of the coefficient in the corresponding subbands. 280

14

Then, the modulus is binarized according to Equation (3): 281

 282

D(p, q) = {

1 if M(p, q) ≥ Cth

0 if M(p, q) < Cth

(3)

where D is the binarized modulus and Cth is a threshold value estimated by wavelet thresholding. 283

Finally, HAWCP is calculated as 284

HAWCP = ∑ ∑ D(p, q)

H 2⁄

q=0

W 2⁄

p=0

(
W

2

H

2
)⁄

(4)

where W and H represent the width and height of the image, respectively. 285

The HAWCP value ranges between 0 and 1 (or 0% and 100 %), where a value near 0 indicates a 286

good pavement surface, and high HAWCP values represent pavement distress. 287

 288

GRAPHICS PROCESSING UNITS 289

During the last few years, GPUs have emerged as powerful computational hardware available at 290

low prices [Owens et al. 2005]. The utilization of GPUs for general-purpose computing 291

(GPGPU) has gained interest among developers of non-graphical applications. Often combined 292

with a CPU, GPUs are used to accelerate scientific, analytics, engineering, consumer or 293

enterprise applications [Nvidia Corporation 2015]. While CPUs are remarkably suitable for 294

control-intensive applications, such as searching or sorting, due to branch predictions, data-295

intensive applications like image processing are appropriate for GPUs [Gaster et al. 2013]. 296

The most common GPU programming frameworks are the Compute Unified Device Architecture 297

(CUDA) and the Open Computing Language (OpenCL). CUDA was developed by Nvidia and 298

supports only Nvidia devices, while OpenCL can be executed on diverse platforms produced by 299

different vendors, such as AMD, Intel, Nvidia, and others. OpenCL was developed by the 300

15

Khronos Consortium in 2008 and is often referred to as the industry standard for heterogeneous 301

computing [Khronos OpenCL Working Group 2013]. 302

In OpenCL, a single host is defined that is responsible for the coordination of code execution on 303

one or more devices [Gaster et al. 2013]. The host also interacts with the environment external to 304

the OpenCL program, for example with the user. The device can be a CPU, a GPU, a digital 305

signal processor (DSP), or another processor supported by OpenCL. Streams of instructions 306

called kernels (not to be confused with convolution kernels) are executed on the device. A 307

portion of the code, called host program, runs on the host and defines kernels or collections of 308

kernels that are submitted to the devices by issuing a command for execution. An instance of the 309

kernel is executed for each point of an index space in parallel. 310

The kernels operate on the values of memory objects. Five distinct memory regions are defined 311

in OpenCL, namely host memory, global memory, constant memory, local memory and private 312

memory. They are used for different purposes. For example, global memory can be accessed by 313

all kernel instances in contrast to local and private memory. 314

Stürmer et al. [2012] and Sharma and Vydyanathan [2010] proposed GPU implementations of 315

the wavelet transform. However, in both cases the wavelet coefficients of the wavelet transform 316

are calculated at all decomposition levels. The method proposed by Zhou requires only the 317

values of the first wavelet decomposition level. Therefore, the computational overhead due to 318

unnecessary further decomposition should be eliminated for the purpose of real-time pavement 319

distress detection. Moreover, the computation of the HAWCP criterion could also be carried out 320

on GPU, as shown in this paper. 321

 322

PROBLEM STATEMENT AND OBJECTIVES 323

16

Despite of the advances in vision-based pavement distress detection, gaps still exist in research 324

which we try to address in this paper. First, pavement assessment is usually carried out either 325

manually or by using special dedicated vehicles. Second, the data acquired for pavement distress 326

detection is mostly processed offline, which results in a huge amount of data being stored 327

persistently. 328

To address the aforementioned problems, the following two research questions have to be 329

answered: 330

1. How can we automate the pavement distress detection process, while using inexpensive 331

vehicles? 332

2. How can we reduce the amount of data saved for offline processing? 333

 334

APPROACH 335

This paper addresses the issues described previously by presenting an approach which is founded 336

on common vehicles. Instead of using dedicated vehicles, the idea pursued hereby is to use 337

vehicles which drive daily on the roads, such as buses and taxis. Nowadays, such vehicles are 338

equipped with built-in cameras, for example backup cameras, which can be used not only to 339

support the driver while parking, but also for other tasks, particularly in this case for road distress 340

detection. 341

In order to address the second research question, we propose online processing of pavement 342

images in real-time. With the aim of reducing storage consumption, only images which contain 343

distress will be stored, while images of good pavement surface will be discarded directly after 344

they have been taken and processed. However, to enable real-time pavement distress detection 345

while driving, either methods which do not require a long execution time need to be developed 346

17

or existing methods should be enhanced or implemented for faster architectures. In this work, 347

GPUs are utilized to enhance the performance of existing pavement image pre-processing and 348

analysis methods. As a result, real-time pavement distress detection is possible. 349

The approach proposed here is presented in Figure 4. To remove the noise, the images are first 350

convolved with a median filter. Second, the top-hat transform is applied to produce a more 351

uniform background. The third step in the pipeline is transforming the image into the wavelet 352

domain. Then, the high-amplitude wavelet coefficient percentage is calculated. HAWCP is used 353

as a descriptor for classification. Based on a previously generated classification model, the image 354

is classified as a good pavement image or an image containing distress. This classification model 355

is created in advance using existing machine learning algorithms. To this end, training images 356

are acquired and manually labeled and a data mining tool is used to induce general rules that map 357

pavement images to the two aforementioned categories. Currently, all steps, except 358

classification, are implemented on GPU. An example of a processed image is presented in Figure 359

5. 360

 361

IMPLEMENTATION 362

An overview of the implementation is depicted in Figure 6. First, the input image data that is 363

initially located only on the host (CPU) needs to be transferred to the device (GPU). For this 364

purpose, the image data is copied into a global memory buffer on the device. A kernel performs 365

median filtering on this data and the result (denoised image) is saved in another memory buffer 366

on the device. Then, a top-hat transform kernel is executed. The latter is used to correct the 367

background of the image and the result is also saved in a buffer on the device. The wavelet 368

transform and the calculation of the HAWCP descriptor are combined in one pavement analysis 369

18

kernel. The wavelet coefficients are stored in local memory to achieve better performance. The 370

HAWCP descriptor value is saved in global memory and, at the end, transferred to the host. In 371

the current implementation, this value is submitted to a third-party learning machine called 372

WEKA [Witten et al. 2011] and the image is classified based on a classification model generated 373

by the learning machine with the help of the HAWCP values of training images. 374

Median Filter 375

There exist several implementations of the median filter on GPUs [Banger and Bhattacharyya 376

2013, Intel Corporation 2012]. Both implementations provide very good results in terms of 377

performance enhancement. Since an Intel GPU is used for testing in this work, we adopted the 378

implementation proposed by Intel. It uses partial bitonic sorting to perform median filtering. 379

Top-hat transform 380

Naïve implementation 381

The top-hat transform is performed by subtracting the opening of an image from the input. The 382

opening is obtained by dilating the eroded image. Since there are no global synchronization 383

barriers among different workgroups in OpenCL, at least two kernels are required for the GPU 384

implementation of the top-hat transform. To guarantee that the erosion is completed for all pixels 385

in the image, it is defined in its own kernel. After the kernel had been executed, a dilation kernel 386

can be started. The last operation in the top-hat transform (i.e. the subtraction of the opening 387

from the original image) can also be performed in the dilation kernel. The erosion and dilation 388

kernels are implemented in a manner similar to the median filter. However, instead of computing 389

the median value of the neighborhood, the minimal and maximal value are taken. This 390

implementation is presented in Figure 6. 391

Separable filter implementation 392

19

Two-dimensional convolution operations can, in some cases, be separated into two one-393

dimensional filters, namely a horizontal and a vertical filter. The horizontal filter is first applied 394

to the image row by row. Then, the vertical filter is applied column-wise to the result of the 395

horizontal convolution. The separable convolution is associative, so the one-dimensional filters 396

can be applied in reverse order. Separating the single 2D convolution into two 1D convolutions 397

usually results in reduced execution time even on the CPU when the convolution is executed 398

sequentially. This performance improvement can be explained if we look at Equations 5 and 6. 399

For example, for a rectangular image convolution kernel, the 2D convolution requires a total of 400

 (K*L)*(M*N) (5)

pixel accesses, where K and L denote the width and height of the convolutional kernel, 401

respectively, and M and N represent the width and height of the image, respectively. 402

When the 1D horizontal convolution is performed, the number of pixel accesses is only 403

 K*(M*N) (6)

for the 1D vertical convolution it is 404

 L*(M*N) (7)

If we execute these convolutions consecutively, we obtain 405

 (K + L)*(M*N) (8)

pixel accesses. 406

Theoretically, this leads to an improvement factor of 407

 K*L/(K+L) (9)

Since the top-hat transform is based on erosion and dilation, it can be implemented as a 408

combination of consecutive horizontal and vertical filters. An overview of the improved 409

implementation is presented in Figure 7, in analogy to Figure 6. 410

20

Still, the number of sorting/search operations required to find the minimum or maximum element 411

in the one-dimensional filters is also lower than in case of the two-dimensional convolution. This 412

allows for improvement factors even greater than expressed in Equation 9. 413

Wavelet transform and HAWCP 414

The wavelet kernel is executed for each group of four adjacent pixels in the image. For example, 415

if we consider Figure 3, the same computations would be performed in parallel for the groups (A, 416

B, E, F), (C, D, G, H), (I, J, M, N), and (K, L, O, P). The detail coefficients (i.e. LH, HH, and 417

HH) are calculated using addition and subtraction. Then, the modulus at the certain position is 418

calculated according to Equation 2. The value of the modulus is compared to the threshold value 419

and if it exceeds it, the HAWCP value is incremented. Atomic operations are used to increment 420

the HAWCP value. A schematic of the implementation is presented in Figure 8. 421

 422

PERFORMANCE EVALUATION 423

To evaluate the computational speed-up achieved by implementing the median filter, the top-hat 424

transform and the wavelet transform on GPU, performance tests were carried out. The objective 425

pursued was to measure the time required to execute the different pavement distress detection 426

steps on different architectures and to compare them. In particular, a sequential version of the 427

methods executed on a CPU, an OpenCL parallel version executed on the same CPU, the 428

OpenCL version executed on an integrated GPU, and the OpenCL implementation executed on a 429

discrete GPU were compared. In case of the OpenCL implementations of the median filter and 430

the top-hat transform, both the times for the 2D and for the separable convolution were 431

measured. As recommended in [Intel Corporation 2013], the same set of operations was wrapped 432

in the sequential and OpenCL implementations in order to make sure that the observed code 433

21

patterns are as similar as possible. Moreover, to guarantee accurate results, the methods were 434

invoked on 1000 images and the average value of all the 1000 executions was taken for 435

performance evaluation. 436

Profiling events were used to measure the OpenCL execution time. The data transfer time (i.e. 437

the time required to write data to the device or read data from the device) and the kernel 438

execution time were tracked separately due to the following two reasons. First, both the data 439

transfer time and the kernel execution time are highly dependent on the hardware. The time 440

needed to transfer data between a host and an integrated GPU is usually much lower than the 441

time required to transfer the same data between the host and a discrete GPU. Second, if we 442

consider Figure 4, it is obvious that only the input image data and the HAWCP results need to be 443

transferred between the host and the device. All other intermediate results are saved in memory 444

buffers on the device. Thus, only the kernel execution times are relevant for the overall 445

performance evaluation of the real-time pavement assessment approach. 446

The OpenCL initialization time, i.e. the time required to create a program, a context, command 447

queues, the kernels, and set the kernel arguments, is also not considered, because these 448

initialization steps are executed only once at application startup and are not repeated for each 449

frame or image that has to be processed. 450

The following hardware was used for the performance evaluation tests: a 2.10 GHz Intel Core i7-451

4600 CPU, an integrated Intel HD Graphics 4400 GPU, and a dedicated Nvidia Tesla C2070 452

GPU. In addition, the approach was tested on images of different sizes, namely 256x256, 453

512x512, 1024x1024, and 2048x2048 pixels, because universal rear view cameras have different 454

resolutions. Resolutions of 500x500 pixels are common nowadays, but vehicle manufacturers 455

have already developed rear view cameras with 1,300,000 pixels [Nissan Motor Corporation 456

22

2014]. The speed-up achieved by implementing the approach on GPUs was computed, . This 457

speed-up is defined as shown in Equation 10. 458

 Speed-up = Sequential C++ time / Best OpenCL time (10)

Data transfer 459

The data transfer time differs depending on what kind of device is used. The time required to 460

transfer the image data to the integrated Intel GPU and the dedicated Nvidia GPU are illustrated 461

in Figure 9. The transfer to the discrete GPU is significantly slower than the transfer to the 462

integrated GPU for large images. 463

The difference between the times required to transfer the HAWCP value of a single image is not 464

so considerable, because only one value needs to be transferred. 465

Median Filter 466

In our work, we used a median filter with a square structuring element of a size 3x3. The 467

execution times in milliseconds are shown in Table 1. 468

Top-hat transform 469

The top-hat transform was tested with a structuring element of a size 10x10. The performance 470

evaluation results are presented in Table 2 in milliseconds. For all image sizes, the separable 471

implementation executed on the dedicated Nvidia GPU was the fastest one. In contrast to the 472

median filter, a considerable performance improvement was achieved by using separate 473

horizontal and vertical filters. 474

Wavelet transform and HAWCP 475

The wavelet transform execution time, including the time required to calculate the HAWCP 476

descriptor, is presented in Figure 10. The operations were executed approximately 109 times 477

faster on the Nvidia GPU compared to the sequential CPU. As shown in Figure 10, the 478

23

calculation takes more than 8 milliseconds when executed sequentially, which makes it 479

unsuitable for real-time processing of videos taken at high speeds. In contrast, all GPU 480

implementations require less than one millisecond, so there is sufficient time for pre-processing 481

operations. 482

Overall enhancement 483

To compare the execution of the different implementations on the CPU and the two GPUs, the 484

total execution times were calculated. As can be seen in Figure 11, in case of an image size of 485

2048x2048, the data transfer time is approximately 0.72 milliseconds, which is about 50% of the 486

total execution time. However, the Nvidia execution still significantly outperforms all other 487

implementations. 488

The total execution times for all image sizes are shown in Table 3. The speed-up calculated 489

according to Equation 10 is also presented. In case of the Nvidia GPU, the total execution time is 490

below 1.5 milliseconds. Theoretically, this allows processing more than 650 images per second. 491

 492

CASE STUDY 493

To validate the approach, a case study was conducted. A road segment located in Bochum, 494

Germany, was chosen for validation due to the presence of parts of the road with a good 495

pavement surface and parts with pavement distress. The length of the road segment is 496

approximately 24 kilometers. The road segment includes different types of pavement. An 497

example of two different road surface textures is presented in Figure 14. To collect video data, a 498

Basler acA2040‐180kc camera was mounted on a rear door back carrier. As a variety of rear 499

view cameras and vehicles exist, there are different ways and positions to mount the cameras. 500

While license mounted cameras are easy to install on the existing license plate, surface mounted 501

24

cameras are commonly mounted higher and would be a better choice for larger vehicles 502

[Rearview Camera Reviews]. The setup of the camera in this case study tries to imitate state-of-503

the-art rear view camera setups as far as possible. The position and orientation of the camera are 504

presented in Figure 12. The camera is capable of acquisition with a frame rate of up to 180 505

frames per second, which are currently not achievable by rear view cameras. However, we 506

anticipate that in the near term vehicle manufacturers will use rear view cameras with even 507

higher frame rates. The pitch angle of the camera is approximately -70 degrees, which is almost 508

perpendicular to the road surface. The camera is placed at a height of 1.16 m above the road 509

surface. 510

In order to enable the validation of the applied methods, all images were saved. Under real 511

conditions, the images on which no distress was identified would be discarded and only images 512

on which pavement defects were detected would be saved. To test the classification, 1549 images 513

were selected. Both images of a good pavement surface as well as images containing cracks, 514

potholes and patches were considered (Figure 13). 515

The images were manually labeled and ten-fold cross validation was performed in order to get a 516

reliable error estimate. For this purpose, the data was split into ten approximately equal 517

partitions. Each of these partitions was used for testing once, while the remaining data was used 518

for training. Three algorithms were used for classification, namely the C4.5 [Quinlan 1993] 519

algorithm, Multilayer Perceptron [Witten 2011], and Rotation Forest [Rodriguez 2006]. The 520

results of the classification are presented in Table 4. The confusion matrix for the test images 521

classified with the Rotation Forest algorithm is presented in Table 5. The time required to test the 522

tree models on the training split was 0.02 seconds for C4.5, 0.66 seconds for Multilayer 523

Perceptron, and 0.14 seconds for Rotation Forest. 524

25

The 5% of the images that were classified incorrectly are 77 images in total. Out of them, 15 525

images without distress were classified as images containing distress (false positives). In Figure 526

14, an example of a correctly classified intact pavement image (left) and an intact pavement 527

image that was incorrectly classified as image containing distress (right) is presented. 528

Nevertheless, this is still a promising classification result, because the objective of the rough 529

distress detection stage described in this paper is to identify potential distress locations. In a 530

further step, these potential locations will be assessed in detail by more comprehensive 531

algorithms. 532

Vice versa, the other 62 images which actually contain distress were classified as distress free 533

images (false negatives), mainly because of the different types of road surfaces considered in the 534

case study. Consequently, the locations these images were acquired at would not be taken into 535

account within the fine analysis. In order to counteract such errors, the methodology presented 536

here will be extended by incorporating textural features. 537

 538

CONCLUSION 539

Pavement condition assessment is a key component of pavement maintenance programs. 540

Currently, pavement distress is detected during observations by trained personnel and reported 541

manually. State-of-the-art automated methods for pavement distress detection utilize special 542

vehicles equipped with sensors and cameras and try to compensate the limitations of the manual 543

distress detection process. However, the need to reduce the amount of required memory to 544

capture all pavement related data is still present. 545

With the aim of enabling real-time pavement image processing and, thus, reducing the amount of 546

stored data, this paper proposed an approach based on graphics processing units (GPUs). 547

26

Specifically, GPU implementations of a noise removal, a background correction and a pavement 548

distress detection method were developed. In order to remove noise in the images and correct 549

their non-uniform background, the median filter and the top-hat were used. The wavelet 550

transform was applied in order to calculate a descriptor value for classification purposes. Based 551

on this value, the images were classified as good pavement images or images containing distress. 552

To compare the performance of the GPU implementations against sequential applications and to 553

validate the classification methodology, the approach was tested on 1549 images. The results 554

show that by exploiting the computational power of the GPU it is possible to do pre-processing 555

and analyze pavement images with a resolution of 2040 x 2048 pixels in real time. In addition, it 556

has been demonstrated that the wavelet transform can successfully be applied on pavement 557

images for the purpose of distress detection. Based on the high-amplitude wavelet coefficient 558

percentage descriptor, 95% of the images used for testing were classified correctly by the 559

Rotation Forest algorithm. 560

Yet, some images containing small cracks were incorrectly classified as good pavement images. 561

The approach presented in this paper can be improved by combining multiple descriptors to 562

obtain a more accurate representation of the distress. Future steps include the implementation of 563

other pavement distress detection techniques on the GPU, as well as the employment of Graphics 564

Processing Units for further pre-processing steps, such as the Bayer pattern de-mosaicing. 565

 566

ACKNOWLEDGMENT 567

The authors gratefully acknowledge the support of this ongoing project by the German Research 568

Foundation (DFG) under grant KO4311/2-1. 569

 570

27

REFERENCES 571

Ahmed, E. S. A., Elatif, R. E. A., and Alser, Z. T. (2015). Median filter performance based on 572

different window sizes for salt and pepper noise removal in gray and RGB images. International 573

Journal of Signal Processing, Image Processing and Pattern Recognition, 8 (10), pp. 343-352 574

Banger, R. and Bhattacharyya, K. (2013). OpenCL Programming by Example. Packt Publishing, 575

Birmingham, UK 576

Buske, K. (2013). Schlagloch-Kataster wird auf Vordermann gebracht. DerWesten, Online, 577

available at: http://www.derwesten.de/staedte/bochum/schlagloch-kataster-wird-auf-vordermann-578

gebracht-id8177431.html, Accessed on 11.01.2016 579

Buza, E., Omanovic, S., and Huseinovic, A. (2013). Pothole detection with image processing and 580

spectral clustering. 2nd International Conference on Information Technology and Computer 581

Networks, Antalya, Turkey 582

Cafiso, S., Di Graziano, A., and Battiato, S. (2006). Evaluation of pavement surface distress 583

using digital image collection and analysis. Seventh International Congress on Advances in Civil 584

Engineering 585

Cheng, H.D., and Miyojim, M. (1998). Novel system for automatic pavement distress detection. 586

Journal of Computing in Civil Engineering, vol. 12, pp. 145-152 587

Daubechies, I. (1990). The Wavelet Transform, Time-Frequency Localization and Signal 588

Analysis. IEEE Transactions on Information Theory, vol. 36, no. 5, pp. 961 – 1005 589

DStGB (Deutscher Städte- und Gemeindebund). (2014). PKW-Maut für alle Straßen richtiger 590

Ansatz – Beteiligung der Kommunen an den Einnahmen unverzichtbar. Online, available at: 591

http://www.dstgb.de/dstgb/Home/Pressemeldungen, accessed on 03.12.2014 592

28

Fang, C., Zhe, L., and Li, Y. (2014). Images crack detection technology based on improved K-593

means algorithm. Journal of Multimedia, 9 (6), pp. 822-828 594

Gaster, B. R., Howes, L., Kaeli, D.R., Mistry, P., and Schaa, D. (2013). Heterogeneous 595

Computing with OpenCL: Revised OpenCL 1.2 Edition. Morgan Kaufmann Publishers Inc. San 596

Francisco, CA, USA 597

Georgopoulos, A., Loizos, A., and Flouda, A. (1995). Digital image processing as a tool for 598

pavement distress evaluation. ISPRS Journal of Photogrammetry and Remote Sensing, 50 (1), 599

pp. 23-33 600

Gonzalez, R. C., Woods, R. E. (2006). Digital Image Processing. Prentice-Hall, Inc. Upper 601

Saddle River, NJ, USA 602

Haar, A. (1910). Zur Theorie der Orthogonalen Funktionensysteme. Mathematische Annalen, 603

vol. 69, pp. 948 – 956 604

Huang, Y, and Xu, B. (2006). Automatic inspection of pavement cracking distress, J. Electron. 605

Imag. 15 (1) 606

Intel Corporation (2012). Intel® SDK for OpenCL* - Median Filter Sample. Document Number: 607

325264-003US, Revision: 1.3 608

Intel Corporation (2013). Intel® SDK for OpenCL* Applications 2013 R2 Optimization Guide. 609

Document Number: 326542-003US 610

Jähne, B. and Haussecker, H. (2000). Computer Vision and Applications: A Guide for Students 611

and Practitioners. Academic Press 612

Khronos OpenCL Working Group (2013). The OpenCL Specification, Version: 2.0. Document 613

Revision 19 614

29

Koch, C. and Brilakis, I. K. (2011). Pothole detection in asphalt pavement images. Advanced 615

Engineering Informatics, vol. 25, no. 3, pp. 507–515. 616

Koch, C., Georgieva, K., Kasireddy, V., Akinci, B., and Fieguth, P. (2015). A review on 617

computer vision based defect detection and condition assessment of concrete and asphalt civil 618

infrastructure. Advanced Engineering Informatics 29, pp. 196–210 619

Koch, C., Jog, G. M., and Brilakis, I. (2013). Automated pothole distress assessment using 620

asphalt pavement video data. Journal of Computing in Civil Engineering 27(4), pp. 370-378 621

Li, L., Sun, L., Ning, G., and tan, S. (2014). Automatic Pavement Crack Recognition Based on 622

BP Neural Network. Promet – Traffic&Transportation, Vol. 26, No. 1, pp. 11-22 623

Lokeshwor, H., Das, L.K., and Sud, S.K. (2013). Method for automated assessment of potholes 624

cracks and patches from road surface video clips. Procedia - Social and Behavioral Sciences 625

104, pp. 312–321. 626

Moussa, G., and Hussain, K. (2011), A new technique for automatic detection and parameters 627

estimation of pavement crack. 4th International Multi-Conference on Engineering Technology 628

Innovation (IMETI 2011) 629

Mulcahy, C. Image compression using the Haar wavelet transform. Spielman Science and Math 630

Journal 631

NCHRP (National Cooperative Highway Research Program). (2004), Automated Pavement 632

Distress Collection Techniques: A Synthesis of Highway Practice 633

Nejad F. M. and Zakeri, H. (2001). A comparison of multi-resolution methods for detection and 634

isolation of pavement distress. Expert Systems with Applications, vol. 38, pp. 2857 – 2872 635

NHTSA (National Highway Traffic Safety Administration) (2014). Federal Motor Vehicle 636

Safety Standards; Rear Visibility. Federal Register, the Daily Journal of the United States 637

30

Government, Online, available at: https://www.federalregister.gov/articles/2014/04/07/2014-638

07469/federal-motor-vehicle-safety-standards-rear-visibility, Accessed on 11.01.2016 639

Nissan Motor Corporation (2014). Nissan Motor develops the “Smart rearview mirror”, which 640

helps provide clear rearward visibility in various conditions. Online, available at: 641

http://www.nissan-global.com/EN/NEWS/2014/_STORY/140228-01-e.html, Accessed on 642

11.01.2016 643

Nvidia Corporation (2015). CUDA ZONE. Online available at: 644

https://developer.nvidia.com/cuda-zone Accessed 11.06.2015 645

NYSDOT (New York State Department of Transportation) (2010). Pavement condition 646

assessment. V2.0w 647

Oliveira, H. and Correia, P.L. (2013). Automatic road crack detection and characterization. IEEE 648

Transactions on Intelligent Transportation Systems, 14 (1) 649

Orr, S. (2015). Officials want the public to report pothole locations. Evansville Courier&Press, 650

Online, available at: http://www.courierpress.com/news/local-news/officials-want-the-public-to-651

report-pothole-locations_36253717, accessed on 09.06.2015 652

Owens, J. D., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A. E., and Purcell, T. 653

J. (2005). A survey of general-purpose computation on graphics hardware. Eurographics, State 654

of the Art Reports, August 2005, pp. 21-51 655

Quinlan, J. R. (1993). C4.5: programs for machine learning. Morgan Kaufmann Publishers 656

Inc. San Francisco, CA, USA 657

Radopoulou, S.C., and Brilakis, I. (2014). Improving patch distress detection using vision 658

tracking on video data. Proceedings of the 21st International Workshop on Intelligent Computing 659

in Engineering 660

31

Rearview Camera Reviews. The complete buyers guide for Rear View Cameras. Online, 661

available at: http://rearviewcamerareviews.com, Accessed on 11.01.2016 662

Rodriguez, J. J. & Kuncheva, L. I. (2006) Rotation Forest: A New Classifier Ensemble Method. 663

IEEE Transactions on Pattern Analysis and Machine Intelligence 28(10), pp. 1619-1630 664

Salman, M., Mathavan, S., Kamal, K., and Rahman, M. (2013). Pavement crack detection using 665

the Gabor filter. 16th International IEEE Conference on Intelligence Transportation System 666

(ITSC 2013), pp. 2039–2044 667

Sharma, B., and Vydyanathan, N. (2010). Parallel Discrete Wavelet Transform using the Open 668

Computing Language: a performance and portability study. 2010 IEEE Int. Symp. Parallel and 669

Distributed Processing, Workshops and Ph.D. Forum (IPDPSW), pp.1 – 8 670

Solomon, C. and Breckon, T. (2010). Fundamentals of Digital Image Processing: A Practical 671

Approach with Examples in Matlab, Wiley 672

Spielman, F. (2014). Chicago potholes trigger record number of damage claims. Chicago Sun-673

Times, Online, available at: http://chicago.suntimes.com/?p=167606, Accessed on 09.06.2015 674

Stürmer, M., Köstler, H., and Rüde, U. (2012). Fast wavelet transform utilizing a multicore-675

aware framework. PARA'10 Proceedings of the 10th international conference on Applied 676

Parallel and Scientific Computing, vol. 2, pp. 313-323, Springer-Verlag Berlin, Heidelberg 677

Subirats, P., Dumoulin, J., Legeay, V., and Barba, D. (2006). Automation of pavement surface 678

crack detection using the continuous wavelet transform. International Conference on Image 679

Processing, Atlanta, USA 680

Tanaka, N. and Uematsu, K. (1998). A crack detection method in road surface images using 681

morphology. IAPR Workshop on Machine Vision Applications, Makuhari, Japan 682

32

Tsai, Y-C., Kaul, V., and Mersereau, R.M., (2010). Critical Assessment of Pavement Distress 683

Segmentation Methods,.J. Transp. Eng., 136(1), pp. 11–19. 684

Varadharajan, S., Jose, S., Sharma, K., Wander, L., and Mertz, C. (2014). Vision for Road 685

Inspection. Proceedings of WACV 2014: IEEE Winter Conference on Applications of Computer 686

Vision 687

Vivekanandreddy Navaneetha, D., Kammar, A. & Sowmyashree.B (2014).Hough transforms to 688

detect and classify road cracks. International Journal of Engineering Research & Technology, 689

3(6), pp. 1500 – 1505 690

Witten, I. H., Frank, E., and Hall, M. A. (2011) Data mining: practical machine learning tools 691

and techniques, Elsevier 692

Wu, Q., Merchant, F.A., and Castleman, K. R. (2008). Microscope Image Processing, Elsevier 693

Yu, X. and Salari, E. (2011). Pavement pothole detection and severity measurement using laser 694

imaging. IEEE International Conference on Electro/Information Technology (EIT), Mankato, 695

USA 696

Zhou, J., Huang, P.S., and Chiang, F.-P. (2006). Wavelet-based pavement distress detection and 697

evaluation, Opt. Eng. 45 (2). 698

Zou, Q., Cao, Y., Li, Q., Mao, Q., Wang, S. (2012). CrackTree: automatic crack detection from 699

pavement images, Pattern Recog. Lett. 33 (3), pp. 227–238. 700

 701

 702

 703

 704

 705

33

List of Figures 706

 707

Figure 1: Pavement crack image 708

Figure 2: Three-level wavelet transform of the crack image 709

Figure 3: Calculation of the wavelet coefficients 710

Figure 4: Pavement distress image classification method 711

Figure 5: Image processing pipeline a) original image b) median filtered image c) top-hat 712

transformed image d) HAWCP value 713

Figure 6: An overview of the naïve GPU implementation 714

Figure 7: GPU implementation using one-dimensional filters 715

Figure 8: A schematic of the implementation of the wavelet transform and HAWCP calculation 716

on GPU 717

Figure 9: Data transfer times on different architectures 718

Figure 10: Wavelet transform and HAWCP execution time 719

Figure 11: Total execution time on the Nvidia GPU 720

Figure 12: Data acquisition vehicle 721

Figure 13: Examples of images acquired for training and testing 722

Figure 14: Correctly (left) and incorrectly (right) classified images of intact pavement surface 723

 724

34

Table 1: Median filter execution times in milliseconds 725

 256x256 512x512 1024x1024 2048x2048

Sequential 14.3 57.936 230.758 889.876

OpenCL Intel CPU 0.108943 0.327316 1.22963 4.77966

OpenCL Intel GPU 0.013582 0.049675 0.193708 0.769058

Nvidia GPU 0.002747 0.010321 0.0399 0.156663

 726

Table 2: Top-hat transform execution times in milliseconds 727

 256x256 512x512 1024x1024 2048x2048

Sequential 203.007 765.11 2980.79 11611

OpenCL Intel CPU Naïve 1.13034 5.03241 18.0581 76.2757

OpenCL Intel CPU Separable 0.431628 4.80577 15.9215 58.1489

OpenCL Intel GPU Naïve 0.584406 2.31147 8.23475 25.4106

OpenCL Intel GPU Separable 0.0851977 0.314928 1.25112 5.08258

Nvidia GPU Naïve 0.025724 0.0961443 0.370388 1.4927

Nvidia GPU Separable 0.00853265 0.0301136 0.11383 0.43868

 728

Table 3: Total execution times of all implementations 729

 256x256 512x512 1024x1024 2048x2048

Sequential 217.407 823.436 3213.158 12509.4564

OpenCL Intel CPU 1.29138047 5.51308102 19.8314412 83.2016187

OpenCL Intel CPU Separable 0.57764077 5.22357002 17.2738532 63.4995187

OpenCL Intel GPU 0.6230764 2.44574345 8.64068146 26.7954523

35

OpenCL Intel GPU Separable 0.1264993 0.45310435 1.66696046 6.49687731

Nvidia GPU 0.03927566 0.14796738 0.58636053 2.4431657

Nvidia GPU Separable 0.02226623 0.08221098 0.33134483 1.3884667

Speed-up 9763.97715 10016.1317 9697.32345 9009.54728

 730

Table 4: Results of the classification of the pavement images 731

Algorithm Correctly classified in % Precision Recall

C4.5 95 0.949 0.950

Multilayer Perceptron 87 0.880 0.872

Rotation Forest 95 0.950 0.950

 732

Table 5: Confusion matrix for the test images classified with the Rotation Forest algorithm 733

Image containing

distress

Good pavement

image

Classification outcome

Actual condition

306 62 Image containing distress

15 1166 Good pavement image

 734

Figure1 Click here to download Figure Fig1.tiff

http://www.editorialmanager.com/jrncpeng/download.aspx?id=124817&guid=69dc3be6-0702-492e-914d-9a7d85c52d3c&scheme=1
http://www.editorialmanager.com/jrncpeng/download.aspx?id=124817&guid=69dc3be6-0702-492e-914d-9a7d85c52d3c&scheme=1

Figure2 Click here to download Figure Fig2.tiff

http://www.editorialmanager.com/jrncpeng/download.aspx?id=124818&guid=0f2b223e-21e6-4c9c-a0eb-65e4a35a0f30&scheme=1
http://www.editorialmanager.com/jrncpeng/download.aspx?id=124818&guid=0f2b223e-21e6-4c9c-a0eb-65e4a35a0f30&scheme=1

Figure3 Click here to download Figure Fig3.tiff

http://www.editorialmanager.com/jrncpeng/download.aspx?id=124819&guid=28a53470-6289-47a6-8187-c16cf1f5d9ee&scheme=1
http://www.editorialmanager.com/jrncpeng/download.aspx?id=124819&guid=28a53470-6289-47a6-8187-c16cf1f5d9ee&scheme=1

Figure4 Click here to download Figure Fig4.tiff

http://www.editorialmanager.com/jrncpeng/download.aspx?id=124820&guid=b000cd06-8394-44c8-82d3-edc223e888ab&scheme=1
http://www.editorialmanager.com/jrncpeng/download.aspx?id=124820&guid=b000cd06-8394-44c8-82d3-edc223e888ab&scheme=1

Figure5 Click here to download Figure Fig5.tiff

http://www.editorialmanager.com/jrncpeng/download.aspx?id=124821&guid=fcf5efef-704d-443e-b4d7-7bfe55c680b5&scheme=1
http://www.editorialmanager.com/jrncpeng/download.aspx?id=124821&guid=fcf5efef-704d-443e-b4d7-7bfe55c680b5&scheme=1

Figure6 Click here to download Figure Fig6.tiff

http://www.editorialmanager.com/jrncpeng/download.aspx?id=124822&guid=82cb5a37-ab89-4f24-90ef-be7353198234&scheme=1
http://www.editorialmanager.com/jrncpeng/download.aspx?id=124822&guid=82cb5a37-ab89-4f24-90ef-be7353198234&scheme=1

Figure7 Click here to download Figure Fig7.tiff

http://www.editorialmanager.com/jrncpeng/download.aspx?id=124823&guid=4a45965f-55d3-4816-931a-1c2b3cb6d7ed&scheme=1
http://www.editorialmanager.com/jrncpeng/download.aspx?id=124823&guid=4a45965f-55d3-4816-931a-1c2b3cb6d7ed&scheme=1

Figure8 Click here to download Figure Fig8.tiff

http://www.editorialmanager.com/jrncpeng/download.aspx?id=124824&guid=c1091cf2-49fd-41c7-a547-eac875fcd4b0&scheme=1
http://www.editorialmanager.com/jrncpeng/download.aspx?id=124824&guid=c1091cf2-49fd-41c7-a547-eac875fcd4b0&scheme=1

Figure9 Click here to download Figure Fig9.tiff

http://www.editorialmanager.com/jrncpeng/download.aspx?id=124825&guid=e7613554-8c2b-478a-bf9d-52e3b6fd6949&scheme=1
http://www.editorialmanager.com/jrncpeng/download.aspx?id=124825&guid=e7613554-8c2b-478a-bf9d-52e3b6fd6949&scheme=1

Figure10 Click here to download Figure Fig10.tiff

http://www.editorialmanager.com/jrncpeng/download.aspx?id=124826&guid=9631c06a-ad7f-40b1-ba5c-93c744c579b7&scheme=1
http://www.editorialmanager.com/jrncpeng/download.aspx?id=124826&guid=9631c06a-ad7f-40b1-ba5c-93c744c579b7&scheme=1

Figure11 Click here to download Figure Fig11.tiff

http://www.editorialmanager.com/jrncpeng/download.aspx?id=124827&guid=68cacf04-c870-4916-bf94-1328784af7e7&scheme=1
http://www.editorialmanager.com/jrncpeng/download.aspx?id=124827&guid=68cacf04-c870-4916-bf94-1328784af7e7&scheme=1

Figure12 Click here to download Figure Fig12.tiff

http://www.editorialmanager.com/jrncpeng/download.aspx?id=124828&guid=6a0f1cd1-8b22-48d7-a22d-d8a2d023e3ab&scheme=1
http://www.editorialmanager.com/jrncpeng/download.aspx?id=124828&guid=6a0f1cd1-8b22-48d7-a22d-d8a2d023e3ab&scheme=1

Figure13 Click here to download Figure Fig13.tiff

http://www.editorialmanager.com/jrncpeng/download.aspx?id=124829&guid=7aaa1530-6736-4290-8860-413fe1d44505&scheme=1
http://www.editorialmanager.com/jrncpeng/download.aspx?id=124829&guid=7aaa1530-6736-4290-8860-413fe1d44505&scheme=1

Figure14 Click here to download Figure Fig14.tiff

http://www.editorialmanager.com/jrncpeng/download.aspx?id=124830&guid=1a23c3cd-59ef-449e-a9ee-de588d3a0343&scheme=1
http://www.editorialmanager.com/jrncpeng/download.aspx?id=124830&guid=1a23c3cd-59ef-449e-a9ee-de588d3a0343&scheme=1

List of Figures

Figure 1: Pavement crack image

Figure 2: Three-level wavelet transform of the crack image

Figure 3: Calculation of the wavelet coefficients

Figure 4: Pavement distress image classification method

Figure 5: Image processing pipeline a) original image b) median filtered image c) top-hat

transformed image d) HAWCP value

Figure 6: An overview of the naïve GPU implementation

Figure 7: GPU implementation using one-dimensional filters

Figure 8: A schematic of the implementation of the wavelet transform and HAWCP calculation

on GPU

Figure 9: Data transfer times on different architectures

Figure 10: Wavelet transform and HAWCP execution time

Figure 11: Total execution time on the Nvidia GPU

Figure 12: Data acquisition vehicle

Figure 13: Examples of images acquired for training and testing

Figure 14: Correctly (left) and incorrectly (right) classified images of intact pavement surface

Figure Captions List

