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Abstract

Digital pathology is set to revolutionise traditional approaches diagnosing and researching diseases. To realise the full poten-

tial of digital pathology, accurate and robust computer techniques for automatically detecting biomarkers play an important role.

Traditional methods transform the colour histopathology images into a gray scale image and apply a single threshold to separate

positively stained tissues from the background. In this paper, we show that the colour distribution of the positive immunohis-

tochemical stains varies with the level of luminance and that a single threshold will be impossible to separate positively stained

tissues from other tissues, regardless how the colour pixels are transformed. Based on this, we propose two novel luminance

adaptive biomarker detection methods. We present experimental results to show that the luminance adaptive approach significantly

improves biomarker detection accuracy and that random forest based techniques have the best performances.
c© 2016 The Authors. Published by Elsevier B.V.
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1. Introduction

Diaminobenzidine (DAB) is one of the most commonly used stains in Immunohistochemistry (IHC), which gives

a brown colouration (positive) against a blue background (negative) counter-stained by Hematoxylin. Measuring the

positively stained areas can provide qualitative assessments of the tissues1,2. Traditionally, this is done manually

which is not only labour intensive but also prone to subjective errors. With the increased usage of IHC, it calls for

Computer Aided Diagnosis (CAD) systems to support pathologists’ decision making. Specifically, we need to develop

automatic methods for separating the positively stained tissues from other tissues.

In the literature, various computer-assisted approaches have been developed to separate DAB stained tissues in dig-

ital histopathology images3,4,5,6,7,8,9,10,11,12,13. Although significant progresses have been made in separation accuracy,

there are still several factors affecting the performances of those automatic approaches. For example, visual inspection

of Fig.1 (left side) will find that there are a variety of different shades of positively stained (brown colours) tissues
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Fig. 1: Visualizations of pixels of P53 stained histopathology images in the colour spaces of three previous methods. Top row: all pixels. Bottom

row: Manually labelled positive pixels.

caused by different concentrations of the chemicals, different thicknesses of the tissue slides, and sensor differences

amongst many other factors. Accurately identifying these variety of brown colours poses significant challenges to

computer algorithms.

In contrast to existing methods that mostly employ simple classification techniques, we firstly propose a Luminance

Adaptive Multiple Thresholding (LAMT) method to improve the traditional single thresholding based approaches.

Secondly, we develop an advanced machine learning technique termed Luminance Adaptive Random Forest (LARF)

classification method for DAB stain segmentation and quantification. Based on the nature of the problem, our model

is an ensemble of random forests, each sub-forest works independently and is adapted to a specific level of luminance.

We will present experimental results to show that Luminance Adaptive approaches can significantly improve the

separation performance, and random forest is ideally suited for biomarker detection.

2. Related Works

Researchers have proposed to convert the original RGB images into other colour spaces to eliminate the correlation

in RGB model13. The Hue image from the HSI model has been used alone4, while Goto5 and Kohlberger6 classified

DAB stained pixels by thresholding all three channels. Pham3 adapted Yellow channel in CMYK model, which is

believed to have strong correlation with the DAB stain. These simple thresholding based classification schemes are

straightforward and easy to implement. However, the overlap of different stains in the colour spectrum will make it

very difficult to separate the stains completely thus hindering the accuracy of stain detection13.

Colour deconvolution (CD) is perhaps one of the most well known stain separation approaches first presented

by Ruifrok and Johnston8 in 2001. CD was developed based on the properties of light passing through material

according to Beer-Lambert law. Ruifrok proposed to deconvolve the RGB image into three stain component images.

The positive stained tissues are separated by thresholding the DAB component image. However, DAB does not follow

the Beer-Lambert law as the DAB reaction product has a broad and featureless spectrum14.

Approaches based on mathematical transformation of RGB images are also popular. The G/B image was used

for DAB selection10, while Ruifrok11 presented the brown image calculated from RGB image. Two different Blue

Normalization (BN) filters12,13 were proposed. These methods separate DAB stain by thresholding transformed single

channel images. However, those methods cannot accurately select the positive stained tissues due to broad colour

spectrum of DAB.
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Fig. 2: The comparison of resulted single channel images of strong stained tissues using three previous works. (a) the original digital image of

strongly stained tissues; (b) the DAB channel from decovoluted image using CD 8; (c) and (d) transformed single channel images using BNBrey
12

and BNFu
13 respectively.

Fig.1 plots the pixels of Hematoxylin-diaminobenzidine (H-DAB) images in the colour spaces of three typical

previous methods mentioned above. Fig.1(a) and (d) respectively illustrate the pixels in the HSI cylindrical space

for all pixels and manually labelled positive DAB stain only. The pixel distributions taper as the intensity increases.

At low intensity, the DAB stain has a significantly broader hue spectrum. Similar plots for the other two colour

spaces are respectively shown in Fig.1(b), (c), (e), and (f). Previous approaches to DAB biomarker detection in digital

histopathology images are based on transforming the original colour channels to form a single channel in which

thresholding is applied to separate the biomarker from the background. Fig.2 illustrates an example of the resulted

single channel image of a heavily stained tissues using three previous methods mentioned before. It is seen that using

simple thresholding cannot completely separate the stains especially if the stained tissues are dark.

3. Luminance Adaptive Approach for DAB Stain Detection

We treat luminance as one of the most important information in this work. Pixels are divided into specific lu-

minance intervals before thresholding or classification. Luminance represents the luminous intensity of images, and

human vision has finer spatial sensitivity to luminance. Different from luma, luminance is the weighted sum of RGB

components without gamma-correction. In this paper, normalized luminance l(p) for each pixel is calculated accord-

ing to the ITU-R BT.709:

l(p) = (0.2126 · R + 0.7152 ·G + 0.0722 · B)/255. (1)

3.1. Luminance Adaptive Multiple Thresholding

To improve the performance of single threshold approaches, we use multiple thresholds T = {t1, t2, ..., tI} on the

final single channel images. Specifically, the transformed pixel τ(p) using traditional methods is divided into I equal

intervals according to the luminance:

τi(p) = {τi(p) ∈ τ(p)|ξi < l(p) ≤ ζi}, i = 1, ..., I (2)

where ξi, ζi are lower and upper boundary of ith luminance interval. Then we threshold the transformed pixel with

different values according to its luminance instead of a single threshold. Thus, the threshold ti is assigned using binary

classification as follows:

ti = argmax
c∈Y

P(c|τi(p)) (3)

where Y = {c0, c1} is the label.

3.2. Luminance Adaptive Random Forest

In this work, we treat DAB stain separation, DAB biomarker detection as a pattern recognition problem and employ

one of the most successful classification models, random forest, at its core. Considering the stain’s spectrum spread

varies with intensities, we explicitly adapt the random forests to different luminance levels. We believe this is the first

time a powerful pattern recognition technique has been applied to the detection of biomarkers in digital histopathology

images.
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3.2.1. Feature Extraction
For each pixel p, we extract three different types of features to form a 5 dimensional feature: v(p) = (vDAB, vCr, vCb,

vH , vS ) ∈ R5. vDAB is the DAB component of CD image calculated according to pre-set stain vectors8.We propose to

convert the RGB images into YCbCr colour space, and extract Cb and Cr channel information. YCbCr is a method of

encoding RGB information, rather than an absolute colour space. Cb and Cr are chroma components of blue-difference

and red-difference respectively, which is similar to the BN filter mentioned above. The properties of YCbCr are very

suitable for DAB separation. The main ingredient of DAB stained brown colouration is Red, followed by Green
and Blue; while hematoxylin-stained tissues are Blue. Therefore, two different stains can be accurately separated

according Cb and Cr information. In this study, YCbCr values are converted from normalized RGB data based on

ITU-R BT.709. In addition, Hue and Saturation channel values of HSI model are also involved, since the components

are correlated better with human perception of color.

3.2.2. Forest Training and Test
Similar to LAMT, the training process firstly divides the extracted feature X into I equal intervals according to the

luminance:

Xi = {v(p) ∈ X|ξi < l(p) ≤ ζi}, i = 1, ..., I (4)

In our method, instead of training a single forest, our model is an ensemble of I sub-forests: Ψ = {Ψ1,Ψ2, ...,ΨI}. The

size of each forest is K, while the whole system has N = K × I trees. The sub-forest Ψi is trained independently with

corresponding training set Xi.

The linear split function is used for node splitting, which is setting a threshold on one feature dimension of v(p). For

binary classification, the best situation is that the subset on child nodes are pure containing only positive or negative

stained pixels. In this case, we use the widely utilized information gain criterion15:

S core = �E = −|Sl|
|S| E(Sl) − |Sr |

|S| E(Sr) (5)

where S is the training set at split point, while Sl and Sr represent the training images contained in the left and right

child node respectively. E(S) is the Shannon entropy of S, and |S| is the number of sample contained in S.

Given a new unlabelled pixel p∗, we firstly extract the luminance l(p∗) and feature v(p∗) information. The lumi-

nance information will identify which sub-forest this pixel falls into and the features are fed into the sub-forest for

decision making. Specifically, v(p∗) is pushed through each tree of forest Ψ̂i, if l(p∗) ∈ [ξ̂i ζ̂i].

4. Experimental Results

4.1. Materials

We conducted DAB separation experiments on the digital slides from two different kinds of H-DAB stained images:

Whole Slide Images (WSI) and tissue microarray images (TMA). Both are human colorectal adenocarcinomas slides

using the biomarker P53 (nuclear activity), and captured with a ×40 objective lens and scanned using a Hamamatsu

scanner. Each type contains 50 images of 1680 × 1050 pixels. The positively stained nuclei pixels were manually

labelled as described in9. The dataset is available from the authors on request.

4.2. Evaluation Metric

Our results were compared with three state-of-art automated separation approaches: CD8, Brey’s BN12, and Fu’s

BN13. To verify our luminance adaptive approach, we implemented LAMT on those three previous methods. We

compared LARF with two conventional random forest models. One of the models used five dimensional features (5-

RF) as described in Section 3.2.1, and the other one was trained with six dimensional features (6-RF), which include

the luminance as a feature.

A 2-fold cross validation procedure was employed in the experiment, and we repeated the experiment 10 times to

test the robustness of the technique. In each 2-fold cross validation, the images were randomly divided into two parts,

one part was used for training and the other for testing.
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(a) (b)

Fig. 3: (a) The performance comparison with different numbers of luminance interval I. (b) Precision-recall curve of different methods for

DAB-stained tissues separation.

The separating results of the proposed method were compared with manual labelled positive stained nuclei tissues.

We employed two criteria to measure the accuracy: misclassification and F1 score.

MisClassi f ication =
∑

Misclassified area

Total image area
; (6)

F1 score is the harmonic mean of precision and recall, where precision and recall are defined as P = |T P|
|T P|+|FP| and

R = |T P|
|T P|+|FN| respectively.

4.3. Results

We firstly performed experiments to test the performance of each method for different numbers of luminance

intervals I. Fig.3(a) shows that the misclassification rates decrease significantly as I increases for all four methods.

We found that I = 10 worked well and further increase I did not improve the results. It is seen that our method achieves

the lowest misclassification rate across all I followed by LAMT-CD. Fig.3(b) shows the precision-recall curves for

each approaches, again, our technique performed the best. Table 1 summarises a comparison of misclassification

performances (averaged over 10 experiments) of traditional single threshold and LAMT (I = 20) on three previous

techniques; while Table 2 compares the results of random forest based approaches. It is seen that using the Luminance

Adaptive approach, all methods have seen a significant improvement.

Table 1: Performance comparison of traditional single thresholding method and LAMT method with three previous approaches.

Method Misclassification (%) F1 Score Method Misclassification (%) F1 Score

CD8 4.81 0.812 LAMT − CD 1.83 0.884

BNBrey
12 10.66 0.714 LAMT − BNBrey 2.15 0.877

BNFu
13 5.63 0.780 LAMT − BNFu 2.09 0.831

Table 2: Misclassification and F1 score of random forest based methods.

Method Misclassification (%) F1 Score

5-RF 2.38 0.863

LARF 1.53 0.905
6-RF 1.89 0.887

It is also worth noting that a random forest that included the luminance as a feature (6-RF) also achieved a lower

misclassification rate (1.89%) than all previous methods. This demonstrates that random forest can be used as a pow-

erful classifier for accurately detecting biomarkers in digital pathology images. In this case, the luminance is treated

by the random forest as a separate feature and the ways it is used for separating the biomarkers are found through



118   Jingxin Liu et al.  /  Procedia Computer Science   90  ( 2016 )  113 – 118 

the random forest construction mechanism. Whilst including luminance as a feature worked well, pre-segmenting the

luminance and building sub-forests adaptive to the luminance level gave the best performances.

Consequently, the result indicates that hitherto ignored luminance is the key for solving the problem of incomplete

separation caused by DAB featureless colour spectrum, and packet-based DAB stained pixel selection according its

luminance is simple and efficient.

5. Conclusion

In this paper, we have presented a novel quantitative analysis tool for H-DAB stained digital images. Our model

treats luminance as a very important information for DAB segmentation, and trains several sub-forests separately

each adapted for a specific level of luminance. We conducted a series of experiments to evaluate the new method. The

results demonstrate that misclassification errors can be significantly reduced by including luminance information in

the decision making for both traditional methods and for random forest classifier. Luminance adaptive random forest

approach is shown to give the best performances.
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