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Abstract We consider the problem of scale detection

in images where a region of interest is present together

with a measurement tool (e.g. a ruler). For the seg-

mentation part, we focus on the graph based method

presented in [10] which reinterprets classical continuous

Ginzburg-Landau minimisation models in a totally dis-

crete framework. To overcome the numerical difficulties

due to the large size of the images considered we use

matrix completion and splitting techniques. The scale

on the measurement tool is detected via a Hough trans-

form based algorithm. The method is then applied to

some measurement tasks arising in real-world applica-

tions such as zoology, medicine and archaeology.
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1 Introduction

Image segmentation denotes the task of partitioning an

image in its constituent parts. Feature based segmen-

tation looks at distinctive characteristics (features) in

the image, grouping similar pixels into clusters which

are meaningful for the application at hand. Typical

examples of features are based on greyscale/RGB in-

tensity and texture. Mathematical methods for image

segmentation are mainly formalised in terms of vari-

ational problems in which the segmented image is a

minimiser of an energy. The most common image fea-

ture encoded in such energies is the magnitude of the

image gradient, detecting regions (or contours) where

sharp variations of the intensity values occur. Exam-

ples include the Mumford-Shah segmentation approach

[52], the snakes and geodesic active contour models [39,

17]. Moreover, in [19] Chan and Vese proposed an in-

stance of the Mumford-Shah model for piecewise con-

stant images whose energy is based on the mean grey-

values of the image inside and outside of the segmented

region rather than the image gradient and hence does

not require strong edges for segmentation. The Chan-

Vese model has been extended for vector-valued images

such as RGB images in [20]. Other image segmenta-

tion methods have been considered in [40,27]. They

rely on the use of the total variation (TV) seminorm

[5], which is commonly used for image processing tasks

due to its properties of simultaneous edge preservation

and smoothing (see [56]).
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The non-smoothness of most of the segmentation

energies renders their numerical minimisation usually

difficult. In the case of the Mumford-Shah segmentation

model the numerical realisation is additionally compli-

cated by its dependency on the image function as well

as the object contour. To overcome this, several regu-

larisation methods and approximations have been pro-

posed in the literature, e.g. [4,11,12,68] for Mumford-

Shah segmentation. In the context of TV based seg-

mentation models the Ginzburg-Landau functional has

an important role. Originally considered for the mod-

elling of physical phenomena such as phase transition

and phase separation (cf. [13] for a survey on the topics)

it is used in imaging for approximating the TV energy.

Some examples of the use of this functional in the con-

text of image processing are [27,25,26], which relate to

previous works by Ambrosio and Tortorelli on diffuse

interface approximation models [5,4].

Such variational methods for image segmentation

have been extensively studied from an analytical point

of view and the segmentation is usually robust and com-

putationally efficient. However, variational image seg-

mentation as described above still faces many problems

in the presence of low contrast and the absence of clear

boundaries separating regions. Their main drawback is

that they are limited to image features which can be

mathematically formalised (e.g. in terms of an image

gradient) and encoded within a segmentation energy.

In recent years dictionary based methods have become

more and more popular in the image processing commu-

nity, complementing more classical variational segmen-

tation methods. By learning the distinctive features of

the region to be segmented from examples provided by

the user, these methods are able to segment the desired

regions in the image correctly.

In this work, we consider the method proposed in

[10,29,44,43] for image segmentation and labelling. This

approach goes beyond the standard variational approach

in two respects. Firstly, the model is set up in the purely

discrete framework of graphs. This is rather unusual for

variational models where one normally considers func-

tionals and function spaces defined on subdomains of R2

in order to exploit properties and tools from convex and

functional analysis and calculus of variations. Secondly,

the new framework allows for more flexibility in terms

of the features considered. Additional features like tex-

ture, light intensity or others, can be considered as well

without encoding them in the function space or the reg-

ularity of the functions. Due to the possibly very large

size of the image (nowadays of the order of megapixel

for professional cameras) and the large number of fea-

tures considered, the construction of the problem may

be computationally expensive and often requires reduc-

tion techniques [54,53,28]. In several papers (see, e.g.,

[61,63,34]) the segmentation problem was rephrased in

the graph framework by means of the graph cut ob-

jective function. Follow-up works on the use of graph-

based approaches are, for instance, [45,46] where an

iterative application of heat diffusion and threshold-

ing, also known as the Merriman-Bence-Osher (MBO)

method [47] is discussed for binary image labelling, and

[37] where the Mumford-Shah model is reinterpreted in

a graph setting.

In this paper, we also address the problem of de-

tection of objects with geometrical properties that are

a priori known. An example is the detection of lines

and circles. These objects can be identified by mapping

them onto an auxiliary space where relevant geometri-

cal properties (such as linear alignment and roundness)

are represented as peaks of specific auxiliary functions.

In this work, we use the Hough transform [36] to detect

measurement tools (rulers, concentric circles of fixed

radii) with the intent of providing quantitative, scale-

independent measurements of the region segmented by

one of the techniques described above. In this way, an

absolute measurement of the region of interest in the

image is possible, independent of the scale of the im-

age, which could depend, for instance, on the distance

of the objective to the camera.

We demonstrate the use of our method in the con-

text of real world applications in which segmentation

and subsequent object measurement are crucial. Our

main application is the measurement of the white fore-

head patch (blaze) of male pied flycatchers, which has

been studied with regard to sexual selection in [60],

see Figure 1. The forehead patch is known to vary be-

tween individuals [41] and can be subject to both intra-

[38] and intersexual [55] selection with pied flycatchers

from Spain preferring males with large patches. Fore-

head patch size has been shown to signal male phe-

notypic quality through plasma oxidative stress and

antioxidant capacity [51]. However, in all studies to

date the measurements of patches have been inconsis-

tent and generally inaccurate. For example some studies

have simply measured patch height [23], whereas Potti

and Montalvo [55] assumed the shape to be a trapez-

ium with area equal to 0.5(B+ b)H, B being the white

patch width, b the bill width and H the height of the

white patch. Morales et al. [50] measured the length

and breadth of the forehead patch with callipers to the

nearest 0.01mm and its size (mm2) was calculated as

the area of a rectangle. Other studies have measured

the patches from photographs, e.g., Järvistö et al. [38]

Ruuskanen et al. [58] and Sirkiä et al. [62] who pho-

tographed the forehead with a scale bar included in

each picture, and measured the patch as the white area
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in mm2 using IMAGEJ software [2]. But none of these

three papers provide methods of how the measurement

was actually achieved, e.g., whether patches were delin-

eated or roughly estimated with a simple shape. Most

recently Moreno et al. [51] analysed digital photos of

forehead patches with Adobe PhotoShop CS version

11.0. relating the distance of 1mm on the ruler to num-

ber of pixels, and used this to estimate length. Zooming

to 400% and using the paintbrush tool with 100% hard-

ness and 25% spacing the authors delineate the patch

and measure the area of the white areas on forehead.

While this is the best measurement method to date, it

still is subject to human measurement error and sub-

jective assessment of patch boundaries. We report some

segmentation results obtained by manual selection and

polygon fitting in Figure 2. In this manuscript we use a

mathematically robust approach to segment the blaze

independently to provide an accurate measurement of

forehead patch area.

(a) (b)

(c) (d)

Fig. 1: The blaze segmentation and measurement prob-

lem: pictures are taken at different distances, thus re-

quiring a measurement tool.

A similar challenge can be encountered in medical

applications monitoring and quantifying the evolution

of skin moles for early diagnosis of melanoma (skin can-

cer). A normally user-dependent measurement of the

mole is performed using a ruler located next to it. A pic-

ture is then taken and used for future comparisons and

follow-up, see Figure 3 and compare [18,1] for previ-

ous attempts of automatic detection of melanomas. For

(a) Magic wand

(b) Trapezium fitting

Fig. 2: Flycatcher blaze segmentation of the images

1b and 1c obtained either by using the ‘magic wand’

tool of the IMAGEJ software, similarly as described by

Moreno [51] or by trapezium fitting as suggested by

Potti and Montalvo [55]. In the first case the result is

strongly user-dependent, in the second one the blaze

area is overestimated.

such an application, a systematic quantitative analysis

is also required 1.

In several other applications the task of measuring

objects directly from the image is encountered. These

include zoological and behavioural studies arising in the

animal world where detecting size, shape and possible

symmetries of specific distinctive animal features can

be useful, as well as, for instance, in archaeological digs

where the measurement of finds is important for com-

parisons and classification [35].

Outline of the method. We consider the image as a

graph whose vertices are the image pixels. Similarity

between pixels in terms of colour or texture features is

modelled by a weight function defined on the set of ver-

tices. Our method runs as follows. Firstly, using exam-

ples provided by the user (dictionaries) as well as matrix

completion and operator splitting techniques, the seg-

mentation of the region of interest is performed. In the

graph framework, this corresponds to cluster together

1 Mole images from http://www.medicalprotection.org/

uk/practice-matters-issue-3/skin-lesion-photography,
c©Chassenet/Science Photo Library ,
http://en.wikipedia.org/wiki/Melanoma (public domain),
http://www.diomedia.com/stock-photo-close-up-of-a-

papillomatous-dermal-nevus-mole-a-raised-pigmented-

skin-lesion-that-results-from-a-proliferation-

of-benign-melanocytes-c-cid-image14515019.html,
c©Phototake RM/ ISM

http://www.medicalprotection.org/uk/practice-matters-issue-3/skin-lesion-photography
http://www.medicalprotection.org/uk/practice-matters-issue-3/skin-lesion-photography
http://en.wikipedia.org/wiki/Melanoma
http://www.diomedia.com/stock-photo-close-up-of-a-papillomatous-dermal-nevus-mole-a-raised-pigmented-skin-lesion-that-results-from-a-proliferation-of-benign-melanocytes-c-cid-image14515019.html
http://www.diomedia.com/stock-photo-close-up-of-a-papillomatous-dermal-nevus-mole-a-raised-pigmented-skin-lesion-that-results-from-a-proliferation-of-benign-melanocytes-c-cid-image14515019.html
http://www.diomedia.com/stock-photo-close-up-of-a-papillomatous-dermal-nevus-mole-a-raised-pigmented-skin-lesion-that-results-from-a-proliferation-of-benign-melanocytes-c-cid-image14515019.html
http://www.diomedia.com/stock-photo-close-up-of-a-papillomatous-dermal-nevus-mole-a-raised-pigmented-skin-lesion-that-results-from-a-proliferation-of-benign-melanocytes-c-cid-image14515019.html
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Fig. 3: The monitoring and measuring of moles is essen-

tial for the early diagnosis of melanoma. Normally, due

to their small size, they can be measured by juxtaposing

a small ruler with them.

pixels having similar features. This is obtained by min-

imising on the graph the Ginzburg-Landau functional

typically used in the continuum setting to describe dif-

fuse interface problems. In order to provide quantitative

measurements of the segmented region, a second detec-

tion step is then performed. The detection here aims

to identify the distinctive geometrical features of the

measurement tool (such as line alignment for rulers or

circularity for circles) to get the scale on the measure-

ment tool considered. The segmented region of interest

can now be measured by simple comparisons and quan-

titative measurements such as perimeter and area can

be provided.

Contribution We propose a self-contained programme

combining automated detection and subsequent size mea-

surement of objects in images where a measurement

tool is present. Our approach is based on two powerful

image analysis techniques in the literature: a graph seg-

mentation approach which uses a discretised Ginzburg-

Landau energy [10] for the detection of the object of

interest and the Hough transform [36] for detecting the

scale of the measurement tool. While these methods are

state of the art, their combination for measuring object

size in images proposed in this paper is new. More-

over, to our knowledge there is only little contribution

in the literature that broach the issue of how the graph

segmentation approach as well as the Hough transform

are applied to specific problems [29,44,33]. Indeed, here

we present these methodologies in detail, especially dis-

cussing important aspects in their practical implemen-

tation, and demonstrate the robust applicability of our

programme for measuring the size of objects, showcas-

ing its performance on several examples arising in zool-

ogy, medicine and archaeology. Namely, we first apply

our combined model for the measurement of the blaze

on the forehead of male pied flycatchers, for which we

run a statistical analysis on the accuracy and predicted

error in the measurement on a database of thirty im-

ages. State-of-the-art methods for such a task typically

require the user to fit polygons inside or outside the

blaze [55] or to segment the blaze by hand [51]. Sim-

ilarly, the scale on the measurement tool is typically

read from the image by manually measuring it on the

ruler. With respect to medical applications, we apply

our combined method for the segmentation and mea-

surement of melanomas. Although efficient segmenta-

tion methods for automatised melanoma detection al-

ready exist in literature (see, e.g., [18,1]), up to the

knowledge of the authors no previous methods provid-

ing their measurement by detecting the scale on the

the ruler placed next to them (see Figure 3) exist. Con-

versely, in the case of archaeological applications, some

models for the automatic detection of the measurement

tool in the image exist [35] but no automatic methods

are proposed for the segmentation of the region of in-

terests. A free release of the MATLAB code used to

compute the results will be made available after the

zoological analysis of the pied flycatcher’s data based

on our segmentation and measurement has been com-

pleted, [15].

Organisation of the paper. In Section 2 we present the

mathematical ingredients used for the design of the

graph based segmentation technique used in [10,29,44,

43]. They come from two different worlds: the frame-

work of diffusion PDEs used for modelling phase tran-

sition/separation problems (see Section 2.1) and graph

theory and clustering, see Section 2.2. In view of a

detailed numerical explanation, we also recall a split-

ting technique and a popular matrix completion tech-

nique used in our problem to overcome the computa-

tional costs. In Section 3 we explain how the geomet-

rical Hough transform is used to detect the scale in

an image. Finally, Section 4 contains the numerical re-

sults obtained with our combined method applied to

the problems described above. For completeness, we

give some details on the Nyström matrix completion

technique in Appendix A and a review of the Hough

transform for line and circle detection in Appendix C.

2 Image segmentation as graph clustering

We present in this section the mathematical background

for the design of the Ginzburg-Landau (GL) graph seg-

mentation algorithm introduced in [10]. There, the im-
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age segmentation problem is rephrased as a minimisa-

tion problem on a graph defined by features computed

from the image. Compared to the methods above, the

graph framework allows for more freedom in terms of

the possible features used to describe the image, such

as texture.

2.1 The Ginzburg-Landau functional as approximation

of TV

In the following, we recall the main properties of the

original continuum version of the GL functional ex-

plaining its importance in the context of image seg-

mentation problems as well as the main concepts of

graph theory which will be used for the segmentation

modelling.

Several physical problems modelling phase transi-

tion and phase separation phenomena are built around

the well-known GL functional:

GL(u) :=
ε

2

∫
Ω

|∇u(x)|2 dx+
1

ε

∫
Ω

W (u(x)) dx. (2.1)

The functional above is defined in the continuous set-

ting. Here, Ω represents a open subset of Rd, d = 2, 3,

u : Ω → R is the density of a two-phase material and

W (u) is a double-well potential, e.g. W (u) = 1
4 (u2−1)2.

The two wells ±1 of W correspond to the two phases

of the material. The parameter ε > 0 is the spatial

scale. Variational models built around this functional

are also referred to as diffuse interface models because

of the interface appearing between the two regions con-

taining the phases (i.e. the two wells of W ) due to the

competition between the two terms of the functional

(2.1). Nonetheless, some smoothness preventing u from

having jumps between the two regions is ensured by the

first regularisation term.

The use of the GL functional has become very pop-

ular in image processing due to its connections with the

total variation (TV) seminorm. In [48,49], for instance,

Γ -convergence properties of (2.1) to the TV functional

are shown. Thus, the GL functional is very often used as

a quadratic approximation of total variation. Fast nu-

merical schemes relying on these connections have been

designed for many imaging problems, thus overcoming

the issues related to nonsmooth TV minimisation [5,

27,19]. In image processing, the functional considered

often is of the form

E(u) := GL(u) + λ φ(u, u0), (2.2)

where φ(u, u0) is a fidelity term measuring the dis-

tance of the reconstructed image u to the given image

u0. Depending on the application, different data fideli-

ties are employed. Typically, they are related to sta-

tistical and physical assumptions of the model consid-

ered. Standard examples of fidelity terms are φ(u, u0) =

‖u− u0‖dLd(Ω) , d = 1, 2. The parameter λ > 0 deter-

mines the influence of the data fit compared to the reg-

ularisation. Taking the L2 gradient descent of (2.2) we

get the following evolutionary PDE, known in the liter-

ature as the Allen-Cahn equation [3] with an additional

forcing term due to the fidelity φ:

ut = −δGL
δu
− λδφ

δu
= ε∆u− 1

ε
W ′(u)− λδφ

δu
. (2.3)

Steady states of equation (2.3) are the stationary points

of the energy E in (2.2). Note that E is not convex

so uniqueness is not guaranteed and, consequently, the

long time behaviour for solutions of (2.3) will depend on

the initial condition. The linear diffusion term weighted

by ε appearing in (2.3) allows for fast solvers using

for instance the Fast Fourier Transform (FFT) which

translates the Laplace operator into a multiplication

operator on the Fourier modes.

2.2 Towards the modelling: the graph framework

In the following, we rely on the method presented in [10,

43] for high-dimensional data classification on graphs

which has been applied to several imaging problems [29,

44], showing good performance and robustness. We con-

sider the problem of binary image segmentation where

we want to partition a given image into two components

where each component is a set of pixels (also called a

cluster, or a class) and represents a certain object or

group of objects. Typically, some a priori information

describing the object(s) we want to extract is given and

serves as initial input for the segmentation algorithm.

For image labelling, in [10] two images are taken as in-

put: the first one has been manually segmented in two

classes and the objective is to automatically segment

the second image using the information provided by

the segmentation of the first one.

We revise in the following the main ingredients of

the model considered and start from a quick review of

concepts in graph theory. We represent a rectangular

image with S := N ×M pixels by the set I := {x =

(x1, x2) ∈ Z2 : 0 ≤ x1 ≤ N − 1 and 0 ≤ x2 ≤ M − 1}.
For each x ∈ I, we define the image neighbourhood of

x as the set

N (x) := {y ∈ I : |x1 − y1| ≤ τ and |x2 − y2| ≤ τ} ,

with τ ∈ N fixed, i.e. N (x) contains the pixels in a

(2τ + 1)× (2τ + 1) sized square centred at x. For some
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appropriate K ∈ N, we associate to every pixel x ∈ I a

vector z ∈ RK encoding selected characteristics of the

neighbourhood N (x). These characteristics are related

to the grey or RGB (red, green, blue) intensity values

as well as the texture features of the neighbourhood.

In Section 2.5, we will explain in more detail our fea-

ture vector construction. The map ψ : I → RK , x 7→ z

is called the feature function. For constructing the fea-

ture vectors in Section 2.5, it will be useful to asso-

ciate a neighbourhood vector ν(x) := (xj)j∈N (x) ∈
I(2τ+1)×(2τ+1) to each neighbourhood, such that the or-

dering of the xj in ν(x) is consistent between pixels x,

e.g., order the pixels from each square N (x) from left

to right and top to bottom. The specific choice of or-

dering is not important, as long as it is consistent for

each pixel neighbourhood.

Next we construct a simple weighted undirected graph

G = (V,E,w) whose vertices correspond to the pixels in

I and with edges whose weights depend on the feature

function ψ. Let V be a vertex set of cardinality S. To

emphasize that each vertex in V corresponds to exactly

one pixel in I, we will label the vertex corresponding to

x ∈ I by x as well. Let w : V × V → R be a symmetric

and nonnegative function, i.e. for each xi, xj ∈ V

w(xi, xj) = w(xj , xi), w(xi, xj) ≥ 0. (2.4)

We define the edge set E as the collection of all undi-

rected edges connecting nodes xi and xj for which w(xi, wj) >

0 [21]. The function w restricted to E ⊂ V × V is then

a positive edge weight function.

In our applications we define w as

w(xi, xj) := ŵ(ψ(xi), ψ(xj)) = ŵ(zi, zj),

where ŵ : RK × RK → R is a given function and ψ is

the feature function.

In operator form, the weight matrix W ∈ RS×S
is the nonnegative symmetric matrix whose elements

are wi,j = w(xi, xj). In the following, we will not dis-

tinguish between the two functions w and ŵ and, with

a little abuse of notation, we will write w(zi, zj) for

ŵ(zi, zj).

Remark 1 Weight functions express the similarities be-

tween vertices and will be used in the following to par-

tition V into clusters such that the sum of the edge

weights between the clusters is small. There are many

different mathematical approaches to attempt this par-

titioning. When formulated as a balanced cut minimi-

sation, the problem is NP-complete [69], which inspired

relaxations which are more amenable to computational

approaches, many of which are closely related to spec-

tral graph theory [61]. We refer the reader to [21] for

a monograph on the topic. The method we use in this

paper can be understood (at least in spirit, if not tech-

nically, [65,66]) as a nonlinear extension of the linear

relaxed problems.

To solve the segmentation problem, we minimise

a discrete GL functional (which is formulated in the

graph setting, instead of the continuum setting), via a

gradient descent method similar to the one described in

Section 2.1. In particular, in this setting the Laplacian

in (2.3) will be a (negative) normalised graph Laplacian.

We will use the spectral decomposition of u with respect

to the eigenfunctions of this Laplacian. In Section 2.4

we discuss the Nyström method, which allows us to

quickly compute this decomposition, but first we intro-

duce the graph Laplacian and graph GL functional.

The discrete operators. We start from the definition of

the differential operators in the graph framework.

For each vertex x ∈ V , we define the degree of x,

d : V → R, d(x) :=
∑
y∈V

w(x, y).

In operator form, the diagonal degree matrix D ∈
RS×S is defined to have diagonal elements di,i = d(xi).

A subset A of the vertex set V is connected if any

two vertices in A can be connected by a path (i.e. a

sequence of vertices such that subsequent vertices are

connected by an edge in E) such that all the vertices of

the path are in A. A finite family of sets A1, . . . , At is

called a partition of the graph if Ai ∩Aj = ∅ for i 6= j

and
⋃
iAi = V .

We now have all the ingredients to define the graph

Laplacian. Denoting by V the space of all the functions

V → R, the graph Laplacian is the operator L : V → V
such that:

Lu(x) =
∑
y∈V

w(x, y)(u(x)− u(y)), x ∈ V. (2.5)

We are considering a finite graph of size S, so real val-

ued functions can be identified as vectors in RS . We

can then write the graph Laplacian in matrix form as

L = D −W or element-wise as:

L(x, y) :=

{
d(x), if x = y,

−w(x, y), otherwise.
(2.6)

It is worth mentioning (see Remark 2 below) that this

graph Laplacian is a positive semidefinite operator. Note

that by convention the sign of the discrete Laplacian is

opposite to that of the (negative semidefinite) contin-

uum Laplacian. The associated quadratic form of L is

Q(u, Lu) :=
1

2

∑
x,y∈V

w(x, y) (u(x)− u(y))
2
. (2.7)
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The quadratic form Q can be interpreted as the energy

whose optimality condition corresponds to the vanish-

ing of the graph Laplacian in (2.6).

Remark 2 The operator L has S non-negative real-valued

eigenvalues {λi}Si=1 which satisfy: 0 = λ1 ≤ λ2 ≤ · · · ≤
λS . The eigenvector corresponding to λ1 is the constant

S-dimensional vector 1S , see [69].

The operator in (2.5)-(2.6) is not the only graph

Laplacian appearing in the literature. To set it apart

from others, it is also referred to as the unnormalised

or combinatorial graph Laplacian. Such operator can

be related to the standard continuous differential one

through nonlocal calculus [31]. More precisely, the eigen-

vectors of L converge to the eigenvectors of the stan-

dard Laplacian, but in the large sample size limit a

proper scaling of L is needed in order to guarantee sta-

bility of convergence to the continuum operator [10,44].

Hence, we consider in the following the normalisation

of L given by the symmetric graph Laplacian

Ls := D−1/2LD−1/2 = I −D−1/2WD−1/2. (2.8)

Clearly, the matrix Ls is symmetric. Other normalisa-

tions of L are possible, such as the random walk graph

Laplacian (see [21,69,66]).

In [61, Section 5] a quick review on the connec-

tions between the use of the symmetric graph Laplacian

(2.8) and spectral graph theory is given. Computing the

eigenvalues of the normalised symmetric Laplacian cor-

responds to the computation of the generalised eigen-

values used to compute normalised graph cuts in a way

that the standard graph Laplacian may fail to do, com-
pare [21]. Typically, spectral clustering algorithms for

binary segmentation base the partition of a connected

graph on the eigenvector corresponding to the second

eigenvalue of the normalised Laplacian, using, for ex-

ample, k-means. For further details and a comparison

with other methods we refer the reader to [61] and to

[10, Section 2.3] where a detailed explanation on the im-

portance of the normalisation of the Laplacian is given.

The discrete GL functional. Recalling (2.1)-(2.2) and

(2.7), we define the discrete GL functional2 as

GLd(u) : =
ε

2
Q(u, Lsu) +

1

ε

∑
x∈V

W (u(x)) (2.9)

+
∑
x∈V

χ(x)

2
(u(x)− u0(x))2.

2 ‘Discrete GL functional with a data fidelity term’ would
be a more accurate name, but we opt for brevity here.

Here u0 represents known training data provided by

the user. As before, W (u(x)) = 1
4 (u2(x) − 1)2 is the

double-well potential. The function χ : V → {0, 1}
is the characteristic function of the subset of labelled

vertices Vlab ⊂ V , i.e. χ = 1 on Vlab and χ = 0 on

Vunlab := V clab. Hence, the corresponding fidelity term

enforces the fitting between u and u0 in correspondence

to the the known labels on the set Vlab, while the la-

belling for the pixels in Vunlab is driven by the first two

regularising terms in (2.9).

The corresponding `2 gradient flow for (2.9) reads

ut =− ε Lsu−
1

ε

∑
x∈V

(u3(x)− u(x))

−
∑
x∈V

χ(x)(u(x)− u0(x)).

The idea is to design a semi-supervised learning

(SSL) approach where a priori information for the set

Vlab (i.e. cluster labels) is used to label the points in

the set Vunlab. The comparison uses the weight func-

tion defined in (2.4) to build the graph by comparing

the feature vectors at each point.

Remark 3 (The weight function) As pointed out in [10,

Section 2.5], the main criteria driving the choice of the

weight function are the desired outcome and the compu-

tational efforts required to diagonalise the correspond-

ing matrix W . A common weight function is the Gaus-

sian function, which, for x, y ∈ V reads

w(x, y) = exp(−‖ψ(x)− ψ(y)‖2/σ2), σ > 0. (2.10)

Note that this function is symmetric: w(x, y) = w(y, x).

Several approaches to SSL using graph theory have

been considered in literature, compare [22,31]. The ap-

proach presented here adapts fast algorithms available

for the efficient minimisation of the continuous GL func-

tional to the minimisation of the discrete one in (2.9)

. In particular, to overcome the high computational

costs, we present in the following an operator splitting

scheme and a matrix completion technique applied to

our problem.

2.3 Convex splitting

Splitting methods are used in the study of PDEs. Here,

we focus on convex splitting, which is used to numeri-

cally solve problems with a general gradient flow struc-

ture. Decomposing GLd as

GLd = GL1,d −GL2,d

where both GL1,d and GL2,d are convex and denoting

by Un the spatially discretisation of u(·, n∆t), ∆t > 0,
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n ≥ 0, a semi-implicit discretisation for the steepest

descent of GLd reads

Un+1 − Un = −∆t(∇VGLd,1(Un+1)−∇VGLd,2(Un)),

(2.11)

where∇V indicates formally the Fréchet derivative with

respect to the metric in a Banach space V . The ad-

vantage of the convex splitting consists in treating the

convex part implicitly in time and the concave part ex-

plicitly. Typically, nonlinearities are considered in the

explicit part of the splitting and their instability is bal-

anced by the effect of the implicit terms.

The terms GLd,1 and GLd,2 in (2.11) read in our

case (cf. [10, Section 3.1])

GLd,1(u) :=
ε

2
Q(u, Lsu) +

C

2

∑
x∈V

u2(x), (2.12a)

GLd,2(u) :=− 1

4ε

∑
x∈V

(u2(x)− 1)2 +
C

2

∑
x∈V

u2(x)

(2.12b)

−
∑
x∈V

χ(x)

2
(u(x)− u0(x))2,

where the constant C > 0 has to be chosen large enough

such that GLd,2 is convex for u around the wells of W .

The differential operator contained in the implicit com-

ponent of the splitting, GLd,1, is the symmetric graph

Laplacian, which can be diagonalised quickly and in-

verted using Fourier transform methods. In [10, Section

3.1], more details of the splitting are presented. Writing

out in detail the time-discretised scheme (2.11), we get,

for every n ≥ 1

Un+1(x)− Un(x) = −∆t (ε Ls(Un+1(x)) + CUn+1(x))

−∆t
(
−1

ε

(
U3
n(x)− Un(x)

)
+ C Un(x)

− χ(x) (Un(x)− U0)
)
, x ∈ V. (2.13)

Here, U0 denotes the training data, i.e. the known labels

−1 and 1 assigned by the user to nodes in the subset

Vlab ⊂ V . In our numerical experiments we initialised

the time-stepping (2.13) by taking

U1(x) =

{
U0(x), if x ∈ Vlab,
0, if x ∈ V Clab.

(2.14)

Towards the numerical realisation. The numerical strat-

egy we intend to use is based on the following steps (see

Section 2.5 for more details):

– At each time step n∆t, n ≥ 1, consider at every

point the spectral decomposition of Un with respect

to the eigenvectors vk of the operator Ls as

Un(x) =
∑
k

αkn(x)vk(x), x ∈ V (2.15)

with coefficients αn. Similarly, use spectral decom-

position in the {vk} basis for the other nonlinear

quantities appearing in (2.13).

– Having fixed the basis of eigenfunctions, the numer-

ical approximation in the next time step Un+1 is

computed by determining the new coefficients αkn+1

in (2.15) for every k through convex splitting (2.13).

The only possible bottleneck of this strategy is the

computation of the eigenvectors vk of the operator Ls,

which, in practice, can be computationally costly for

large and non-sparse matrices W . To mitigate this po-

tential problem, we use the Nyström extension (Sec-

tion 2.4).

2.4 Matrix completion via Nyström extension

Following the detailed discussion in [10, Section 3.2], we

present here the Nyström technique for matrix comple-

tion [54] used in previous works by the graph theory

community [28,7] and applied later to several imaging

problems [53,45,46]. In our problem, the Nyström ex-

tension is used to find an approximation of the eigen-

vectors vk of the operator Ls. We will freely switch

between the representation of eigenvectors (or eigen-

functions) as a real-valued functions on the vertex set

V and as a vectors in RS .

Consider a fully connected graph with vertices V

and the set of corresponding feature vectors ψ(V ) =

{zi}Si=1. A vector v is an eigenvector of the operator Ls
in (2.8) with eigenvalue λ if and only if v is an eigen-

vector of the operator D−1/2WD−1/2 with eigenvalue

1− λ, since

Lsv = v −D−1/2WD−1/2v = λv ⇐⇒ (2.16)

D−1/2WD−1/2v = (1− λ)v.

Thus, finding the spectral decomposition of Ls boils

down to diagonalising the operatorD−1/2WD−1/2. This

is not obviously easier, as the matrix W , despite be-

ing nonnegative and symmetric, may be large and non-

sparse, so the computation of its spectrum may be com-

putationally hard. Here, however, we take advantage of



Graph methods for image segmentation and object measurement 9

the Nyström extension. Given the eigenvalue problem

find θ ∈ R and v : V → R, v 6= 0 s. t. (2.17)∑
x∈V

w(x, y) v(x) = θv(y),

for every point y ∈ V , we approximate the sum on the

left hand side using a standard quadrature rule where

the interpolation points are chosen by randomly select-

ing a subset of L points from the set V and the interpo-

lation weights are chosen correspondingly. The Nyström

extension for (2.17) then approximates (2.17) by

L∑
i=1

w(y, xi)v(xi) ≈
∑
x∈V

w(y, x)v(x) = θv(y), (2.18)

where X := {xi}Li=1 ⊂ V is a set of randomly chosen

vertices. The set X defines a partition of V into X

and Y := Xc. In (2.18) we approximate the value v(y),

for an eigenvector v of W and y ∈ Y , only knowing the

values v(xi), i = 1, . . . , L, by solving the linear problem

L∑
i=1

w(y, xi)v(xi) = θv(y). (2.19)

With this method we can approximate the values of an

eigenvector v of W , corresponding to the eigenvalue θ,

in the whole set of points V using its values in the sub-

set X and solving the interpolated eigenvalue equation

above. Generally, this is not as immediate as it sounds

since the eigenvectors of W are not known in advance,

however, by choosing y = xj , j = 1, . . . , L, in (2.19), we
find an eigenvalue problem for the known matrix with

entries w(xj , xi), which is a much smaller matrix than

the full matrix W :

L∑
i=1

w(xj , xi)v(xi) = θv(xj). (2.20)

If L is small enough such that this eigenvalue problem

can be solved, then θ and v(xi), i = 1, . . . , L, can be

computed, which in turn can be substituted back into

(2.19) to find an approximation to v(y), for any y ∈ V .

In short, we approximate the eigenvectors in (2.17) by

extensions of the eigenvectors in (2.20), using the exten-

sion equation (2.19), and we approximate the eigenval-

ues in (2.17) by the eigenvalues from (2.20). The main

Nyström assumption is that these approximated eigen-

vectors and eigenvalues approximately diagonalise W .

For further details on the Nyström method, we refer

the reader to Appendix A where a description of the

method is given in matrix notation.

2.5 Pseudocode

We present here the pseudocode combining all the dif-

ferent steps described above for the realisation of the

GL minimisation. We recall that ε is the scale parame-

ter of the GL functional (2.9), σ is the variance used in

the Gaussian similarity function (2.10), C is the con-

vex splitting parameter in (2.12a)-(2.12b) and L is the

number of sample points in (2.18).

Algorithm 1 GL-minimisation with Nyström exten-

sion for image segmentation

1: Parameters: L� S, σ, ε, C.
2: select L random points and build the set X ⊂ V
3: get a partition V = X ∪ Y, Y := Xc

4: determine features and edge weights of X and Y using
(2.10) and build WXX and WXY

5: Nyström extension to compute normalised matrix of
eigenvectors of W and get eigenvalues-eigenvectors of W
(λ̂i, vi)

6: output← eigenvalues-eigenvectors (1− λ̂i, vi) of Ls used
as GL minimisation input

7: convex splitting for GL minimisation through Fourier
transform methods, as described in Section 2.3

8: output ← the binary segmentation.

We will now give further details. First we randomly

select L pixels from I. As described in Section 2.2 we

now create a vertex set V ∼= I, which we partition

into a set X, consisting of the vertices corresponding

to the L randomly chosen pixels, and a set Y := V \X.

We now compute the feature vectors of each vertex in

V . If I is a grey scale image, we can represent fea-

tures by an intensity map f : V → R. If I is an

RGB colour image instead, we use a vector-valued (red,

green, and blue) intensity map f : V → R3 of the form

f(x) = (fR(x), fG(x), fB(x)). We mirror the bound-

ary to define neighbourhoods also on the image edges.

The feature function ψ : V → RK concatenates the

intensity values in the neighbourhood ν(x) of a pixel

into a vector: ψ(x) := (f(ν1(x)), . . . , f(ντ̃ (x)))T , where

ν(x) = (ν1(x), . . . , ντ̃ (x)) ∈ Rτ̃ is the neighbourhood

vector of x ∈ V defined in Section 2.2 and τ̃ = (2τ+1)2,

the size of the neighbourhood of x. Note that K = τ̃

if I is a grey scale image and K = 3τ̃ if I is an RGB

colour image.

Additional features can be considered, such as tex-

ture, for instance. For instance, we consider the eight

MR8 filter responses [67] as texture features on a grey

scale image and choose the function t : V → R8 as

t(x) = (MR81(x), . . . ,MR88(x)). Hence, the feature func-

tion ψ is now defined as ψ(x) := (t(ν1(x)), . . . , t(ντ̃ (x)))T

where ν(x) and τ̃ are defined as above. Here, K = 8τ̃ .

Of course, a combination of colour and texture features
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can be considered as well by considering ψ defined as

ψ(x) := (f(ν1(x)), t(ν1(x)), . . . , f(ντ̃ (x)), t(ντ̃ (x))) for

every x in V . In this case, when dealing with RGB

colour images, the dimension of the feature vector is

therefore K = 11τ̃ .

Using (2.10), the Nyström extension can be per-

formed for approximating the eigenvectors and eigen-

values of W as described in Section 2.4 and in Ap-

pendix A, which are then used to compute the eigen-

vectors {vk} of Ls and corresponding eigenvalues {λk},
compare (2.16). Recalling (2.15), those eigenvectors are

used as basis functions for Un, the numerical approx-

imation of u in the n-th iteration of the GL minimi-

sation. Considering (2.13) and writing the nonlinear

quantities appearing in terms of {vk} similarly as in

(2.15), we have for x ∈ V

(Un(x))
3

=
∑
k

βkn(x)

vk(x), χ(x) (Un(x)− u0(x)) =
∑
k

γkn(x) vk(x).

The computation of U in the next iteration reduces to

finding the coefficients αkn+1 in the expression

Un+1(x) =
∑
k

αkn+1(x)vk(x), x ∈ V,

in terms of βkn, γ
k
n and the other parameters involved,

that is the scale parameter ε in (2.9), the parameter

C > 0 appearing in the splitting (2.12) and the time

step ∆t. Using (2.13), we compute αkn+1 simply as

αkn+1 = D−1k

((
1 +

∆t

ε
+ C∆t

)
αkn −

∆t

ε
βkn −∆t γkn

)
,

where Dk is defined as Dk := 1 +∆t(ελk + C).

3 Hough transform for scale detection

In order to detect objects in an image with specific, a

priori specified shapes, in the following we will make

use of the Hough transform. For our purposes, we will

focus in particular on straight lines detection (for which

the Hough transform was originally introduced and con-

sidered [36]) and circles, [24]. Other applications of this

transformation for more general curves exist as well. In

[8,42] the Hough transform is used in the context of

astronomical and medical images for a specific class of

curves (Lamet and Watt curves). In [33] applications to

cellular mitosis are presented. There, the Hough trans-

form recognises the cells (as circular/elliptical objects)

and tracks them in the process of cellular division. For

more details on the use of the Hough transform for line

and circle detection we refer the interested reader to

Appendix C.

Numerical strategy. Hough transform methods for edge

detection are usually applied to binary images. There-

fore, we start by using the classical Canny method for

edge detection [16] in which we replace the original pre-

liminary Gaussian filtering by an edge-preserving Total

Variation smoothing [56] which has the advantage of

removing noise while preserving edges. This step will

result in a binary image for the most prominent edges

in the image. Having decided which geometrical shape

we are interested in (and, as such, its general paramet-

ric representation), the corresponding parameter space

is subdivided into accumulator arrays (cells) whose di-

mension depends on the dimension of the parameter

space itself (2D in the case of straight lines, 3D in

the case of circles). Each accumulator array groups a

range of parameter values. The accumulator array is

initialised to 0 and incremented every time an object in

the parameter space passes through the cell. In this way,

one looks for the peaks over the set of accumulator ar-

rays as they indicate a high value of intersecting objects

for a specific cell. In other words, they are indicators of

potential objects having the specific geometrical shape

we are interested in.

3.1 Pseudocode

Numerically, dealing with the Hough transform con-

sists of looking for peaks of the accumulator arrays

in the parameter space onto which the original im-

age is mapped. We use the MATLAB routines hough,

houghpeaks, and houghlines for straight lines detec-

tion and imfindcircles for circle detection. The ac-

curacy and the number of detections for such routines
can be tuned by some parameters, such as, for instance,

the maximum number of peaks one wants to consider,

objmax, or the array peak threshold, thresh, i.e. the

minimum number of elements for an accumulator array

to be considered a peak. The user also has to spec-

ify an initial range of pixel values [smin, smax] as a

very rough approximation of the measurement scale.

Namely, in the case of line detection this determines

a minimum/maximum spacing between lines , whereas

for circle detection this serves as a rough approximation

of the range of values for the circles’ radii. This rough

approximation may be given, for example, from aver-

age data which the user knows a priori. We explain this

with some examples in Section 4. Accuracy of the de-

tection algorithm is tuned by a parameter acc. In case

of linear objects this corresponds to choose the max-

imum number of pixels between two line segments to

consider them as one single line, whereas for circle de-

tection this corresponds to the circularity of an object

to be considered a circle.
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Algorithm 2 Hough transform for lines and circles

detection

1: Parameters: [smin, smax], objmax, acc, thresh
2: preprocessing: TV-Canny edge detection
3: compute the Hough transform of the edge image
4: set up detection accuracy, depending on acc, and use

[smin, smax] as rough initial guess
5: determine at most objmax peaks in the parameter space,

thresholding using thresh
6: output ← peaks in the parameter space, corresponding

to objects of interest in the original image

4 Method, numerical results, and applications

We report in this section the numerical results obtained

by the combination of the methods presented for the

detection and quantitative measurement of objects in

an image.

To avoid confusion, we will distinguish in the follow-

ing between two different meanings of scale. Namely,

by image scale we denote the proportion between the

real dimensions (length, width) of objects in the image

and their corresponding dimensions quantified in pixel

count. Dealing with measurement tools, we talk about

measurement scale to intend the ratio between a fixed

unit of measure (mm or cm) marked the measurement

tool considered and the correspondent number of pixels

on the image.

4.1 Male pied flycatcher’s blaze segmentation

Here we present the numerical results obtained by ap-

plying algorithms 1 and 2 to the male pied flycatcher

blaze segmentation and measurement problem described

in the introduction. Our image database consists of 32

images of individuals from a particular population of

flycatchers. Images are 3648 × 2736 pixels and have

been taken by a Canon 350D camera with Canon zoom

lens EFD 18–55mm, see Figure 1. In each image one

of two types of measurement tool is present: a stan-

dard ruler or a surface on which two concentric circles

of fixed diameter (1 cm the inner one, 3 cm the outer

one) are drawn. In the following we will refer to these

tools as linear and circular ruler, respectively. Here,

the measurement scale corresponds to the distance be-

tween ruler marks for linear rulers and to the radius of

the inner circles for circular rulers.

Figure 1 shows clearly that the scale of the images

in the database may vary significantly because of the

different positioning of the camera in front of the fly-

catcher. In order to study possible correlations between

the dimensions (i.e. perimeter, area) of the blaze and

significant behavioural factors, the task then is to seg-

ment the blaze and detect automatically the scale of

the image considered to provide scale-independent mea-

surements.

Parameter choice for Algorithm 1 The GL-segmentation

method exploits similarities and differences between pix-

els in terms of RGB intensities and texture within their

neighbourhood. In our image database these similari-

ties and differences are very distinctive and will guide

the segmentation step. Recalling Section 2.5, we note

that some parameters need to be tuned for the graph

GL minimisation. Those are the number L of Nyström

points, the variance σ of the similarity function (2.8),

the GL parameter ε and the parameter C for the convex

splitting (2.12). However, in our numerical experiments

we had to tune these parameters only once. Namely,

regarding the choice of L for both the head and blaze

segmentation, we used values not bigger than 5% of the

total size of the image considered. The variance appear-

ing in the similarity function (2.10) was set to σ2 = 20

and the weighting parameter ε was chosen as ε = 0.01

(a smaller choice would create numerical instabilities)

and we set the convexity parameter C = 25 or larger

in order to guarantee the convexity of the functional

appearing in (2.12b).

Parameter choice for Algorithm 2 : We briefly com-

ment also on the choice of the parameters for the Hough

transform, that is Algorithm 2. Depending on the type

of measurement tool considered (linear or circular ruler),

different parameter selection methods are considered.

In the case of linear rulers: for the longest line detection

(i.e. ruler edge identification) the parameters objmax
and thresh were set to 1 and to 85% of the maximum

value of the Hough transform matrix, respectively; for

the detection of the ruler notches, the same parame-

ters were chosen as objmax = 500 and thresh = 20%

of the maximum value of the Hough transform matrix

were used. As discussed in 3.1, the range [smin, smax]

was chosen based on previously collected average data

on the head diameter. In particular, after the head de-

tection step, the number of pixels corresponding to the

diameter of the head was automatically computed by

means of the option EquivDiam of the MATLAB rou-

tine regionprops and compared with the average mea-

surement of 1.51 cm provided by available databases on

pied flycatcher. In this way, an initial, rough estimate of

the ruler scale is found and used to determine a spac-

ing parameter s and the interval [smin, smax] by set-

ting smin = s/2 and smax = 2s. This range serves as a

suppression neighbourhood: once a peak in the Hough

transform matrix (i.e. a line or a circle) is identified,

starting from it the successive peaks found outside this
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range are set to 0 (i.e. possible lines or circles within

this interval are discarded), while only the ones inside

the range (typically, the following line/circle we want

to detect) are kept. For our problem, this corresponds

to identifying as candidates for ruler notches only the

lines away from each other at least smin and at most

smax from the peak which has been previously identi-

fied. Analogously, the same can be done with circular

rulers, where we recall the inner/outer radii are 1 cm

and 3 cm, respectively. In this case objmax = 2 since

the circular ruler is made of only two concentric circles.

Comparison with Chan-Vese model. Due to the very ir-

regular contours and the fine texture on the flycatcher’s

forehead, standard variational segmentation methods

such as Canny edge detection or Mumford-Shah mod-

els, [52,4,11,12], are not suitable for our task, as prelim-

inary tests showed. Chan-Vese [19]is not suitable either,

mainly because of the small scale detection limits, the

dependence on the initial condition, and the parameter

sensitivity which may prevent us from an automatic

and accurate segmentation of the tiny, yet characteris-

tic feathers composing the blaze. In particular, the op-

timal parameters µ and ν appearing in the Chan-Vese

functional and a sufficiently accurate initial condition

need to be chosen typically by trial and error for every

image at hand.

For comparison, we report in Figure 4 the blaze seg-

mentation results obtained by using Chan-Vese model

(see [19,20]) and our graph based method which will be

described in more detail in the following.

(a) Chan-Vese segmentation (b) GL-segmentation

Fig. 4: Blaze segmentation results computed by using

Chan-Vese model [19] and GL minimisation (Algorithm

1). The dependence of the Chan-Vese model on the ini-

tial condition and its sensitivity to the model parame-

ters may result in inaccurate detections, while the GL

approach provides more reliable segmentation results.

4.1.1 Detailed description of the method

We divide our task into different steps:

1. For a given, unsegmented image, we detect the head

of the pied flycatcher through a comparison with a

user prepared dictionary (see Figure 6) using GL

segmentation Algorithm 1. Further computations are

restricted to the head only.

2. Starting from the reduced image, a second step sim-

ilar to Step 1 is now performed for the segmentation

of the blaze, using again Algorithm 1. A dictionary

of blazes is used an extended set of features is con-

sidered.

3. A refinement step is now performed in order to re-

duce the outliers detected in the process of segmen-

tation.

4. We use the Hough transform based Algorithm 2 to

detect in the image objects with a priori known ge-

ometrical shape (lines for linear rulers, circles for

circular rulers) for the computation of the measure-

ment scale.

5. The final step is the measurement of the values we

are interested in (i.e. the perimeter of the blaze, its

area and the width and height of the different blaze

components). In the case of linear rulers our results

are given up to some error (due to the uncertainty

in the detection of the measurement scale computed

as average between ruler marks distances).

Figure 5 shows a diagram which outlines the work-

flow of our method. In order to establish relations with

behavioural and biological data confirming or contra-

dicting the initial assumption of correlation between

blaze size and higher attractiveness presented in the in-

troduction [55], we have implemented a user ready pro-

gram for the quantitative analysis and measurements

of the size of the bird blazes which is currently used by

the Department of Zoology of the University of Cam-

bridge. The results of this study will be the topic of a

forthcoming paper [15].

In the following we give more details about each

step.

Step 1: Head detection. We consider unlabelled images

in the database and compare each of them with a dic-

tionary of previously labelled images, see Figure 6. The

training regions (i.e. the heads) are labelled with a value

1, the background with value−1. Unlabelled regions are

initialised with value 0.

The main computational difficulties in this step are

due to size of the images considered. This may affect the

performance of the algorithm as in order to apply the

Nyström completion technique described in Section 2.4

one has to choose an adequate number of points whose

features will approximate well the whole matrix. The

larger and more heterogeneous the image is, the larger
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Photographs	of	birds	
with	rulers

Hough	transf.	for	
detecting	

orientation	of	the	
ruler

Manually	labeled	
dictionary	of	bird	

heads

Scale	detection	with	
Hough	transf.	

perpendicular	to	
ruler

Graph-based	
segmentation	of	bird	
heads	with	manually	
labeled	dictionary

Photographs	of	
segmented	bird	

heads

Manually	labeled	
dictionary	of	bird	

blazes

Graph-based	
segmentation	of	bird	
blazes	with	manually	
labeled	dictionary

Photographs	of	
segmented	bird	

blazes

Measurement	of	
bird	blazes

Nr
of
	p
ix
el
s

Refinement	step
Possible	user	input

Fig. 5: The diagram describes the different steps of the segmentation/measurement procedure. Boxes requiring

the user input are coloured orange, while the ones where the automatic segmentation/measurement steps are

performed are coloured blue. The final objective is coloured green.

Fig. 6: Training dictionary for head detection: the heads

are manually selected by the user and separated from

the background. Then, the corresponding regions are

labelled with 1 while the background is labelled by −1.

will be the number of points needed to produce a sen-

sible approximation. We circumvent this issue noticing

that at this stage of the algorithm, we only need a rough

detection of the head which will be used in the following

for the accurate segmentation step. Thus, downscaling

the image to a lower resolution (in our practice, reduc-

ing the resolution by ten times the original one) allows

us to use a small number of Nyström sample points

(typically 150–200) to produce an accurate result.

For this first step we use as features simply the RGB

intensities and proceed as described in Section 2.5. Once

the head is detected, the resulting image is upscaled

again to its original resolution. The solutions computed

for the images in Figure 1 are presented in Figure 7.

Fig. 7: Head detection from images in Figure 1 using

dictionary in Figure 6

Step 2: Blaze segmentation. We consider now the re-

duced image from which we want to extract the fly-

catcher’s blaze. Again, a dictionary of different blazes

is manually created by the user (see Figure 8). Again,

training regions (the blazes) are labelled with value 1

and the black feathers in the background with value

−1. As before, unlabelled regions are initialised with

value 0. At this stage, RGB intensities alone are not
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enough to differentiate the blazes from the background

consistently in a large number of bird images, due to the

colour difference between different blazes. For this step,

an additional feature to be considered is the texture

of the blaze. For this purpose, we use the MR8 tex-

ture features presented in [67] and proceed as detailed

in Section 2.5. For 3 × 3 neighbourhoods, the feature

vector for each pixel will be an element in R99, see Sec-

tion 2.5. The Ginzburg-Landau minimisation provides

the segmentation results shown in Figure 9.

Fig. 8: Training dictionary for blaze segmentation. As

in Figure 7 blazes are manually selected by the user and

labelled with 1, while black feathers on the background

are labelled with −1.

Fig. 9: Blaze segmentation

Step 3: Segmentation refinement. This step uses very

simple morphological operations in order to remove false

detections obtained after Step 2. These can occur due to

the choice of colour-texture based features used to com-

pute the feature vectors in Step 2. For instance, when

looking at Figure 9 (right) we observe that some bits

on the left pied flycatcher’s cheek have been detected

as they exhibit similar texture properties as the ones

on the blaze. In order to prevent this, our software asks

the user to confirm whether the segmentation result

provided is the expected one or if there are additional

unwanted regions detected. If that is the case, using

the MATLAB routine bwconncomp we label all the con-

nected components segmented in the previous step, dis-

carding among them all the ones whose area is smaller

than a fixed percentage (we use 10%) of the largest de-

tected component (presumably, the blaze). This works

well in practice, see Figure 10. If the user is not satisfied

he or she can remove manually the unwanted regions.

Figure 11 shows some blaze segmentation results after

the refinement step.

(a) Before refinement

(b) After refinement

Fig. 10: Example of segmentation refinement

Remark 4 (Robustness to noise) In order to reproduce

the more realistic situation of images suffering from

noise, we artificially added Gaussian noise with zero

mean and different variances to some of the images in

our database and performed the three analysis steps of

our method. We report in Figure 12 the results corre-

sponding to two noise variances (σ2
1 = 0.02, σ2

2 = 0.05).

The presence of noise influences both the head and

blaze segmentation only slightly; the combination of

RGB and texture features extracted in the neighbour-

hood of each point combined with the comparison to

the dictionary make the algorithm robust to noise and

allows for an accurate blaze segmentation even in the

noisy case.

Remark 5 (Comparison with MBO segmentation) We

compare the blaze segmentation results obtained by

minimising the discrete GL functional with the ones ob-

tained using the segmentation algorithm considered in

[45] as a variant of the classical Merriman-Bence-Osher

(MBO) scheme [47]. More details on the connections be-

tween this approach and the GL minimisation as well

as some insights on its numerical realisation are given

in Appendix B. Following faithfully what is described



Graph methods for image segmentation and object measurement 15

Fig. 11: Segmentation results after refinement step

(a) σ2
1 = 0.02 (b) σ2

1 = 0.05

Fig. 12: Robustness to noise oscillations of GL minimi-

sation for binary segmentation. Images have been arti-

ficially corrupted with Gaussian noise with zero mean

and different variances.

in Section 2.2 and 2.4 for the graph and the opera-

tor construction step, respectively, we implemented the

MBO segmentation algorithm following [45, Section 2].

We remark that the MBO method has the advantage of

eliminating the dependence on the interface parameter

ε of the GL functional by means of a combination of

heat diffusion and a thresholding step. Instead of ε the

heat diffusion time τ needs to be chosen. In our numeri-

cal implementation we used τ = 0.005. Since no convex

splitting strategies are required in this case, due to the

absence of the non-convex double-well term, standard

Fourier transform methods are used to solve the re-

sulting time-stepping scheme. In Figure 13 we report

the blaze segmentation results obtained after applying

a refinement step similar to the one described above: we

note that a segmentation result comparable to the ones

shown in Figure 11 is obtained. Moreover, robustness

to noise is observed also in this case. In terms of compu-

tational times, we observed that the replacement of the

GL minimisation step with the MBO one did not affect

significantly the speed of the segmentation algorithm.

(a) MBO result (b) MBO result, σ2 = 0.05.

Fig. 13: Blaze segmentation results obtained by the

MBO segmentation algorithm described in [45], after

refinement step. Robustness to noise is observed in this

case as well. In both numerical tests, the diffusion time

is chosen as τ = 0.005.

Step 4: Measurement scale detection. The images in

our database divide into two groups: the first is char-

acterised by the presence of linear rulers, whereas the

second contains circular rulers (Figure 1). We thus need

to use the Hough transform based Algorithm 2 to de-

tect lines or circles, respectively. The user is then re-

quired to tell the software which objects he or she wants
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to detect. In both cases, in order to avoid false detec-

tions (such as “aligned” objects erroneously detected as

lines, or circle-like objects wrongly considered as circles,

see Figure 14), a good candidate for a rough, sensible

approximation of the measurement scale is needed as

described in Section 3.1. In order to get this, we pro-

ceed as follows: after detecting the head as in Step 1,

we use the option EquivDiam of the MATLAB routine

regionprops to detect the diameter of the head re-

gion (in pixels). We then compare such measurement

with pre-collected average measurements of head diam-

eters of male pied flycatchers of a similar population

(in cm), thus obtaining an initial approximation of the

measurement scale. In the case of images containing lin-

ear rulers, this will serve as a spacing parameter s for

the algorithm. In other words, only lines distant at least

s pixels from each other will be considered. In the case

of circular rulers, the same rough approximation will

serve similarly as an indication of the range of values in

which the Hough transform based MATLAB function

imfindcircles will look for circles’ radii. For linear

ruler images, the algorithm will look only for parallel

lines aligned with a prescribed direction. We set this

direction as the one perpendicular to the longest line

in the image (since the expectation is, that this longest

line is the edge of the ruler). Results of this step are

shown in Figure 15.

Fig. 14: Shadows, blur, noise or other objects in the

image may disturb the detection.

Fig. 15: Hough transform used for detecting geometrical

objects. Left: lines detection using MATLAB routines

houghlines, houghpeaks. Right: circle detection us-

ing MATLAB routine imfindcircles.

Outliers removal for linear rulers. The scale detection

step described above may miss some lines on the ruler.

This can be due to an oversmoothing in the denoising

step, to high threshold values for edge detection or also

to the choice of a large spacing parameter. Furthermore,

as we can see from Figures 1 and 15, we can reasonably

assume that the ruler lies on a plane, but its bending

can distort some distances between lines. Moreover, few

other false line detections can occur (like the number

11 marked on the ruler main body in Figure 15). To ex-

clude these cases, we compute the distance (in pixels)

between all the consecutive lines detected and eliminate

possible outliers using the standard interquartile range

(IQR) formula [64] for outliers’ removal. Indicating by

Q1 and Q3 the lower quartile and the third quartile,

an outlier is every element not contained in the interval

[Q1 − 1.5 ∗ (Q3 − Q1), Q3 + 1.5 ∗ (Q3 − Q1)]. Finally,

we compute the empirical mean, variance and standard

deviation (SD) of the values within this range, thus get-

ting a final indication of the scale of the ruler together

with an indicator of the precision of the method.

Step 5: Measurement. Once the measurement scale has

been detected, it is easy to get all the required mea-

surements. We are interested in the perimeter, the area

of the blaze and also in the height and width of the

whole blaze component. For linear rulers, due to the er-

ror committed in the scale detection step, these values

present some uncertainty and variability (see above).

In Table 1 we show the results of numerical tests on

a sample of 30 images with linear rulers. For every

image in the sample we compute the standard devia-

tion (SD) error and report in the table the minimum,

maximum, and average SD error over the single ones
compute, together with the relative standard deviation

(RSD) which gives a percentage indication of the error

committed.

RSD :=
σ

X̄
· 100,

where σ is the sample SD and X̄ is the sample mean of

measurements. We observe a minimum and maximum

SD of 4.00 and 10.67 pixels, respectively, which, com-

pared to the dimension of the original image (3648 ×
2736 pixels) suggests a reasonable precision. This is con-

firmed by the average SD value over the sample which

is found to be 6.81 pixels. In percentage, the average

error over the sample is 11.99%. For circular rulers, we

observed in all our experiments that an initial approx-

imation of the range of values for the circle radius (see

Step 4 above) results in a robust and typically outlier-

free detection of the circular ruler and consequently in

an accurate measurement of its radius; the only possible

cause of variability and error is its bending.
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Uncertainty in the measurements of lengths and ar-

eas is calculated with standard formulas in propagation

of errors.

Despite these variabilities, our method is a flexible

and semi-supervised approach for this type of problem.

Further tests on the whole set of images and improve-

ments on its accuracy are a matter of future research.

The analysis of the resulting data measurements for the

particular problem of flycatchers’ blaze segmentation

will be the topic of the forthcoming paper [15].

We compare in Table 2 between the use of our com-

bined approach and the use of the manual line tool of

the IMAGEJ software for the measurement of the blaze

area. Namely, we measured in Figure 1b and in Fig-

ure 1c the ruler scale by means of the IMAGEJ line

tool by considering, for each image, two different 3 cm-

sections of the ruler; we then measured manually the

number of pixels contained in each, divided each mea-

surement by 30 and averaged the two results to obtain

an estimate of the ruler scale (i.e. the number of pixels

crossed by a 1 mm horizontal or vertical line segment).

We then measured the area of the blaze after segment-

ing it by means of the ‘magic-wand’ [51] IMAGEJ tool

and trapezium fitting [55] (see Figure 2). The results

are reported in Table 2 both as number of image pixels

inside the blaze and in mm2, where this second value

has been calculated using the measurement scale de-

tected as described above. We then repeated such mea-

surements using our fully automated Hough transform

method for ruler scale detection, reporting as above the

measurements of the blaze area computed both as num-

ber of image pixels and inmm2. We observe a good level

of accuracy of our combined method (see also Table 1)

with respect to the ‘magic-wand’ manual approach of

Moreno [51], while, unsurprisingly, the blaze measure-

ments obtained by pure trapezium fitting as proposed

by Potti and Montalvo in [55] tend to overestimate the

area of the blaze.

4.2 Moles monitoring for melanoma diagnosis and

staging

In this section we focus on another application of the

scale detection Algorithm 2 in the context of melanoma

(skin cancer) monitoring, see Figure 3. Early signs of

melanoma are sudden changes in existing moles and

are encoded in the mnemonic ABCD rule. They are

Asymmetry, irregular Borders, variegated Colour and

Diameter 3. In the following we focus on the D sign.

3 Prevention: ABCD’s of Melanoma. American
Melanoma Foundation, http://www.melanomafoundation.

org/prevention/abcd.htm.

Due to their dimensions and their irregular shapes,

moles are often very hard to measure. Typically, a com-

mon dermatological practice consists in positioning a

ruler under the mole and then taking a picture with a

professional camera. Sudden changes in the evolution of

the mole are then observed by comparison between dif-

ferent pictures taken over time. Hence, their quantita-

tive measurement may be an indication of a malignant

evolution

In the following examples reported in Figure 16, we

use the graph segmentation approach described in algo-

rithm 1 where texture-characteristic regions are present

(see Figure 16a) and the Chan-Vese model [19] for im-

ages characterised by homogeneity of the mole and skin

regions and the regularity of mole boundaries (Figures

(16b)-(16c)). For the numerical implementation, we use

the freely available online IPOL Chan-Vese segmenta-

tion code [30]. Let us point out here that previous works

using variational models for accurate melanoma seg-

mentation already exist in literature, see [18,1], but in

those no measurement technique is considered.

4.3 Other applications: animal tracks and

archeological finds’ measurement

We conclude this section presenting some other applica-

tions for the combined segmentation and scale detection

models presented above.

The first application is the identification and classi-

fication of animals living in a given area through their

soil, snow and mud footprints. Their quantitative mea-

surement is also interesting in the study of the age and

size a of a particular animal species. As in the prob-

lems above, such measurement very often reduces to a

very inaccurate measurement performed with a ruler

placed next to the footprint image. In Figure 17a4 our

combined method is applied for the measurement of a

white-tailed deer footprint.

As a final application, we focus on archaeology. In

many archaeological finds, objects need to be measured

for comparisons and historical studies [35]. Figure 17b

shows the application of our method to coin measure-

ments. Due to its circular shape, for this image a com-

bined Hough transform method for circle and line de-

tection has been used. The example image is taken from

[35] where the authors propose a gradient threshold

based method combined with a Fourier transform ap-

proach. Despite being quite efficient for the particular

applications considered, such approach relies in prac-

tice on the good experimental setting in which the im-

4 Image from http://mamajoules.blogspot.co.uk/2015/

01/a-naturalists-thoughts-on-animal-tracks.html.

http://www.melanomafoundation.org/prevention/abcd.htm
http://www.melanomafoundation.org/prevention/abcd.htm
http://mamajoules.blogspot.co.uk/2015/01/a-naturalists-thoughts-on-animal-tracks.html
http://mamajoules.blogspot.co.uk/2015/01/a-naturalists-thoughts-on-animal-tracks.html
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SD min SD max mean SD RSD min RSD max mean RSD
4.01 pixels 10.67 pixels 6.81 pixels 6.59 % 17.36 % 11.99 %

Table 1: Precision of the measurement scale detection for linear rulers on a sample of 30 images. The minimum,

maximum and average standard deviation (SD) error together with the corresponding relative standard deviation

(RSD) errors are reported.

Scale (# pixels = 1mm) Blaze area (pixel count) Blaze area (mm2)
Manual HT (Ours) MW Trap. GL (Ours) MW Trap. GL (Ours)

Figure 1b 70.2504 72.551 85026 117415 84831 17.2288 23.7917 16.1164
Figure 1c 71.863 71.8367 101730 146751 121360 19.6980 28.4165 23.517

Table 2: Comparison between ruler scale detection by using manual IMAGEJ line tool and our Hough Transform

(HT) method with corresponding measurements of the segmented blaze area obtained by using IMAGEJ ‘magic-

wand’ (MW) tool [51], trapezium fitting (Trap.) [55] (see also Figure 2) and the graph Ginzburg-Landau (GL)

minimisation.

(a) (b) (c)

Fig. 16: Moles’ detection using GL Algorithm 1 (a), the Chan-Vese model [19] ((b),(c)), and measurement scale

detection by Hough transform (Algorithm 2).

age is taken: almost noise-free images and very regular

objects with sharp boundaries (mainly coins) and ho-

mogeneous backgrounds are considered. Furthermore,

results are reported only for rulers with vertical orien-

tation and no bending.

5 Conclusions

In this paper we consider image segmentation applica-

tions involving measurement of a region’s size, which

has applications in several disciplines. For example, zo-

ologists may be interested in quantitative measurements

of some parts of the body of an animal, such as dis-

tinctive regions characterised by specific colours and

texture, or in animal tracks to differentiate between in-

dividuals in the species. In medical applications, quan-

tifying an evolving, possibly malignant, mass (like, for

instance, skin melanoma) is crucial for an early diag-

nosis and treatment. In archaeology, finds need to be

measured and classified. In all these applications, often

a common measurement tool is juxtaposed to the region

of interest and its measurement is simply read directly

from the image. This practice is typically inaccurate

and imprecise, due to the conditions in which pictures

are taken. There may be noise corrupting the image, the

object to be measured may be hard to distinguish, and

the measurement tool can be misplaced and far from

the object to measure. Moreover, the scale of the image

depends on the image itself due to the varying distance

from the camera of the ruler and objects to measure.

The method presented (based on [10]) consists of

a semi-supervised approach which, by training the al-

gorithm with some examples provided by the user, ex-

tracts relevant features from the training image (such

as RGB intensities, texture) and uses them to detect

similar regions in the unknown image. Mathematically,

this translates into the minimisation of the discrete

Ginzburg-Landau functional defined on graphs. To over-

come the computational issues due to the size of the

data, Nyström matrix completion techniques are used

and for the design of an efficient numerical scheme, con-

vex splitting is applied. The measurement scale detec-

tion task is performed by using the Hough transform,

a geometrical transformation which is capable of de-

tecting objects with a priori known geometrical shapes

(like lines on a ruler or circles with fixed diameter).

Once the measurement scale is detected, all the mea-
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(a) White-tailed deer tracks measurement (b) Coin measurement, image taken from [35]

Fig. 17: The measurement scale has been detected only in a portion of the figure for the sake of reading clarity.

surements are converted into a unit of measure which

is not image-dependent.

Our method represents a systematic and reliable

combination of segmentation approaches applied to sev-

eral real-world image quantification tasks. The use of

dictionaries, moreover, allows for flexibility as, when-

ever needed, the training database can be updated.

With respect to recent developments [70] in the fields of

data mining for the analysis of big data, where predic-

tions are often performed using training sets and clus-

tering, our approach represents an interesting alterna-

tive to standard machine learning (such as k-means)

algorithms.
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Appendix A The Nyström extension

With respect to the eigenvalue problem formulation

(2.19) and (2.20), we revise in this section the Nyström

extension [54] in a matrix form.

Let us define first the sub matrices WXX ∈ RL×RL
and WXY ∈ RL × RS−L as

WXX =

w(x1, x1) · · · w(x1, xL)
...

. . .
...

w(xL, x1) · · · w(xL, xL)

 , (1.21)

WXY =

w(x1, y1) · · · w(x1, yS−L)
...

. . .
...

w(xL, y1) · · · w(xL, yS−L)

 .

Analogous definitions hold for WY Y and WY X . Each

of these matrices represents the sub matrix having as

elements the weights between the points in X, Y or

between the two sets. With this notation, the whole

matrix W ∈ RS × RS can be written in block-form as

W =

(
WXX WXY

WY X WY Y

)
, WY X = WT

XY .

Similarly, vectors v ∈ RS can be written as v = (vTX vTY )T .

We focus on the spectral decomposition of the first

block of W , that is WXX . Since this matrix is sym-

metric, calling ΘX the matrix ΘX = diag(θ1, . . . , θL)

containining the eigenvalues of WXX , then by the spec-

tral theorem WXX = VXΘXV
T
X (compare with (2.20)),

with VX be the orthogonal matrix having as columns

the eigenvectors of WXX . Writing (2.19) for y ∈ Y , in

operator form, we obtain VY as

VY = WY XVXΘ
−1
X .

The approximated eigenvectors of W can then be writ-

ten in matrix form as

V =

(
VX

WY XVXΘ
−1
X

)
. (1.22)

Let us observe that

V ΘXV
T =

(
VX

WY XVXΘ
−1
X

)
ΘX [V TX (WY XVXΘ

−1
X )T ]

=

(
VXΘXV

T
X WXY

WY X WY XW
−1
XXWXY

)
(1.23)

=

(
WXX WXY

WY X WY XW
−1
XXWXY

)
≈W.
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Therefore, Nyström extension can be interpreted as the

approximation W ≈ V ΘXV
T , under the approxima-

tion of WY Y given by WY Y ≈ WY XW
−1
XXWXY . The

quality of the approximation of the full W is quanti-

fied by the norm of the Schur complement ‖WY Y −
WY XW

−1
XXWXY ‖, see [28]

Recalling the definition of the symmetric graph Lapla-

cian Ls given by (2.8) and the relation between the

spectral decomposition ofW and the one ofW in (2.16),

we observe that a normalisation step now needs to be

computed for obtaining the spectral decomposition of

Ls. Defining 1L as the L-dimensional vector consisting

of ones and 1S−L analogously, we use (1.23) and start

computing the nonnegative vector d = (dTXd
T
Y )T by(

dX
dY

)
=

(
WXX WXY

WY X WY XW
−1
XXWXY

) (
1L

1S−L

)
(1.24)

=

(
WXX1L +WXY 1S−L

WY X1L +WY XW
−1
XXWXY 1S−L

)
.

Therefore, the matrices WXX and WXY can be nor-

malised simply by considering:

ŴXX = WXX ./(
√
dX ⊗

√
dX

T
), (1.25)

ŴXY = WXY ./(
√
dY ⊗

√
dY

T
),

where the division is intended element-wise and ⊗ is

the standard vector tensor product.

A further step of normalisation is now needed since

the approximated eigenvectors of W , i.e. the columns

of the matrix V in (1.22) may not be orthogonal. Such

normalisation may be obtained by using auxiliary uni-

tary matrices. We refer the reader to [10, Section 3.2]

for more details on this.

Once these additional normalisation steps are com-

pleted, we then get a spectral decomposition of W in

terms of its eigenvalues λ̂i and the corresponding nor-

malised eigenvectors vi, i = 1, . . . , S. Therefore, recall-

ing (2.16), the spectral decomposition of Ls is given in

terms of the eigenvalue 1− λ̂i and eigenvectors vi.

Appendix B The MBO scheme for image

segmentation

As previously commented in Section 2.1, by taking the

L2 gradient descent of the Ginzburg-Landau functional

defined in (2.1), one gets the well-known Allen-Cahn

equation [3]:

ut = ε∆u− 1

ε
W ′(u), (2.26)

which has often been studied for the modelling of sev-

eral phase transition and separation problems and for

the study of mean curvature flow (see, e.g., [13]). In

the limit ε → 0 solutions consist of two phases corre-

sponding to the wells of W . In [57] it is shown that, for

rescaled solutions of equation (2.26), the interface be-

tween these phases evolves according to mean curvature

flow. In [47], Merriman, Bence and Osher propose an al-

ternative approach (later named MBO scheme) which,

by using threshold dynamics, approximates the mean

curvature flow of the interface at discrete times. As

proved rigorously in [6], for small values of the inter-

face parameter ε, the MBO scheme can then be used to

solve equation (2.26) numerically.

In [45], the authors propose a variant of the MBO

scheme as an alternative way to (approximately) min-

imise the graph GL functional with fidelity term, (2.9).

Recalling the graph framework introduced in Section

2.2, the MBO segmentation starts from an initialisa-

tion U1 given by (2.14) and computes, for every n ≥ 1

the new iterate Un+1 from Un by applying sequentially

the two following steps:

– Step 1 (diffusion with forcing term): Starting from

U1
n = Un, solve for every 1 ≤ k ≤ K the discretised

heat diffusion equation with fidelity term

Uk+1
n − Ukn

τ
= −Ls Uk+1

n −χ(x)(Uk+1
n −U0), (2.27)

where τ := ∆t
K is the heat diffusion time and K

is the number of diffusion steps. Practically, τ has

to be chosen small enough to approximate the mo-

tion by mean curvature and large enough to avoid

freezing or pinning, which occurs when the diffusion

time is so short that not enough mass diffuses along

the edges of the network and the thresholding op-

eration described in the following Step 2 leaves Un
unchanged.

– Step 2 (thresholding): For every point x set Un+1

as:

Un+1(x) =

{
1, if UKn (x) ≥ 0,

−1, if UKn (x) < 0.

Numerically, (2.27) is solved at each diffusion time step

kτ, k ≥ 1 by considering the spectral decomposition

of Ukn with respect of the eigenvectors of the operator

Ls, similarly as in (2.15), and using classical Fourier

transform methods to compute the new iterate Uk+1
n .

Appendix C The Hough transform

The general idea behind the use of the Hough transform

[36,24] is to map the ambient space to an auxiliary

space, called the parameter space (as it is related to the

parametric representation of the geometrical objects we
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are interested in). There, objects with specified shapes

are easily recognisable as peaks of specific functions.

Let us clarify these concepts with two examples.

Detecting line segments. We start from the typical slope-

intercept form of a line:

y = mx+ b, m, b, x, y ∈ R. (3.28)

Traditionally, the equation above is considered as a

function of points with coordinates (x, y) satisfying equa-

tion (3.28) for fixed values of m and b. In other words,

these values identify a specific straight line in the x-y

plane, cf. Figure 18a. Rewriting (3.28) as b = y −mx
and keeping fixed the coordinates (x, y) we obtain a

new equation of a straight line in the m-b plane, cf.

Figure 18b, depicting the parameter space. If lines in

the m-b parameter space intersect, their sign-changed

slopes (given by their x values) and m-intercepts (their

y values) correspond to points lying on the same line

in the x-y plane. The (m, b) coordinates of the inter-

section point in parameter space specify the slope and

x-intercept respectively of that line in the x-y plane.

(a) x-y-plane (b) m-b-plane

Fig. 18: Slope-intercept form, (3.28). Images edited

from [32].

Hence, if we are given a black and white image in

the x-y plane, and for all coordinates (x, y) of black

locations in the image, we draw the corresponding lines

in the m-b plane, intersection points of those lines will

tell us which (x, y) locations in the image lie on the

same line. Of course any two points lie on a line, thus

we are specifically interested in intersection points in

the m-b plane in which many different lines intersect,

indicating the presence of an actual black line segment

in the original image.

Drawbacks of this parametrisation are the need for

an unbounded parameter space to describe near vertical

lines and the impossibility to describe a vertical line.

One alternative is the normal parametrisation which

views a straight line in x-y space as the tangent line

to a circle with radius ρ, touching the circle at angular

coordinate θ, as illustrated as in Figure 19a, [24]. In ρ-θ

parameter space this leads to

ρ = x cos θ + y sin θ, θ ∈ [0, π]. (3.29)

The objects in the parameter space are now sinu-

soidal curves, but again intersection points identify pa-

rameters for the points lying on the same straight line in

the x-y plane. Figures 19b and 19c show a binary image

with two black straight lines and the corresponding pa-

rameter space. The bright spots in the parameter space

indicate a large number of intersections, thus identify-

ing the two lines in the original image.

Detecting circles. Analogously to what we did above,

when looking for circular structures in a given image, we

consider, for (x, y) ∈ R2 the parametric representation

of a circle,

r2 = (x− c1)2 + (y − c2)2, (3.30)

where r > 0 is the radius of the circle and (c1, c2) ∈ R2

are the coordinates of its centre. Every point (x, y) ly-

ing on the circle, satisfies equation (3.30) for fixed r, c1
and c2. As before, we now consider equation (3.30) in

the three-dimensional parameter space c1 − c2 − r for

fixed x and y. Here, the objects of interest are cone-

shaped surfaces, as shown in Figure 20a. Their inter-

section identifies the desired values of r, c1 and c2 in

equation (3.30), see Figure 20b.
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