
 1 

Interfering with the CCL2 – glycosaminoglycan axis as a potential approach to 

modulate neuroinflammation 

 

Martha Gschwandtnera, Anna Maria Piccininib,1, Tanja Gerlzab, Tiziana Adageb, Andreas J. 

Kungla,b,* 

 

aInstitute of Pharmaceutical Sciences, University of Graz, Schubertstraße 1/1, A- 8010 Graz, 

Austria 

 

bProtAffin Biotechnologie AG, A- 8020 Graz, Austria 

 

1present address: School of Pharmacy, University of Nottingham, University Park, 

Nottingham, NG7 2RD, UK 

 

*Address correspondence to this author at the Institute of Pharmaceutical Sciences, 

Department of Pharmaceutical Chemistry, University of Graz, Schubertstraße 1/1, 8010, 

Graz, Austria, Tel.: +43 316 380 5373, E-mail: andreas.kungl@uni-graz.at 

 

Graphical Abstract 

 

 

 

 

mailto:andreas.kungl@uni-graz.at


 2 

 

Abbreviations: MCP-1/CCL2, monocyte chemoattractant protein-1/; GPCR, G-protein 

coupled receptor; GAG, glycosaminoglycan, ECM, extracellular matrix; EAE, experimental 

autoimmune encephalomyelitis; MS, Multiple Sclerosis; CNS, central nervous system; MOG, 

myelin-oligodendrocyte-glycoprotein 



 3 

Abstract 

Multiple Sclerosis, a chronic inflammatory demyelinating disease of the central nervous 

system, has been related with involves increased expression of monocyte chemotactic 

protein 1 MCP1-/CCL2. For exerting its chemotactic effects, chemokine binding to 

glycosaminoglycans (GAGs) is required and therefore this interaction represents a potential 

target for therapeutic intervention. Intending to engineer pro-inflammatory CCL2 towards an 

anti-inflammatory compound, we have designed a decoy variant, Met-CCL2 (Y13A S21K 

Q23R), embodying We have designed an anti-inflammatory decoy variant, Met-CCL2 (Y13A 

S21K Q23R), embodying increased affinity for GAGs as well as knocked-out GPCR 

activation properties. This non-signalling dominant-negative mutant is shown here to be able 

to displace wild type CCL2 from GAGs by which it is supposed to interfere with the 

chemokine-related inflammatory response. In vivo, the anti-inflammatory properties were 

successfully demonstrated in a murine model of zymosan-induced peritonitis as well as in an 

experimental autoimmune encephalomyelitis, a model relevant for multiple sclerosis, where 

the compound lead to significantly reduced clinical scores due to reduction of cellular 

infiltrates and demyelination in spinal cord and cerebellum. These findings indicate a 

promising potential for future therapeutic development. 
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1. Introduction 

Chemokines are small secreted proteins that direct leukocyte trafficking from the lumen of 

blood vessels into the inflamed surrounding tissue [1]. Bound to glycosaminoglycans (GAGs, 

see below) on the endothelium, chemokines are retained at the site of action and are 

presented in their active conformation towards the attracted leukocytes [2]. Once activated 

via chemokine-specific GPCRs, the target blood cells migrate through the endothelial blood 

vessel cell layer to enter the site of tissue inflammation and to further induce and to boost the 

host immune response [3]. 

Monocyte chemoattractant protein-1 (MCP-1/CCL2) is a member of the chemokine-β family 

(CC chemokines), specifically activates monocytes and lymphocytes and is found in a variety 

of diseases that feature a monocyte-rich inflammatory component, such as atherosclerosis 

[4], rheumatoid arthritis [5] and congestive heart failure [6]. Most notably, there is also 

evidence that CCL2 plays a crucial role in the disease pathogenesis of Multiple Sclerosis 

(MS) [7, 8].  

MS is an inflammatory disease of the central nervous system (CNS). It is caused by 

infiltrating leukocytes damaging myelin and axons, ultimately leading to extensive and 

chronic neurodegeneration [9, 10]. In this context, CCL2 is described to be responsible for 

CCR2-bearing leukocyte infiltration into the MS lesions of the CNS, but also for T-cell and 

monocyte migration within the CNS parenchyma. Moreover, CCL2 expression is altered 

depending on disease activity [11]. Particularly important is the reported observation that in 

active demyelinating as well as in chronic active MS lesions, reactive hypertrophic astrocytes 

are strongly immunoreactive for CCL2, suggesting a significant role for CCL2 in the 

recruitment and activation of myelin-degrading macrophages and thereby contributing to the 

evolution of MS [12]. Perivascular and parenchymal foamy macrophages do not express 

CCL2 protein and are likely to contribute to resolution of inflammation by inhibiting further 

lesion development and promoting lesion repair [13, 14]. On this line of evidence it has 

recently been reported that in a murine model of experimental autoimmune 

encephalomyelitis, mice with conditional astroglial ablation of CCL2 showed a reduced 

severity of pathology due to less spinal cord axonal loss [15](Moreno et al 2014). 

Additionally, CCL2 significantly increases the permeability of the blood-brain barrier in vivo 

and thereby facilitates leukocyte migration during inflammation [16]. 

As mentioned above, chemokine activity in vivo was shown to be dependent on the 

interaction with glycosaminoglycans (GAGs) [2]. This means, that only the triple complex 

consisting of chemokine, chemokine-specific GPC receptor, and GAG co-receptor gives the 

fully functional entity for chemotaxis in vivo. These particular glycans are linear, negatively 

charged polysaccharides which consist of repeating disaccharide units of an amino sugar 

and a uronic acid [17]. Most of them are covalently attached to a core protein to form the so-
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called proteoglycans localized in the cell membrane or in the extracellular matrix [18]. The 

physiologically most relevant GAG types on cell surfaces and in the extracellular matrix are 

heparan sulfate and chondroitin sulfate which differ from one another in the disaccharide unit 

composition, the chain length and the degree of sulfation [19]. In fact, post-polymerization 

modifications, which include N-, 2-O, and 6-O sulfation as well as epimerization of GlcA into 

IdoA, provide high structural complexity within GAGs and allow the generation of particular 

oligosaccharide sequences that are supposed to be specific for their protein ligands, as it has 

been shown for antithrombin [20] and for basic fibroblast growth factor [21]. The sulfation 

patterns are cell type and tissue specific and are tightly regulated developmentally and 

pathophysiologically [22-24]. In the CNS GAGs/ proteoglycans can be found as ECM 

components and in the basement membrane [25, 26]. Although specificity/ selectivity in the 

chemokine/GAG interaction has not been fully elucidated so far, the great variety in GAG 

structures on the one side and the reported different affinities for GAGs displayed towards 

chemokines on the other side, suggest that chemokines interact with disease specific GAG 

structures in vivo [27, 28]. 

Applying a rational design approach based the CellJammer® Technology[29] human pro-

inflammatory CCL2 was turned into an anti-inflammatory chemokine decoy  CCL2 was 

altered to an anti-inflammatory chemokine decoy protein with increased glycan binding 

affinity, as previously reported by Piccinini et al. [30] and was shown to limit neointima 

formation and myocardial ischemia/ reperfusion injury in mice [31].  

In this letter we describe the investigation of the anti-inflammatory activity of Met-CCL2 

(Y13A S21K Q23R) in animals using the mechanistic inflammatory model of zymosan-

induced peritonitis as well as a disease relevant model of Multiple Sclerosis, the 

experimental autoimmune encephalomyelitis (EAE).  

 

2. Materials and Methods 

2.1. Design, Expression and Purification 

The CCL2 decoy Met-CCL2 (Y13A S21K Q23R) was designed on the basis of human 

mature CCL2 (1-76) (Swiss-Prot # P13500) by introducing 3 mutations in order to abolish 

receptor binding (Y13A) as well as to increase the affinity for its glycan ligand with additional 

positive amino acids (S21K Q23R) on both sides of the known GAG binding motif. 

Furthermore, Met-CCL2 constructs were generated in the background of a M64I mutation, 

which alters neither binding nor activity, however improves homogeneity of the mutants by 

eliminating the possibility of methionine sulfoxide species on position 64 [32]. The leading N-

terminal Met residue is a result of the recombinant protein expression in E. coli. It  was not 

cleaved off after expression since it did not compromise the heparan sulfate binding 

properties of the protein [30]. 
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Met-CCL2 and Met-CCL2 (Y13A S21K Q23R) were expressed and purified as described 

previously [30]. During the purification process, good lab standard practices were applied to 

reduce endotoxin contents of protein samples by working with endotoxin-free plastic ware 

and by rinsing glass ware and chromatographic equipment with concentrated NaOH. The 

final bacterial endotoxin content of the chemokine mutant samples was determined by the 

limulus amebocyte lysate test (BioWhittaker, Cambrex). Typical values obtained were in the 

<0.18 EU/mL range. 

 

2.2.  ELISA-like Competition (ELICO) 

2.5 µg GAG/ 250 nM biotinylated Met-CCL2 were diluted in PBS and coated onto Iduron 

(Manchester, UK) GAG-binding plates over night at RT. A washing step was performed to 

remove unbound biotinylated chemokine and GAG, followed by a 2 h incubation with 

different Met-CCL2 (Y13A S21K Q23R) concentrations diluted in PBS starting from 100 µM 

to 6 nM measuring each concentration in triplicates. To detect the remaining biotinylated 

Met-CCL2 we used an ELISA-like setup, therefore after another washing step we incubated 

the plates with high sensitivity Streptavidin HRP (Thermo Scientific, Waltham, MA, USA) 

diluted in 0.2 % dry milk that binds to the non-displaced biotinylated chemokine on the plate. 

After another hour incubation at RT and removal of unbound Streptavidin by a washing step, 

we analysed the plate by adding the substrate Tetramethylbenzidine (TMB), resulting in a 

blue colour change. After stopping the reaction with sulphuric acid the absorbance at 450 nm 

was read in a Beckman Coulter DTX 800 Multimode Detector (Beckman Coulter, Austria). 

The reference (OD620) values were subtracted from the sample values (OD450) and the 

Mean and Standard Deviation was calculated. Data analysis was performed using 

specialized statistical software Origin® (GE Healthcare, Chalfont St Giles, UK). 

 

2.3. Animal experiments 

Animal care and handling procedures were performed in accordance with the European 

guidelines and all the experiments received prior approval from the local ethics committees. 

 

2.3.1. Met-CCL2 (Y13A S21K Q23R) Pharmacokinetics 

Male C57BL/6 mice (SIPPR-BK Laboratory, Shanghai) were group housed under a 12:00 h 

light /dark cycle, provided with food and water ad libitum and allowed to acclimatize for at 

least 1 week before the experiment. Animals were treated with Met-CCL2 (Y13A S21K 

Q23R) at a dose of 40 µg/kg intravenously (i.v.) or at 40 µg/kg and 400µg/kg intrapritoneally 

(i.p.). At prefixed times post administration approximately 200 µL blood was collected via 

retro-orbital from deeply isoflurane anesthetized mice (n= 3/time/dose) and transferred to a 

centrifuge tube and kept on wet ice for 30 min. Serum was separated by centrifugation at 
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5,000 rpm for 15 minutes at 4ºC.  The resulting serum was stored at -80ºC until subjected to 

ELISA for quantification. The ELISA (h-MCP-1, Anogen Cat. No.:EL0009) was validated for 

cross reactivity with Met-CCL2 (Y13A S21K Q23R) and performed according to the 

manufacturer’s instructions. The lower limit of detection was 50 pg/ml. 

 

2.3.2. Zymosan-Induced Peritonitis 

Male C57BL/6 mice (Charles River, UK) were group housed under a 12:00 h light /dark 

cycle, provided with food and water ad libitum and allowed to acclimatize for at least 1 week 

before the experiment. On the experiment day, all the animals were injected with 0.2 mg of 

zymosan (Sigma-Aldrich) intraperitoneally (time 0) to induce peritonitis. Pharmacological 

treatments with vehicle (sterile PBS i.v. n=8), with dexamethasone (1 mg/kg s.c. n=8)or with 

Met-CCL2 (Y13A S21K Q23R) (40 µg/kg i.v. +n = 8) were performed 1h and 6 hours post 

zymosan injection. Sham animals (intraperitoneal treatment with saline n = 3) were used as 

controls. 24 hours post zymosan intraperitoneal administration, the peritoneal cavities were 

washed with 3 mL of PBS containing 3 mM EDTA and the number of total leukocytes was 

determined by staining with Turk’s solution (0.01% crystal violet in 3% acetic acid) and 

counting using a Neubauer hemocytometer and a light microscope. Appropriate aliquots 

were then stained using specific antibodies (FITC GR-1 (Ly6G and Ly6C), clone RB6-8C5; 

APC F4/80; eBioscience) and flow cytometric analysis was performed using a FACScan 

analyzer (Becton Dickinson). Cells were initially characterized using the forward and side 

scatter characteristics, to distinguish between the three distinct cell populations 

(lymphocytes, monocytes / macrophages and granulocytes). Further gating was performed 

using cells collected in sham and zymosan + vehicle. Cells positive for Gr1 and negative for 

F4/80 determined the granulocyte population. Cells positive for F4/80 and negative for Gr1 

determined the macrophage population. Cells positive for both antigens indicated the 

inflammatory monocyte population. Determination of positive and negative populations was 

performed based on the control staining with an irrelevant IgG isotype labeled with FITC or 

APC (both from eBioscience). Once determined, gating quadrants were rigorously 

maintained for the analyses of the cells all the groups. The experiment was repeated twice, 

and data from one experiment are presented. 

 

2.3.3. MOG-Induced Experimental Autoimmune Encephalomyelitis (EAE) 

Ten-week old, female C57BL/6 mice (Charles River, NL,) were group housed under a 12:00 

h light /dark cycle, provided with food and water ad libitum and allowed to acclimatize for at 

least 2 weeks before the experiment. During the experiment additional mixture of powder 

food and water was given into the animal’s cage. On day 0 and day 7 the mice were 

immunized with 200 µg MOG(35-55) (Isogen life science) in an emulsion of PBS and 
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complete Freund’s adjuvant supplemented with M. tuberculosis H37RA (both Difco 

Laboratories) administered subcutaneously in both flanks. On day 0 and on day 2 the mice 

additionally received i.v. 300 ng Pertussis toxin (Calbiochem). Pharmacological interventions 

were administered from day from day 7 post immunization (n = 10/group) when no clinical 

signs of the pathology are present, but an increase in circulating chemokines (including 

murine CCL2, also known as JE) is already reported, and was continued once daily for 21 

days (day 28 post immunization) The mice were treated with vehicle i.p., dexamethasone 1 

mg/kg i.p., and 40, 200 and 400 µg/kg Met-CCL2 (Y13A S21K Q23R) i.p. During the 

experiment mice were monitored daily and body weight was recorded. EAE score was 

assessed daily using the following scoring system: 0 = no disease, 0.5 = tail paresis or partial 

paralysis, 1 = complete tail paralysis, 2 = paraparesis: limb weakness and tail paralysis, 2.5 = 

partial limb paralysis, 3 = complete hind- or front limb paralysis, 3.5 = paraplegia, 4 = 

quadriplegia, moribund, 5 = death due to EAE.These data were used also to determine the 

day of onset, defined as the first of three consecutive days on which a cumulative clinical 

score of at least three was reached, the maximum clinical score and the cumulative clinical 

score. On day 28 mice were euthanized and the central nervous system collected, fixed and 

stored in formaldehyde. Spinal cord and cerebellum of each mouse in the vehicle, 

dexamethasone and Met-CCL2 (Y13A S21K Q23R) 40 µg/kg groups were embedded in 

paraffin. Sections (5µm, separated by 50µm) were generated and stained using 

Hematoxylin/Eosin and scored for cellular infiltrates or stained using Kluver-Barrera and 

assessed for demyelinization. In both cases a minimum of three slides/animals/tissue were 

quantified using a qualitative scale of 0 to 4.  

 

2.4. Statistical analysis 

All data are reported as means + standard errors of the means (SEM). Pharmacokinetic 

profiles of Met-CCL2 (Y13A S21K Q23R) were evaluated with WinNonLin using non-

compartment model. For the zymosan-induced peritonitis, statistical analysis was performed 

using ANOVA followed by Dunnett’s multiple comparison using GraphPad Prism software. 

The EAE data were analyzed using the Kruskal-Wallis test followed by the Mann-Whitney U-

test. The significance of differences between the treatment groups in the time-dependent 

outcome parameters (daily clinical score and body weight) were tested using repeated-

measures ANOVA, followed by LSD post hoc. Analysis was performed using SPSS17 for 

Windows. In both cases, the significance level was set at p<0.05. Significance is reported as 

follows: * p<0.05; ** p<0.01; *** p<0.01. 

 

3. Results  

3.1. ELISA-Like Competition Assay 
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Since our mutant proteins were designed in a way to displace the corresponding wild type 

chemokine from its GAG co-receptor, we have developed a novel competition assay which 

gives IC50 values derived from displacement curves rather than Kd values obtained from bi-

molecular binding isotherms [33]. In our assay we have tried to mimic the glycocalyx of cell 

surfaces by coating heparan sulfate onto specially prepared microtiter plates. We then added 

biotinylated Met-CCL2 which was, after washing, displaced either by unmodified Met-CCL2 

or by Met-CCL2 (Y13A S21K Q23R) in a concentration-dependent manner (Figure 1). The 

IC50 values derived from these experiments clearly show that the mutant chemokine is a 

much better competitor for bound Met-CCL2 (giving an IC50 value of 740 nM) than 

unmodified Met-CCL2 (IC50 = 3092 nM).  

 

3.2. Met-CCL2 (Y13A S21K Q23R) Pharmacokinetics 

Pharmacokinetic profiles of Met-CCL2 (Y13A S21K Q23R) after i.v. and i.p. administration 

are shown in Figure 2. After i.v. administration the protein was eliminated, as expected, 

relatively fast, with a serum half-life (t1/2) of 1.08 h, and an area under the curve (AUC0-last) of 

22.3 h*ng/mL. After i.p. administration at 40µg/kg the protein was absorbed with a time of 

maximal concentration (Tmax) of 15 min, the maximal serum concentration (Cmax) of 0.69 

ng/ml and the AUC0-last of 4.86 h*ng/mL, the t1/2 was of 1.75 h. After i.p. administration at 

400µg/kg the protein was absorbed with Tmax of 1 h at a Cmax of 19.9 ng/ml and the AUC0-last 

of 473 h*ng/mL, the t1/2 was of 4.13 h,. No levels were detectable in the 24 h samples of mice 

treated i.v. or i.p. at the dose of 40µg/kg. 

 

3.3. Zymosan-Induced Peritonitis 

In this study Met-CCL2 (Y13A S21K Q23R) at a concentration of 40 µg/kg i.v. was directly 

compared to the immunosuppressant dexamethasone at a dose of 1 mg/kg s.c. While the 

latter reduced the total cell infiltrate (data not shown), Met-CCL2 (Y13A S21K Q23R) effects 

were specifically observed on a particular subset of monocytes expressing F4/80 as well as 

Gr1 (Ly6C and Ly6G) marker, and considered to be a pro-inflammatory subset of monocytes 

(Figure 3A R5 and 3C) , while not affecting the number of residential macrophages 

(F4/80high/Gr1-ve, Figure 3A R3-4 and 3B), that are thought to contribute to the pathology 

resolution [34].  

 

3.4. MOG-Induced Experimental Autoimmune Encephalomyelitis (EAE) 

Immunization with the MOG(35-55) protein successfully induced EAE in vehicle treated 

animals, with an incidence of 100%. In our study, administration of 40, 200 and 400 µg/kg of 

Met-CCL2 (Y13A S21K Q23R) i.p. from day 7 post immunization onwards significantly 

delayed the day of onset of the disease independently of the dose (Figure 4B) and resulted 
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in an overall better clinical score (Figure 4A), a reduced maximal disease severity (Figure 

3b), and a cumulative clinical score (Figure 4C). Additionally, Met-CCL2 (Y13A S21K Q23R) 

promoted preservation of body weight (Figure 5A) and increased survival (Figure 5B). In EAE 

animals, where progressive paralysis reduces animal motility and impacts the ability of the 

animals to feed, even if food if provided into the cage, a diminished loss of body weight is 

considered to reflect an index of animal general well-being. 

Histological analysis showed that compared to the vehicle-treated control group Met-CCL2 

(Y13A S21K Q23R) and dexamethasone significantly reduced the influx of inflammatory cells 

to the cerebellum and the spinal cord, (cerebellum: vehicle 1.55 + 0.3, Met-CCL2 (Y13A 

S21K Q23R) 0.35 + 0.1***, dexamethasone 0.1 + 0.2***; spinal cord: vehicle 1.81 + 0.4, Met-

CCL2 (Y13A S21K Q23R) 0.33 + 0.1***, dexamethasone0.37+0.17*** see Figure 6 A-H) as 

well as demyelination (cerebellum: vehicle 1.33 + 0.4, Met-CCL2 (Y13A S21K Q23R) 0.44 + 

0.2, dexamethasone 0.08 + 0.03; spinal cord: vehicle 3.3 + 0.3, Met-CCL2 (Y13A S21K 

Q23R) 0.63 + 0.2, dexamethasone 0.63 + 0.3 see Figure 7 A-H).  

 

4. Discussion 

Met-CCL2 (Y13A S21K Q23R) shows higher GAG binding affinity compared to Met-CCL2 

but shows impaired CCR2 receptor activation [30]. Here we show that, in addition, the 

mutant is able to displace the wild type chemokine efficiently from HS chains (see Figure 1). 

Since it is proposed that CCL2 in vivo is mainly displayed to approaching 

monocytes/macrophages in a GAG-bound form, the competitive potency (expressed in the 

IC50 value) of a CCL2 mutant is much more relevant parameter than the direct binding of 

chemokine to its GAG ligand. This relates directly to the proposed mode of action of the 

CCL2 mutant, namely that it acts like a protein-based GAG antagonist.  

The proposed anti-inflammatory effect of the mutant was subsequently tested in vivo in a 

mechanistic model of zymosan- induced peritonitis [35]  to allow initial assessment of the 

dose in vivo and anti-inflammatory/anti-migratory properties, and only then in an animal 

model of multiple sclerosis, EAE. the experimental autoimmune encephalomyelitis (EAE).  

In the zymosan- induced peritonitis model we could show that we are able to retain selectivity 

for the specific cell populations in vivo, thereby selectively inhibiting the recruitment of Gr1 

and F4/80 double positive cells, considered to be newly recruited inflammatory monocytes, 

while not affecting macrophagesthe macrophage number. Moreover, this finding implies that 

the mutant has found its appropriate endothelial GAG target and gained the energetically 

preferred active form. 

MOG-induced EAE in mice is recognized to be a good experimental model of human MS 

pathogenesis [7, 36, 37], and in the present study MOG(35-55) successfully induced EAE in 

all vehicle treated animals. The severity of the pathology caused death in some animals. By 
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administering the decoy molecule the disease onset could be delayed significantly. 

Furthermore, the maximal clinical score was significantly decreased showing differences in 

the maximal disease severity that are particularly relevant in terms of quality of life when 

translated to the human situation. The efficacy of the decoy molecule observed at clinical 

score level correlated, as expected, with changes at histological level in whichwhere vehicle-

treated animals showed massive infiltration of inflammatory cells in the spinal cord and in the 

perivascular region of the cerebellum, whereas almost no inflammatory cell infiltrates were 

present in decoy treated animals. Moreover, the myelin exhibited normal features in decoy 

treated animals in contrast to pronounced demyelination in the spinal cord of vehicle-treated 

animals. 

 

The observed effect could not be due to inhibition of bone marrow cell mobilization, as has 

been reported for inhibitors of the GPC receptor CCR2 [38, 39], since we have already 

shown that Met-CCL2 (Y13A S12K Q23R) does not bind or activate, CCR2 [30]. Surprisingly, 

Met-CCL2 (Y13A S12K Q23R) activity on the different parameters measured was not dose-

dependent, with the lowest dose administered being the most effective. This is not due to a 

non-linear exposure, since the PK profile for the protein seems to be linear in this range (at 

least in term of AUC). The binding affinities of chemokines to GAGs are known to not be 

dose dependentbe not-dose dependent [40] with loss of affinity at too high concentrations, 

therefore, even if it seems unlikely from the plasma concentration measured during the PK 

assessment, we cannot exclude that at the two higher doses the binding equilibrium at the 

GAG target was moving toward dissociation. Alternatively, it is possible that the apparent 

differences observed between doses are due to the limited number of animals used in the 

experiment, where in which even the survival of one more animal in a treatment group may 

affect the overall clinical score profile, suggesting that plateau activity is already achieved at 

a dose of 40µg/kg.  This aspect should be further analyzed using a broader range of doses 

and in a time-course experiment, with direct assessment of cell type infiltrates in the CNS of 

the animals by either immunohistochemistry, or FACs analysis.  

However, the clinical development of a protein requesting daily administration is not 

foreseeable (and already difficult to assess preclinically, since twice a day chronic treatment 

is not feasible in mice), and strategies to extend its exposure, such as by conjugation with 

carrier proteins (e.g. human serum albumin) are currently under evaluation [41] and will be 

further tested in MS animal models.  

What we can state from the current data is that the dose of 40 µg/kg Met-CCL2 (Y13A S12K 

Q23R) was, in both the experimental peritonitis and in the EAE model, at least as effective as 

dexamethasone in reducing inflammation and consequent demyelination. It has to be 
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considered that dexamethasone was administered in this study at a dose highly effective in 

mice, but toxic if translated to a human dose.  

 

In conclusion, we have confirmed that the engineered increased GAG binding affinity of Met-

CCL2 (Y13A S21K Q23R), which was measured in vitro, can be translated into anti-

inflammatory activities in vivo. Our approach of targeting glycans for interfering with CCL2 

signalling in CNS inflammation is completely unique, and opens a possible new avenue for 

therapeutic intervention that may be applicable to MS treatment.   
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Figure Captions 

Figure 1: ELICO displacement assay of Met-CCL2 (Y13A S21K Q23R) (black) in 

comparison to Met-CCL2 (grey) competing with biotinylated Met-CCL2 for binding to heparan 

sulfate. The normalized absorption values (mean+/-SD) at 450 nm (TMB) were plotted 

against the concentration of the proteins. IC50 values were determined by competition 

analysis of the displacement curves. 

 

Figure 2: Pharmacokinetic profiles of Met-CCL2 (Y13A S21K Q23R) administered at the 

dose of 40µg/kg i.v. or 40 and 40µg/kg i.p. in male C57BL/6 mice. Serum levels were 

evaluated using a commercial h-MCP-1 ELISA validated to recognize our protein.  

 

Figure 3: Zymosan-induced peritonitis in C57BL/6 male mice caused a strong infiltration of 

cells, which were characterized by FACS using the forward and side scatter characteristics. 

Further gating criteria were set using cells collected in sham (panel A left) and zymosan + 

vehicle (panel A right). FL-1 channel on x axis (Gr-1), FL4 on y axis (F4/80). Gr1high/F4/80-ve: 

granulocyte population (R2); F4/80high/Gr1-ve: macrophage (R3+R4); Cells positive for both 

antigens indicated the inflammatory monocyte population (R5). Gr1high/F4/80+ve inflammatory 

monocytes. Based on this gating, dexamethasone showed activity on all cell types (B,C), 

while Met-CCL2 (Y13A S21K Q23R) showed specific activity on the inflammatory monocytes 

(C). Anova followed by ANOVA followed by Dunnett’s multiple comparison. ** p<0.01; 

***p<0.001.  

 

Figure 4: MOG(35-55) EAE was induced in C57BL/6 female mice (n=10/group). Main 

parameters for disease severity are reported as follows, A: daily clinical score; data were 

analysed using repeated-measures ANOVA (p<0.001), followed by LSD: dexamethasone 

p<0.001, Met-CCL2 (Y13A S21K Q23R) 40µg/kg p<0.001, 200µg/kg and 400µg/kgp<0.05 vs 

vehicle treatment; B: day of disease onset; C: maximal clinical score, and D: cumulative 

clinical score. Kruskal-Wallis followed by Mann-Whitney U-test. *p<0.05; **p<0.01; 

***p<0.001 vs Vehicle. 

 

Figure 5: MOG(35-55) EAE was induced in C57BL/6 female mice. A: daily body weight data 

were analysed using repeated-measures ANOVA (p<0.001), followed by LSD: Met-CCL2 

(Y13A S21K Q23R) 40µg/kg p<0.001. B: survival curves show up to a 30% mortality in the 

vehicle group, that was reduced by Met-CCL2 (Y13A S21K Q23R) treatment, with no dead 

animals in the 40µg/kg group.  
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Figure 6: Histological analysis of the MOG(35-55)-induced EAE C57BL/6 female mice 

euthanized at day 28 post immunization. Spinal cord and cerebellum of each mouse in the 

vehicle, dexamethasone and Met-CCL2 (Y13A S21K Q23R) 40 µg/kg groups were 

embedded in paraffin. Sections (5µm, separated by 50µm) were generated and stained using 

Hematoxylin/Eosin and scored for cellular infiltrates. Representative images at two different 

magnifications. : A vehicle cerebellum 4 x; B vehicle cerebellum 20 x; C vehicle spinal cord 

4x; D vehicle spinal cord 20x; E Met-CCL2 (Y13A S21K Q23R) 40µg/kg cerebellum 4x; F 

Met-CCL2 (Y13A S21K Q23R) 40µg/kg cerebellum 20x; G Met-CCL2 (Y13A S21K Q23R) 

40µg/kg spinal cord 4x; H Met-CCL2 (Y13A S21K Q23R) 40µg/kg spinal cord 4x. Animals in 

the dexamethasone groups presented similar features as animals in the Met-CCL2 (Y13A 

S21K Q23R) 40µg/kg group. 

 

Figure 7: Histological analysis of the MOG(35-55)-induced EAE C57BL/6 female mice 

euthanized at day 28 post immunization. Spinal cord and cerebellum of each mouse in the 

vehicle, dexamethasone and Met-CCL2 (Y13A S21K Q23R) 40 µg/kg groups were 

embedded in paraffin. Sections (5µm, separated by 50µm) were generated and stained using 

Kluver-Barrera and assessed for demyelinization. Representative images at two different 

magnifications. : A vehicle cerebellum 4 x; B vehicle cerebellum 20 x; C vehicle spinal cord 

4x; D vehicle spinal cord 20x; E Met-CCL2 (Y13A S21K Q23R) 40µg/kg cerebellum 4x; F 

Met-CCL2 (Y13A S21K Q23R) 40µg/kg cerebellum 20x; G Met-CCL2 (Y13A S21K Q23R) 

40µg/kg spinal cord 4x; H Met-CCL2 (Y13A S21K Q23R) 40µg/kg spinal cord 4x. Animals in 

the dexamethasone groups presented similar features as animals in the Met-CCL2 (Y13A 

S21K Q23R) 40µg/kg group. 
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Figure 3 Sham Veh
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Figure 4 
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Figure 5
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Figure 6 
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