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Abstract—This paper presents a method of measuring the
similarity between general type-2 fuzzy sets that may have non-
normal secondary membership functions. Such fuzzy sets are
increasingly common in applications such as the modelling of the
subjective meaning of linguistic terms by groups of people. By
building upon existing similarity measures in the literature, which
thus far cannot compare such fuzzy sets, we derive an extended
similarity measure which can be applied to both normal and non-
normal (in terms of the secondary membership functions) general
type-2 fuzzy sets. We provide proofs that the proposed method
follows all of the common properties of a similarity measure and
demonstrations are given to compare the proposed method with
others in the literature.

Index Terms—similarity measure, fuzzy sets, general type-2,
zSlices, α-planes

I. INTRODUCTION

The concept of similarity is used to recognise patterns
and associations between objects and concepts. Determining
the similarity between two objects is important in many
applications, both inside and outside of the field of fuzzy set
theory. Due to the complex and context-dependent nature of
defining similarity, there have been many measures developed
to compare type-1 [1]–[3], interval type-2 [4], [5], and general
type-2 [6]–[10] fuzzy sets. These methods have been used in
a variety of applications, such as computing with words [4],
[11], data mining [12] and clustering [13], [14].

Recently, the zSlices (a.k.a. α-plane) representations of
general type-2 fuzzy sets have gained some attention [15]–
[19] and methods of measuring the similarity using this
representation have been developed [6]–[8]. However, such
current measures assume that the fuzzy sets have normal
secondary membership functions. As a result, they cannot be
used to calculate the similarity between fuzzy sets with non-
normal secondary membership functions. Such fuzzy sets may
arise, for example, if there is no consensus when modelling
agreement between individuals or, in some contexts, it may
not make sense to describe a term as ever being completely
certain [20]. This paper presents a method of measuring the
similarity between such fuzzy sets.
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The proposed approach is based on current techniques in the
literature and produces consistent results when compared with
existing methods. This method follows all of the properties
commonly desired in similarity measures and may be used to
compare fuzzy sets with both normal or non-normal secondary
membership functions.

The remainder of this paper is structured as follows. Section
II presents the reader with the necessary background on
fuzzy sets and similarity measures. After this, Section III
presents a new similarity measure that can be used to compare
zSlices-based fuzzy sets that may have non-normal secondary
membership functions. Demonstrations of this new measure
are shown in Section IV, and conclusions are presented in
Section V.

II. BACKGROUND

This section first presents background on fuzzy sets fol-
lowed by an overview of similarity measures on zSlices-based
fuzzy sets within the literature.

A. Fuzzy Sets

The concept of a fuzzy set is a useful model for representing
uncertainty. Unlike crisp set theory, in which an element or
object completely belongs or does not belong to a set, in
fuzzy set theory an element can be described as partially
belonging to a fuzzy set. This uncertainty is represented within
the interval [0, 1] where 0 and 1 indicate no membership and
full membership, respectively.

1) Type-1 Fuzzy Sets: Let T1(X) represent the set of all
type-1 fuzzy sets in the universe of discourse X .

Definition 1. A fuzzy set A ∈ T1(X) may be represented as
a set of ordered pairs

A = {(x, µA(x)) | x ∈ X} , (1)

where µA(x) is the membership value of the element x within
A and µA(x) ∈ [0, 1].

(1) is also sometimes expressed as

A =

∫
x∈X

µA(x)/x, (2)



where
∫

does not indicate integration but instead denotes the
collection of all points x in X with associated membership
function µA(x).

Definition 2. A fuzzy set A ∈ T1(X) may be described as
normal or non-normal. A is normal if its height hy(A) (in
which y refers to the height on the y, a.k.a. µ, axis), defined
as maxx∈X µA(x), equals 1.0; i.e. ∃x ∈ X, µA(x) = 1.0. If
hy(A) < 1.0 then A is said to be non-normal.

Fuzzy sets are defined by their membership functions. The
most common shapes of membership functions are triangular,
trapezoidal and Gaussian. This paper will provide examples
based on fuzzy sets with triangular membership functions,
which for A ∈ T1(X) is defined as µA = trimf(x; [a, b, c;w])
such that the membership value of any given x ∈ X is

µA(x) =


w(x− a)/(b− a) a ≤ x ≤ b
w(c− x)/(c− b) b ≤ x ≤ c
0 otherwise,

(3)

where w is a weight used to adjust the height of the member-
ship function. Note that hy(A) = w. In Section IV, demon-
strations of similarity measures will be given using fuzzy sets
with triangular membership functions. Note, however, that the
measures demonstrated in this paper may be used on fuzzy
sets with membership functions of any shape.

2) General Type-2 Fuzzy Sets: In a type-1 fuzzy set A,
the degree of membership of x in A is a value within [0, 1].
However, type-2 fuzzy sets model the membership of x as
a type-1 fuzzy set (which has a universe of discourse within
[0, 1]). This is referred to as a secondary membership function
and it enables one to express uncertainty in the membership of
x. Let GT2(X) represent the set of all general type-2 fuzzy
sets in X .

Definition 3. A fuzzy set Ã ∈ GT2(X) is expressed as [21]

Ã = {((x, u), µÃ(x, u)) | ∀x ∈ X,∀u ∈ Jx ⊆ [0, 1]} , (4)

where x is the primary variable in X , u is the secondary
variable which has the domain Jx ⊆ [0, 1], and the amplitude
of µÃ(x, u) is known as the secondary grade.

Many different representations of general type-2 fuzzy sets
have been developed in the literature. The most well known
method of defining a general type-2 fuzzy set is as a collection
of vertical slices; this is the method shown in (4). Another
common representation is the zSlices approach, which will
be the focus of this paper. zSlices general type-2 fuzzy sets
are based on the theory of interval type-2 fuzzy sets, and so
the next section introduces the latter followed by a section
discussing the zSlices approach.

3) Interval Type-2 Fuzzy Sets: An interval type-2 fuzzy
set is equivalent to a general type-2 fuzzy set in which all
secondary membership values are 1; i.e. µ(x, u) = 1, ∀x ∈
X, ∀u ∈ Jx ⊆ [0, 1]. Let IT2(X) represent the set of all
interval type-2 fuzzy sets within X .

Definition 4. The fuzzy set Ã ∈ IT2(X) is written as [22]

Ã = {((x, u), µÃ(x, u) = 1) | ∀x ∈ X,∀u ∈ Jx ⊆ [0, 1]} .
(5)

Note, this is a vertical slice representation where Jx denotes
each vertical slice.

Definition 5. The vertical slice Jx of Ã ∈ IT2(X) is written
as [22]

Jx = [µ
Ã

(x), µÃ(x)],∀x ∈ X, (6)

where µ
Ã

(x) and µÃ(x) refer to the lower and upper mem-
bership functions, respectively. The bounded region Jx is
commonly referred to as the footprint of uncertainty; this is
the region where µ(x, u) = 1.

4) The zSlices/alpha-Plane Approach: This paper focuses
on the zSlices approach [23] and α-plane model [24], which
both involve slicing a fuzzy set along the secondary mem-
bership axis. Although these two methods go by different
names, the theory is equivalent [25]. This approach represents
a general type-2 fuzzy set as a collection of interval type-2
fuzzy sets with a third dimension that may be different to 1. For
continuity, only the zSlices notations will be used throughout
this paper.

A zSlices type-2 fuzzy set can be composed by slicing a
general type-2 fuzzy set along the z-axis (or the µ(x, u) axis).
This breaks the fuzzy set down into many interval type-2 fuzzy
sets called zSlices. However, unlike regular interval type-2
fuzzy sets that have a secondary membership grade of 1, each
zSlice has a height of zi, referred to as the zLevel.

Definition 6. Given a general type-2 fuzzy set Ã, let the zSlice
of Ã at the level zi be denoted Ãzi . This is written as [23]

Ãzi =
{
((x, u), µÃzi

(x, u) = zi) | ∀x ∈ X, ∀u ∈ Jx ⊆ [0, 1]
}
.

(7)

(7) is the vertical slice representation of an individual
zSlice. This is akin to the interval type-2 representation (5)
but the secondary membership value is always zi. Note that,
throughout this paper, x, y and z correspond to the universe
of discourse, primary membership and secondary membership
(zLevel), respectively.

Definition 7. The fuzzy set Ã ∈ GT2(X) is represented as a
collection of its zSlices [23] as

Ã =

I∑
i=1

Ãzi , (8)

where
∑

denotes the union of zSlices Ãzi and I is the total
number of zSlices.

Note that the zSlice Z0 is disregarded in (8) because its
secondary grade is 0 and thus it does not contribute to the
fuzzy set [23].

Definition 8. Let zIT2 denote the set of all zSlices which are
equivalent to an interval type-2 fuzzy set but with secondary
membership values at a known value zi.



Definition 9. Let ÃZ denote the set of all zLevels of the zSlices
in Ã. This is defined as

ÃZ =
{
zi | Ãzi 6= ∅, ∀i ∈ {1, 2, ..., I}

}
, (9)

where I is the total number of zLevels in Ã.

Definition 10. Let hz(Ã) denote the maximum height over
all zSlices in Ã ∈ GT2(X). This is defined as the maximum
zLevel in (9); i.e.,

hz(Ã) = max
{
zi | Ãzi 6= ∅,∀i ∈ {1, 2, ..., I}

}
. (10)

If the value of (10) is less than 1.0 then Ã has a non-normal
secondary height.

Having given an overview of fuzzy sets, the next section
presents methods of calculating the similarity between fuzzy
sets within the literature.

B. Similarity Measures
A similarity measure on fuzzy sets is a function s : A×B →

[0, 1] that determines to what degree two type-1 or type-2
fuzzy sets A and B contain the same values with the same
degree of membership. The most common properties of a
similarity measure include:
Reflexivity: s(A,B) = 1⇐⇒ A = B
Symmetry: s(A,B) = s(B,A)
Overlapping: If A ∩ B 6= ∅, then s(A,B) > 0; otherwise,
s(A,B) = 0
Transitivity: If A ⊆ B ⊆ C, then s(A,B) ≥ s(A,C)
Regarding transitivity, note the following definitions:

Definition 11. For A,B ∈ T1(X), A ⊆ B if µA(x) ≤ µB(x),
∀x ∈ X [26].

Definition 12. For Ã, B̃ ∈ IT2(X), Ã ⊆ B̃ if µ
Ã

(x) ≤
µ
B̃

(x) and µÃ(x) ≤ µB̃(x), ∀x ∈ X [27].

Definition 13. For Ã, B̃ ∈ GT2(X), Ã ⊆ B̃ if Ãzi ⊆
B̃zi ,∀i ∈ {1, 2, ..., I} where I is the total number of zSlices
in Ã and B̃ and the subsethood of Ãzi , B̃zi ∈ zIT2(X) is
the same as given in Definition 12 [8].

Note that it is not necessary for a similarity measure to have
all four properties as the desired properties of the measure
depend on its application [28]–[30].

One of the most common similarity measures on fuzzy sets
is the Jaccard measure. Let P(R) be the set of all crisp sets
in R, then for two groups U, V ∈P(R) the Jaccard similarity
is [31]

s(U, V ) =
|U ∩ V |
|U ∪ V |

. (11)

To measure the Jaccard similarity between two fuzzy sets
A,B ∈ T1(X) this is written as [1]

sT1(A,B) =

∑n
i=1 min(µA(xi), µB(xi))∑n
i=1 max(µA(xi), µB(xi))

. (12)

where n is the total number of discretised points on the x-axis.
This follows all four properties of a similarity measure.

The Jaccard measure sT1 has been extended to compare
interval type-2 fuzzy sets Ã, B̃ ∈ IT2(X) [4], [32] as

sIT2(Ã, B̃) =∑n
i=1 min(µÃ(xi), µB̃(xi)) +

∑n
i=1 min(µ

Ã
(xi), µ

B̃
(xi))∑n

i=1 max(µÃ(xi), µB̃(xi)) +
∑n

i=1 max(µ
Ã
(xi), µ

B̃
(xi))

.

(13)

This also follows all four properties of a similarity measure.
In recent years, a small handful of methods have been

developed to measure the Jaccard ratio between two general
type-2 fuzzy sets. The next three approaches all use the zSlices
representation to measure the Jaccard similarity between fuzzy
sets. Each method compares two zSlices using sIT2.

McCulloch et al. [6] used the interval type-2 Jaccard ap-
proach to compare fuzzy sets at each zLevel, aggregating and
weighting the results according to the position of the zLevel.
For Ã, B̃ ∈ GT2(X), this is calculated as

sGT2
m (Ã, B̃) =

∑
i∈p(Ã,B̃) zis

IT2(Ãzi , B̃zi)∑
i∈p(Ã,B̃) zi

, (14)

where p(Ã, B̃) is the set created by the union of the zLevels
used by Ã and B̃ calculated as

p(Ã, B̃) = ÃZ ∪ B̃Z , (15)

where ÃZ and B̃Z are the set of zLevels in Ã and B̃,
respectively, as defined in (9).

Zhao et al. [7] proposed two new measures of similarity on
type-2 fuzzy sets. One represents similarity as a fuzzy set and
the other represents similarity as a crisp value as [7]

sGT2
zh (A,B) =

1

∆ + 1

∑
i=0, 1

∆ , 2
∆ ...,∆−1

∆ ,1

sIT2(Ãzi , B̃zi), (16)

where ∆ + 1 is the number of zSlices representing Ã and B̃.
Note that, for consistency, the notations within (16) have been
altered to match the zSlices notations. This approach follows
all four properties of similarity. This differs from sGT2

m (14) in
that it does not weight the similarities of the zSlices by their
zLevels and instead takes an unweighted average.

Note, the approach in sGT2
zh [7] is also akin to the similarity

measure proposed by Hamrawi and Coupland [33], which does
not specify using the Jaccard measure.

Hao and Mendel [8] also developed a measure that repre-
sents the similarity between zSlices general type-2 fuzzy sets
as a type-1 fuzzy set. This is expressed as

sGT2:F
h (Ã, B̃) =

⋃
∀zi

zi/s
IT2(Ãzi , B̃zi), (17)

where zi/s
IT2(Ãzi , B̃zi) is not division but instead denotes

the membership zi of the similarity resulting from sIT2;
this is the same notation as used for the type-1 fuzzy set
representation in (2).

To demonstrate sGT2:F
h (17), consider two zSlices general

type-2 fuzzy sets Ã and B̃, of which the lowest zSlices at
z1 are shown in Fig. 4; more details on the construction



Fig. 1. The similarity sGT2:F
h (Ã, B̃) using the fuzzy sets Ã and B̃ shown

in Fig. 4.

of these fuzzy sets are given in Section IV. The similarity
sGT2:F
h (Ã, B̃) (17) is shown in Fig. 1.

The resulting fuzzy set from sGT2:F
h (17) may be reduced

to a crisp value by computing its centroid. This is calculated
as

sGT2:C
h (Ã, B̃) =

∑I
i=1 zis

GT2:F
h (Ãzi , B̃zi)∑I

i=1 zi
. (18)

This also follows all four properties of similarity. Note that
when the fuzzy similarity sGT2:F

h is reduced to a crisp value
in sGT2:C

h , the result is the same as sGT2
m (14).

This section has given an overview of similarity measures
that compare fuzzy sets using the zSlices representation. The
methods sGT2

zh and sGT2:C
h both assume that the fuzzy sets

have normal secondary membership functions (i.e., hz = 1)
and always compare the zSlice at zi = 1.0, therefore they
cannot compare fuzzy sets that are non-normal. Additionally,
sGT2
m assumes that both fuzzy sets have identical secondary

heights. Building upon these, the next section presents a new
similarity measure that can compare fuzzy sets that may have
both normal and non-normal secondary membership functions.

III. A NEW SIMILARITY MEASURE FOR GENERAL TYPE-2
FUZZY SETS

This section expands upon the measures highlighted in the
previous section and introduces a new method of measuring
the similarity between general type-2 fuzzy sets where the
given fuzzy sets may have non-normal secondary membership
functions.

A. Rationale

When comparing two fuzzy sets Ã, B̃ ∈ GT2(X) that
may have non-normal secondary membership functions, two
situations must be considered. These are:

1) How can we measure the similarity between fuzzy sets
if hz(Ã) < hz(B̃) ≤ 1?

2) How can we measure the similarity between fuzzy sets
if hz(Ã) = hz(B̃) < 1?

where hz(Ã) is defined in (10).
Fig. 2 gives an example of point 1. This shows a three-

dimensional model of two fuzzy sets Ã, B̃ ∈ GT2(X), where
Ã is represented by two zSlices at zLevels 0.25, and 0.5, and

Fig. 2. Two fuzzy sets Ã, B̃ ∈ GT2(X) where Ã has 2 zSlices at zLevels
0.25, and 0.5, and B̃ is represented by four zSlices at zLevels 0.25, 0.5, 0.75
and 1.0.

B̃ is represented by four zSlices at zLevels 0.25, 0.5, 0.75 and
1.0.

To compare these fuzzy sets, consider the property of
overlapping (detailed in Section II-B). Using the Jaccard
measure sIT2, for any given value of x in Ã, B̃ ∈ IT2(X),
if µÃ(x) > 0 and µB̃(x) = 0 then the similarity at this given
point will be 0. In other words, if one fuzzy set has a non-
zero membership at x and the other has zero membership, then
their similarity at x is zero.

This point of view can also be considered in the secondary
membership functions. If the primary membership value at x
is non-zero then the secondary membership will also be non-
zero. Likewise, if the primary membership at x is zero then
the secondary membership must also be zero. Note that when
comparing the zSlices of fuzzy sets, it is not just important
that the secondary membership is non-zero, it must also have
a non-empty zSlice at the given zLevel.

Therefore, when comparing fuzzy sets at a given zLevel zi,
if one fuzzy set has a zSlice at zi for x and the other does
not, then their similarity at x is zero. More specifically, for
Ã, B̃ ∈ GT2(X) at zi, if h(Ã) < zi and h(B̃) ≥ zi then
sIT2(Ãzi , B̃zi) = 0.

Next, regarding the second point, it is necessary to consider
how we can compare two fuzzy sets that both have non-normal
secondary heights. Fig. 3 illustrates this case, showing two
fuzzy sets Ã, B̃ ∈ GT2(X), both of which are represented by
two zSlices at zLevels 0.25 and 0.5

Fig. 3. Two fuzzy sets Ã, B̃ ∈ GT2(X) where both Ã and B̃ have 2 zSlices
at zLevels 0.25, and 0.5.

To compare these fuzzy sets, consider the property of
reflexivity. The method sGT2

m (14) aggregates the similarities of
zSlices by weighting the results by the given zLevel. Consider
that, unlike the previous point, the similarity at zi where both
h(Ã) < zi and h(B̃) < zi should not be 0 because this will
break the property of reflexivity. For example, if two fuzzy
sets Ã, B̃ ∈ GT2(X) are identical and have a non-normal



secondary height at zh, then the similarity at zi ≤ zh would
be 1. If the result at zi > zh is 0 then the value of similarity
aggregated over all zSlices will be less than 1. Considering
this, fuzzy sets should not be compared at zi where Ãzi = ∅
and B̃zi = ∅.

Note that although one may consider the result should be
1 at such zLevels because the zSlices are both equal (i.e.,
they are both empty sets), this is not an ideal solution. This
is because doing so would break the property of overlapping,
causing two disjoint fuzzy sets with non-normal secondary
membership functions to have a non-zero result.

B. New Similarity Measure

Considering the points discussed, the following similarity
measure between two general type-2 fuzzy sets is proposed.

Definition 14. The similarity between two fuzzy sets Ã, B̃ ∈
GT2(X) is calculated as

sGT2
m2 (Ã, B̃) =

∑
i∈p(Ã,B̃) zis

zIT2
m2 (Ãzi , B̃zi)∑

i∈p(Ã,B̃) zi
, (19)

where p(Ã, B̃) is given in (15), and the similarity between two
zSlices Ãzi , B̃zi ∈ zIT2(X) is

szIT2
m2 (Ãzi , B̃zi) =


sIT2(Ãzi , B̃zi) Ãzi 6= ∅ and B̃zi 6= ∅
0 Ãzi 6= ∅ and B̃zi = ∅
0 Ãzi = ∅ and B̃zi 6= ∅

(20)

Note that in szIT2
m2 (20), the case Ãzi = ∅ and B̃zi = ∅

is not included because such zLevels will not be used as
set by p (15). The maximum zLevel in p(Ã, B̃) will always
be max

{
hz(Ã), hz(B̃)

}
, thus the fuzzy sets will never be

compared where they both have an empty zSlice at the given
zLevel. This is unlike the methods sGT2

zh (16) and sGT2:C
h (18)

which both always measure up to zi = 1.
Note that the key difference between sGT2

m2 (19) and sGT2
m

(14) is the introduction of measuring the similarity between
fuzzy sets with different secondary heights. Additionally, al-
though sGT2

m can compare fuzzy sets with equal non-normal
secondary heights, this was not explored within [6].

The proposed method (19) weights the similarity at each
zLevel according to the position of the zLevel. This is because,
intuitively, the more certainty there is in the membership value
of the given sets, the more certainty there must be in the
similarity between these sets. Given this, it makes sense to
weight the similarity between zSlices to reflect how certain
we are of that similarity.

Theorem 1. sGT2
m2 has the property of reflexivity.

Proof: For Ã, B̃ ∈ GT2(X), if Ã = B̃ then hz(Ã) =
hz(B̃) so both fuzzy sets can be measured up to the same
zLevel. It then follows that szIT2(ÃziB̃zi) = 1 ∀zi ∈ p(Ã, B̃).
Thus, sGT2

m2 has the property of reflexivity.

Theorem 2. sGT2
m2 has the property of symmetry.

Proof: The function sGT2
m2 does not affect the ordering of

the fuzzy sets measured, thus it follows the rule of symmetry.

Theorem 3. sGT2
m2 has the property of overlapping.

Proof: For Ã, B̃ ∈ GT2(X), if Ã and B̃ are disjoint then
they are disjoint at each zLevel, therefore szIT2

m2 (ÃziB̃zi) =
0 ∀zi ∈ p(Ã, B̃). Thus, sGT2

m2 has the property of overlapping.

Theorem 4. sGT2
m2 has the property of transitivity.

Proof: When fuzzy sets have equal heights in the
secondary membership functions:
For Ã, B̃, C̃ ∈ GT2(X) where Ã ⊆ B̃ ⊆ C̃, for each
non-empty zSlice zi, Ãzi ⊆ B̃zi ⊆ C̃zi and therefore
sIT2(Ãzi , B̃zi) ≥ sIT2(Ãzi , C̃zi) [4]. Thus, it is clear that
when hz(Ã) = hz(B̃) = hz(C̃), the property of transitivity
holds.
When fuzzy sets have non-equal heights in secondary
membership functions:
Let zÃ, zB̃ and zC̃ denote the heights of the fuzzy sets; i.e.,
zÃ = hz(Ã), zB̃ = hz(B̃) and zC̃ = hz(C̃). If Ã ⊆ B̃ ⊆ C̃
then zÃ ≤ zB̃ ≤ zC̃ and for each non-empty zSlice zi,

Ãzi ⊆ B̃zi ⊆ C̃zi .
At zi ∈ (0, zÃ], szIT2

m2 (Ãzi , B̃zi) ≥ szIT2
m2 (Ãzi , C̃zi)

At zi ∈ (zÃ, zB̃ ], szIT2
m2 (Ãzi , B̃zi) = 0 and szIT2

m2 (Ãzi , C̃zi) =

0, thus szIT2
m2 (Ãzi , B̃zi) ≥ szIT2

m2 (Ãzi , C̃zi).
At zi ∈ (zB̃ , zC̃ ], szIT2

m2 (Ãzi , B̃zi) is not measured because
zi exceeds the heights zÃ and zB̃ , and szIT2

m2 (Ãzi , C̃zi) =
0. Thus, the similarity at zi decreases the value of
sGT2
m2 (Ã, C̃), whilst sGT2

m2 (Ã, B̃) remains the same. Therefore,
sGT2
m2 (Ã, B̃) ≥ sGT2

m2 (Ã, C̃).
This section has developed a new method of comparing

zSlices-based general type-2 fuzzy sets that may have non-
normal secondary membership functions. The next section
demonstrates this measure on a variety of fuzzy sets compared
with other approaches within the literature.

IV. DEMONSTRATIONS

This section demonstrates the proposed similarity measure.
First, a demonstration is given where all fuzzy sets have
normal secondary membership functions, and the results are
compared against existing methods introduced in Section II-B.
After this, the proposed method is demonstrated on fuzzy set
pairs where one fuzzy set is normal (hz = 1) and the other
is non-normal (hz < 1), and pairs in which both fuzzy sets
are non-normal. Each fuzzy set is constructed using simple
triangular membership functions so that the properties proved
in the previous section can easily be seen through the results.
However, note that the methodology is applicable to fuzzy sets
with any membership function shape, including non-normal
and non-convex.

First, the method of constructing the fuzzy sets used within
these demonstrations is discussed.



A. Generating Sample General Type-2 Fuzzy Sets

Let Ã ∈ GT2(X) be a fuzzy set with triangular upper and
lower membership functions for each zSlice. The footprint of
uncertainty (FOU) of the lowest zSlice (z1) of Ã is defined
by the upper and lower membership functions as

FOU(Ãz1
) = trimf(x, [a, b, c;w])

FOU(Ãz1) = trimf(x, [a, b, c;w]).

The secondary membership functions of Ã have maximum
membership (i.e., µÃ(x, u) = 1) at the centre of the FOU
and the membership decreases linearly towards the edge of the
FOU. Fig. 5 shows an example of such secondary membership
functions using five zSlices.

For any given zLevel zi where I is the total number of
zLevels, the upper membership function of Ãzi is

FOU(Ãzi) = trimf(x, [azi , bzi , czi ;wzi ])

where

azi = a+
(

(a− a)
( zi
I − 1

))
bzi = b+

(
(b− b)

( zi
I − 1

))
...

and the lower membership function of Ãzi is

FOU(Ãzi) = trimf(x, [azi , bzi , czi ;wzi ])

where

azi = a−
(

(a− a)
( zi
I − 1

))
bzi = b−

(
(b− b)

( zi
I − 1

))
...

The demonstrations within this section use five fuzzy sets
Ã, B̃, C̃, D̃, Ẽ ∈ GT2(X) where each zSlice is calculated as
described above. Table I lists the upper and lower membership
functions of each fuzzy set at z1.

TABLE I
THE LOWER AND UPPER MEMBERSHIP FUNCTIONS OF FIVE FUZZY SETS
AT THE ZLEVEL z1 , GIVEN AS TRIANGULAR MEMBERSHIP FUNCTIONS

DEFINED BY THE POINTS [a, b, c;w].

Fuzzy Set FOU FOU

Ãz1 [1, 3, 5; 1.0] [2, 3, 4; 0.8]

B̃z1 [2, 4, 6; 1.0] [3, 4, 5; 0.8]

C̃z1 [3, 5, 7; 1.0] [4, 5, 6; 0.8]

D̃z1 [4, 6, 8; 1.0] [5, 6, 7; 0.8]

Ẽz1 [5, 7, 9; 1.0] [6, 7, 8; 0.8]

Fig. 4 shows the FOU of each fuzzy set for the zSlice at z1
and Fig. 5 shows a three-dimensional model of Ã represented
by five zSlices.

Fig. 4. The footprint of uncertainty of five fuzzy sets Ã, B̃, C̃, D̃, Ẽ ∈
GT2(X) at the zSlice Z̃1.

Fig. 5. The fuzzy set Ã from Fig. 4 represented by five zSlices.

Note that this method assures that FOU(Ãzi)(x) >

FOU(Ãzj )(x) and FOU(Ãzi)(x) < FOU(Ãzj )(x) where
zi > zj . In other words, a zSlice at zi has an FOU that is
within the FOU of the zSlice at zj where zi > zj .

B. Similarity Between Fuzzy Sets with Normal Secondary
Membership Functions

This demonstration compares the fuzzy sets described in the
previous section using the proposed method sGT2

m2 (19), along
with sGT2

m (14), sGT2
zh (16) and sGT2

h (18). Each fuzzy set has
normal secondary membership functions and is represented
by 20 zSlices (at zLevels z = {0.05, 0.1, ..., 0.95, 1.0}). Note
that for each demonstration, the universe of discourse X is
bounded by the interval [0, 10] and n = 101 (i.e., X is
discretised into 101 equidistant points).

Table II shows the results of each method when comparing
different pairs of fuzzy sets in Fig. 4. It is clear from these
results that when each fuzzy set has a secondary height of 1,
the proposed method sGT2

m2 , McCulloch et al.’s approach sGT2
m

and Hao and Mendel’s method sGT2
h all produce the same

results. Zhao et al. sGT2
zh produce different results; however,

the values are close to the other methods. Note, also, that
each method produces expected values and follows all four
properties of similarity.

C. Similarity Between Fuzzy Sets with Normal and Non-
Normal Secondary Membership Functions

Next, a demonstration of sGT2
m2 is given where all fuzzy sets

except Ã have non-normal secondary membership functions.
In the fuzzy sets B̃, C̃, D̃ and Ẽ, all zSlices above zi = 0.75



TABLE II
RESULTS OF COMPARING THE FUZZY SETS IN FIG. 4 WHERE EACH FUZZY

SET HAS A NORMAL SECONDARY MEMBERSHIP FUNCTION.

Method s(Ã, Ã) s(Ã, B̃) s(B̃, Ã) s(Ã, C̃) s(Ã, D̃) s(Ã, Ẽ)

sGT2
m2 (19) 1.0 0.2902 0.2902 0.0658 0.0044 0.0

sGT2
m (14) 1.0 0.2902 0.2902 0.0658 0.0044 0.0

sGT2
zh (16) 1.0 0.2943 0.2943 0.0723 0.0083 0.0

sGT2:C
h (18) 1.0 0.2902 0.2902 0.0658 0.0044 0.0

have been removed and the fuzzy sets are now represented by
15 zSlices (at zLevels z = {0.05, 0.1, ..., 0.7, 0.75}).

Additionally, Ã′ and Ã′′ are introduced into this demon-
stration. These are the same as Ã but in Ã′ the zSlices
above zi = 0.75 have also been removed, thus Ã′ has also
been reduced to 15 zSlices where the maximum zSlice is at
zi = 0.75. However, in Ã′′ the zSlices below zi = 0.25 have
been removed, thus Ã′′ has been reduced to 15 zSlices at
zLevels z = {0.25, 0.3, ...., 0.98, 1.0}. To help visualise these
fuzzy sets, Fig. 6 shows the vertical slices of Ã, Ã′ and Ã′′ at
x = 3.4. Note that Ã′ has a non-normal secondary membership
function, and the FOU of Ã′′ at z ≤ 0.25 is the same as the
Ã and Ã′ at z = 0.25.

Table III shows the results of comparing these fuzzy sets.
Note that only the results of the proposed method sGT2

m2 are
shown as sGT2

m , sGT2
zh and sGT2:C

h cannot be used to compare
fuzzy sets with non-normal secondary membership functions.

As expected, the similarity between Ã and Ã′ is lower than
when Ã is compared with itself (shown in Table II). However,
since 75% of the Ã and Ã′ are identical, this similarity is still
high. Note that the similarity is less than 0.75 because lower
weights are given to the values of similarity at lower zLevels,
thus the result of sGT2

m2 is less than 0.75.
In contrast, the similarity between Ã and Ã′′ is higher.

This is because the zSlices with higher degrees of secondary

(a)

(b) (c)

Fig. 6. Vertical slices at x = 3.4 of (a) Ã (b) Ã′ and (c) Ã′′.

TABLE III
RESULTS OF COMPARING THE FUZZY SETS IN FIG. 4 USING sGT2

m2 (19),
WHERE Ã AND Ã′′ HAVE NORMAL SECONDARY MEMBERSHIP FUNCTIONS,

AND Ã′ , B̃, C̃ , D̃ AND Ẽ ARE NON-NORMAL.

s(Ã, Ã′) s(Ã, Ã′′) s(Ã, B̃) s(B̃, Ã) s(Ã, C̃) s(Ã, D̃) s(Ã, Ẽ)

0.5714 0.9979 0.1675 0.1675 0.0402 0.0042 0.0

membership are identical and it is only at low degrees of
membership (where zi < 0.25) that the fuzzy sets are different.
As a result of weighting the similarity by the secondary
membership values, the result of Ã and Ã′′ is close to 1.

For all other pairs of fuzzy sets, the similarity is lower
than if all secondary membership functions are at 1 (as
demonstrated in Table II) because there is now no similarity at
zi where zi > 0.75. As a result, the value of similarity at these
zLevels is 0 and so the overall result (aggregating all zLevels)
is reduced. The same effect can be observed on type-1 fuzzy
sets with normal and non-normal membership functions.

Note that the results are as expected and demonstrate the
properties of similarity.

D. Similarity Between Fuzzy Sets with Non-Normal Secondary
Membership Functions

Next, a demonstration of sGT2
m2 is given where all of the

fuzzy sets have non-normal secondary membership functions.
The zSlices above zi = 0.75 have been removed and all five
fuzzy sets are now represented by 15 zSlices (at zLevels z =
{0.05, 0.1, ..., 0.7, 0.75}).

Table IV shows the results of comparing these fuzzy sets.
For each pair, the similarity is higher than the previous
demonstration given in Table III because each fuzzy set now
has an equal secondary height, and therefore the zLevels
above zi = 0.75 are not compared. This is unlike the
previous demonstration in which the resulting similarity at
those zLevels was 0. It is expected that the results should be
higher than in Table III because the fuzzy sets are now more
similar; i.e., they all have the same secondary height.

The results are different compared to when the fuzzy sets
all have normal secondary membership functions (shown in
Table II) because the fuzzy sets themselves are different at
zi > 0.75 even though they have the same FOU.

Note that the results are as expected and demonstrate the
four properties of similarity.

These demonstrations show that the proposed method is
effective at comparing zSlices based fuzzy sets with normal or
non-normal secondary membership functions, and the results

TABLE IV
RESULTS OF COMPARING THE FUZZY SETS IN FIG. 4 USING sGT2

m2 (19),
WHERE EACH FUZZY SET HAS A NON-NORMAL SECONDARY MEMBERSHIP

FUNCTION.

s(Ã, Ã) s(Ã, B̃) s(B̃, Ã) s(Ã, C̃) s(Ã, D̃) s(Ã, Ẽ)

1.0 0.2932 0.2932 0.0704 0.0074 0.0



are consistent with other methods that cannot compare such
fuzzy sets.

V. CONCLUSIONS

This paper presents a novel method of measuring the
similarity between two zSlices/α-plane based type-2 fuzzy sets
that may have non-normal secondary membership functions.
Though several methods of calculating the similarity between
type-2 fuzzy sets have been developed in the literature, there
are none that can compare such sets if the secondary member-
ship functions of the fuzzy sets are non-normal. Such fuzzy
sets may arise when, for example, modelling agreement if
there is no unanimity between individuals or, in some contexts,
it may make sense to describe a term as not ever being
completely certain [20].

This paper develops a new measure by building on existing
techniques to enable the systematic comparison of general
type-2 fuzzy sets with both normal and non-normal secondary
membership functions. It also provides proofs that the pro-
posed method has all of the properties typically desired in a
similarity measure. Examples are given to compare fuzzy sets
with normal and non-normal secondary membership functions.
These examples illustrate that the results are as expected and
are consistent with other methods in the literature. The results
also demonstrate the effects of the properties of the similarity
measure when comparing fuzzy sets; i.e., when comparing
identical or disjoint fuzzy sets. The proposed method may be
used in type-2 fuzzy set applications where a measure with all
four properties of a similarity measure are required.
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