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Congenital Heart Defects (CHD) have a neonatal incidence of 0.8-1%1,2. Despite abundant examples of monogenic CHD in humans and mice, CHD 
has a low absolute sibling recurrence risk (~2.7%)3, suggesting a considerable role for de novo mutations (DNM), and/or incomplete 
penetrance4,5. De novo protein-truncating mutations (PTM) have been shown to be enriched among the 10% of ‘syndromic’ patients with extra-
cardiac manifestations6,7. We exome sequenced 4,593 individuals from 1,823 CHD families (1,371 trios, 32 multi-sibling families and 458 
singletons), including both syndromic (S-CHD, n=604) and non-syndromic cases (NS-CHD, n=1,219). In S-CHD, we confirmed for known CHD-
associated genes a significant enrichment of de novo PTMs, but not inherited protein truncating variants (PTVs), , consistent with recent findings8. 
Conversely, in NS-CHD we observed significant enrichment of PTVs in known CHD genes inherited from unaffected parents. We identified three 
novel genome-wide significant S-CHD disorders caused by DNMs in CHD4, CDK13 and PRKD1. Our study reveals distinct genetic architectures 
underlying the low sibling recurrence risk in S-CHD and NS-CHD.  
 

We evaluated the burden of DNMs within S-CHD and NS-CHD trios separately (NS-CHD= 511, NNS-CHD= 854). We classified DNMs into three distinct 
categories: PTMs (nonsense, frameshift and splice-site variants); protein-altering mutations (PAMs), encompassing missense and in-frame indels; 
and silent mutations. We compared the observed numbers of DNMs to those expected under a null mutational model9, across a set of manually 
curated CHD-associated genes, non-CHD developmental disorder (DD) associated genes and all remaining protein coding genes (Supplementary 
Tables 1-3, Figure 1A). S-CHD probands exhibited the largest excess in PTMs  (OR=81, P=1.21x10-43) and PAMs (OR=8.6, P=7.35x10-15) for 
autosomal dominant CHD genes. S-CHD probands also manifested a burden of PTMs in autosomal dominant DD-associated genes not currently 
associated with CHD (OR=18.4, p=3.49x10-13). In contrast, NS-CHD probands presented with a much lower burden of PTMs in CHD-associated 
genes  (OR=7.3, P=2.61x10-4). Finally, we find a significant exome-wide excess of PAMs, but not silent mutations (after excluding CHD and DD 
genes) in both S-CHD and NS-CHD probands, suggesting additional undiscovered dominant CHD-associated genes. The excess of de novo PTMs 
in S-CHD cases reported here is of the same magnitude as that found in cases with severe developmental disorders without CHD and considerably 
higher than that found in Autism Spectrum Disorder (Figure 1D). Our finding of a marked difference in DNM burden between NS-CHD and S-CHD 
mirrors that observed in Autism between individuals with and without intellectual disability10. Neurodevelopmental deficits are by far the most 
common extra-cardiac manifestations observed in S-CHD8. 
 
To evaluate the contribution of incompletely penetrant inherited variants, we compared the burden of rare (MAF < 0.1%) inherited variants in 
the three previously described gene sets in the S-CHD and NS-CHD cases of European ancestry, relative to population-matched controls 
(n=12,031, Supplementary Note, Supplementary Figure PCA, Supplementary Table 3, Figure 1B). We observed a significant excess of rare 
inherited PTVs in autosomal dominant CHD genes in NS-CHD (OR=2.67,p=1.1x10-4), but not in S-CHD (p=0.3). The CHD-associated genes with 



inherited PTVs in NS-CHD (Supplementary Table 4) have previously only been linked with non-syndromic or mild syndromic presentations, and 
were distinct from those with de novo PTMs in S-CHD (Figure 1C). Where possible, we re-evaluated available clinical information to confirm the 
unaffected status of the transmitting parent, and the non-syndromic presentation of the proband in NS-CHD families with these inherited PTVs. 
Non-syndromic presentations of inherited PTVs in several genes associated with mild CHD syndromes has previously been described (e.g. ELN11, 
JAG112). The opposing signals, for inherited PTVs and de novo PTMs in NS-CHD and S-CHD respectively, argues against systematic mis-
classification of NS-CHD and S-CHD in our cohorts, and points instead to an appreciable role for incomplete penetrance for PTVs in NS-CHD. 
Moreover, we also observed an exome-wide excess of rare inherited PTVs (OR=1.08, p=1.51x10-5) in NS-CHD probands, even after excluding 
known CHD-associated and DD-associated genes, suggesting incomplete penetrance in additional, novel CHD-associated genes. 
 
Using a previously described null mutation model6,9, we evaluated individual genes for an excess of de novo PTMs and PAMs separately, defining 
genome-wide significance as p < 1.3x10-6 (Methods). We identified 11 genome-wide significant genes considering all CHD trios, zero genes when 
considering only NS-CHD but 12 when considering only S-CHD (Supplementary Table 5, Table 1, Figure 2A), despite the smaller sample size in 
the latter, due to their concentrated burden of DNMs. Ten of the 12 genome-wide significant genes were known to be DD-associated, although 
not all had previously been implicated in CHD (Supplementary Table X). To maximise power to detect novel causative genes, we focused on S-
CHD trios without a plausible genetic cause among known DD- and CHD-associated genes (n=398) and identified three novel genes: CDK13, CHD4 
and PRKD1, at genome-wide significance (Supplementary Table 6, Table 2, Figure 2B), elaborated below.  
 

We identified six S-CHD individuals (Figure 4A) with clustered de novo PAMs in the highly conserved serine/threonine protein kinase domain of 
cyclin-dependent kinase 13 (CDK13), which shows a marked depletion of PAVs in the European population (Figure 4B). Three probands carry an 
identical missense mutation (p.Asn842Ser), also observed in an additional S-CHD singleton (Figure 4B).  
These seven S-CHD cases were characterised by septal defects (VSD n= 2, ASD N= 4), with two also presenting with pulmonary stenosis, as well 
as global developmental delay, slight to moderate microcephaly, clinodactyly of the 5th finger and a recognizable facial gestalt (Figure 4C, 
Supplementary Table X). Modelling of the kinase domain indicates that the observed mutations impair: ATP-binding, binding of the magnesium 
ion that is essential for enzymatic activity, or interactions with Cyclin K, with which CDK13 forms a cyclin-dependent kinase complex (Figure 4D). 
This Cyclin K/CDK13 complex phosphorylates RNA polymerase II and is necessary for alternative splicing of RNA13,14. The knockout mice for Cdk12, 
the closest homolog for Cdk13, both of which have ubiquitous developmental expression patterns, die at post-implantation (E5.5) suggesting a 
strong developmental effect15.  
 



We observed five S-CHD individuals with DNMs in CHD4 (4 PAMs and 1 PTM), which encodes a chromodomain containing protein that catalyses 
ATP-dependent chromatin remodelling as a core component of the nucleosome remodeling and histone deacetylase (NuRD) repressor 
complex16. Three patients manifested TOF or TOF-like features, while the remaining two had CoA and a septal defect (Supplementary Figure X, 
Supplementary Table X).  The majority of patients presented with motor (N=3) and global developmental delay (N=3), with two of them showing 
severe structural brain defects and four had various genitourinary abnormalities. Haploinsufficiency of another component of the NuRD complex, 
GATAD2B, has been identified as causing a recognisable intellectual disability syndrome, although associated CHD has not been reported17. More 
generally, several components of other ATP-dependent chromatin remodelling complexes have been associated with dominant developmental 
syndromes, including CHD in some patients6,7. A possible explanation for the observed cardiac phenotype comes from a recent study showing, 
that mice with endothelial knockdown of CHD4 die during midgestation of vascular rupture, due to a dysfunctional NuRD-complex18. 
 

We detected three S-CHD individuals with de novo PAMs in PRKD1, with two having identical DNMs, a mutational pattern suggestive of gain of 
function (Supplementary Figure X, Supplementary Table X). These three individuals had different types of CHD (PS, AVSD and ???), severe 
developmental delay, ectodermal (dry skin, teeth and nail defects) and limb abnormalities. A homozygous PTV in PRKD1 has recently been 
associated with truncus arteriousus through autozygosity mapping19. PRKD1 encodes a serine/threonine protein kinase that regulates diverse 
cellular functions, including the transcriptional response to cardiac hypertrophy20. Homozygous knockout of PRKD1 in mice is embryonic lethal 
and tissue-specific knockout results in abnormal cardiac remodelling20. 
 
The burden analyses described above clearly show an enrichment for both PTMs, PAMs and inherited PTVs within our CHD dataset, therefore 
we hypothesised that some genes might be enriched for both de novo and rare inherited variants and that integrating both classes of variation, 
using a previously described hierarchical Bayesian model21 (Supplementary Note), may improve power to detect novel CHD-associated genes. 
We analysed PTMs and PAMs separately (Supplementary Figure) and considered candidate CHD-associated genes at strong (FDR < 1%), 
intermediate (1%< FDR < 5%) and weak (5%< FDR < 10%) levels of confidence (Supplementary Table X and X, Figure 3). We found 16 genes at 
the strongest level of confidence, 12 were known DD-associated genes (2 of which have not been previously associated with CHD: DYRK1A, 
PACS1), 1 gene was only associated with CHD but not DD (MYH6), and 3 are novel candidate genes (CHD4, CDK13, DIAPH3). Most high confidence 
genes, exhibited enrichment for either DNMs or inherited variants, only two genes, NOTCH1 and KAT6A exhibited appreciable enrichment for 
both. NOTCH1 was notable as being the only high confidence gene for which the evidence from inherited PTVs exceeds that from DNMs (Figure 
3A). Due to the likely concentration of false discovery signals in novel gene associations, we believe the evidence presented here to be insufficient 
to conclusively assert novel CHD associations based on this analysis alone. Additional functional evidence can prioritise genes for future follow-



up studies (Supplementary Table X). We evaluated the over-representation of particular gene functions and pathways among the top 374 genes 
with (FDR < 50%). We observed a significant over-representation (FDR < 10%) of genes associated with Gene Ontology terms related to chromatin 
modification, protein phosphorylation, neural tube and cardiac development (Supplementary Table X). Over-represented pathways included: 
NOTCH1-, IGF1-, HDAC Class II-, ERBB- and NFKB- signalling (Supplementary Table X). In addition, the set of top-ranking genes showed a significant 
overrepresentation of high quality (STRING Score > 0.9) protein-protein interactions within the gene set (p=5.84x10-3, Supplementary Figure X), 
with key nodes being NOTCH1, SOS1, EP300 and SMAD4. 
 
Several mechanisms have been proposed to explain the low sibling recurrence risk of CHD, ranging from a major role for DNMs7, incomplete 
penetrance of high risk variants, and a polygenic and/or multifactorial aetiology22. Our analyses show that the relative contributions of DNMs 
and incomplete penetrance differ markedly between NS-CHD and S-CHD, with a major role for de novo mutations in the latter, and inherited 
high risk variants in the former. By focusing on S-CHD cases with no clear known diagnosis, we discovered three novel causes for S-CHD (PRKD1, 
CHD4 and CDK13). CHD is often not fully penetrant in syndromic CHD disorders (e.g. KMT2D23, NSD124), and as all patients in our study were 
ascertained for CHD, further studies are necessary to quantify the penetrance of CHD in these three new syndromes.  
 
Current sample sizes provide limited statistical power to detect novel S-CHD disorders, and given the observed burden of de novo PTMs in S-CHD 
we estimate that data sets at least 20-fold larger will be needed to discover most dominant CHD-associated genes (Supplementary Figure). This 
challenge is likely to be even greater for identifying most genes harbouring incompletely penetrant variation in NS-CHD25. Our data motivate 
different future study design strategies for S-CHD (trios) and NS-CHD (case/control), nonetheless international collaboration and data sharing 
will be essential to achieve a deeper understanding of the genetic architecture of CHD. 
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