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Abstract

Background. The ability to infer network structure from multivariate neuronal signals is central to computational
neuroscience. Directed network analyses typically use parametric approaches based on auto-regressive (AR) models,
where networks are constructed from estimates of AR model parameters. However, the validity of using low order AR
models for neurophysiological signals has been questioned. A recent article introduced a non parametric approach to
estimate directionality in bivariate data, non parametric approaches are free from concerns over model validity.

New Method. We extend the non parametric framework to include measures of directed conditional independence,
using scalar measures that decompose the overall partial correlation coefficient summatively by direction, and a set of
functions that decompose the partial coherence summatively by direction. A time domain partial correlation function
allows both time and frequency views of the data to be constructed. The conditional independence estimates are
conditioned on a single predictor.

Results. The framework is applied to simulated cortical neuron networks and mixtures of Gaussian time series data
with known interactions. It is applied to experimental data consisting of local field potential recordings from bilateral
hippocampus in anaesthetised rats.

Comparison with Existing Method(s). The framework offers a non parametric approach to estimation of directed
interactions in multivariate neuronal recordings, and increased flexibility in dealing with both spike train and time series
data.

Conclusions. The framework offers a novel alternative non parametric approach to estimate directed interactions in
multivariate neuronal recordings, and is applicable to spike train and time series data

Keywords: Directionality, Partial Coherence, Non parametric, Time series, Point process, Conditional independence,
Granger causality

1. Introduction

Directed network analyses are widely used in neuro-
science to infer network structure in multivariate neural
recordings (Rubinov and Sporns, 2010). The majority of
approaches are parametric, which rely on estimating the
parameters of a model to describe the patten of interac-
tions between the observed signals, typically using auto-
regressive (AR) models (Granger, 1969; Geweke, 1982).
Once the AR parameters have been estimated different
metrics relating to directionality can be constructed di-
rectly as a function of the model parameters (Baccala et
al., 2001; Kaminski et al., 2001; Chen et al., 2006; Schel-
ter et al., 2006; Chicharro, 2012). A number of concerns
have been raised regarding the validity of AR models to
accurately capture the complex structure present in multi-
variate neural and other time series typically encountered
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in scientific problems (Gersch, 1972; Thomson and Chave,
1991; Lindsay and Rosenberg, 2011). A number of alter-
native non parametric approaches have been considered to
describe directed interactions in neurophysiological signals
(Gersch, 1972; Eichler et al., 2003; Lindsay and Rosenberg,
2011). A recent article introduced a non parametric frame-
work for directionality analysis of bivariate data (Halliday,
2015), with application to single unit spike train data.

The concept of conditional independence is a power-
ful one that is widely used in partial regression models
where the effects of variables that are believed to influence
the correlation between dependent variables are removed
to provide a more accurate description on any dependency
(e.g. Ezekiel and Fox, 1958). The use of conditional causal-
ity measures to distinguish between direct and indirect
influences has been considered in parametric approaches
to directionality. Granger (1969) considers two and three
variable models, leading in the three variable model case
to a partial cross spectrum from which causal and feedback
relationships between two variables conditioned on a third
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can be derived. An alternative parametric approach using
information theoretic measures (Geweke, 1982) has also
been extended to include conditioning variables (Pierce,
1982; Geweke, 1984). Related approaches are considered
in Chen et al. (2006); Guo et al. (2008).

This paper presents a novel extension to the non para-
metric approach in Halliday (2015) for multivariate data
by presenting a framework for analysis of three random
processes. We also investigate applicability of the frame-
work to both time series data and spike train data. One
advantage of considering time series data is that measures
derived from residual and conditional variance metrics can
readily be calibrated against known (simulated) data. We
undertake such a comparison to establish the accuracy and
usefulness of our multivariate extension. The approach is
further validated through application to experimental data
consisting of local field potential recordings from bilateral
hippocampus in anaesthetised rat. Our results demon-
strate the flexibility of the non parametric approach in
dealing with both spike train and time series data. Our
novel approach should therefore have broad applicability
across a wide range of electrophysiological data.

The paper is arranged as follows. Section 2 presents the
methods including sub-sections on algorithms and signifi-
cance testing. Section 3 describes results from application
of the conditional non parametric framework to simulated
cortical neuron networks, to artificial mixtures of Gaus-
sian time-series used to verify quantitative aspects of the
framework and to the experimental data. Conclusions and
discussion are in section 4.

2. Methods

Our framework assumes that random processes have
wide-sense (weak) stationarity (Brillinger, 1975; Priestley,
1981). The approach can be applied to time series data
and point-process data. Point process data are represented
using differential increments which count the number of
spikes in a small interval, which we assume to be the sam-
pling interval ∆t (Rosenberg et al., 1989; Conway Halliday
and Rosenberg, 1993). Point processes are also assumed to
be orderly, i.e. only one spike can occur in each sampling
interval (Conway Halliday and Rosenberg, 1993). In the
derivation below (x, y, z) refer to three random processes
which can be either time series or point process differential
increments, or mixtures of the two data types. We use the
term multivariate in the manuscript, since we are consid-
ering the analysis of three simultaneous random processes.
However, only a single predictor is used, the possibility of
extending the analysis to multiple predictors is considered
in the discussion.

2.1. Theory

For bivariate random processes (x, y) a scalar measure
of overall dependence is given by the squared correlation

coefficient (Pierce, 1979; Halliday, 2015). This is defined
in terms of ordinary and residual variances as

R2
yx = (σ2

y − σ2
y|x)/σ

2
y (1)

The conditioned variance, σ2
y|x can be equated to the vari-

ance of the error process after a linear regression of y on
x. Equation 1 can be interpreted as the fraction of the
variance in y that can be accounted for by the regressor x.
It is a symmetrical measure which does not provide any
indication of directionality of interaction.

To account for any common effect that process z may
have on both x and y a partial correlation coefficient can
be used

R2
yx|z = (σ2

y|z − σ2
y|x,z)/σ

2
y|z (2)

In this case both processes x and y are conditioned on
the third process z. Partial regression is widely used in
situations where it is believed that the predictor, z, can
account for some or all of the original association between
x and y. The objective is to distinguish a genuine correla-
tion, R2

yx|z, from an apparent or induced correlation, R2
yx.

Throughout this paper we use linear models and consider
linear interactions.

The relationship between the scalar R2
yx and the coher-

ence function, |Ryx(λ)|2 was used as the starting point for
the derivation of non parametric directionality measures
in Halliday (2015). The frequency domain equivalent of
the partial regression coefficient, equation 2, is the partial
coherence function

|Ryx|z(λ)|2 =
|fyx|z(λ)|2

fxx|z(λ)fyy|z(λ)
(3)

where fyx|z(λ) is the partial cross power spectral density
(or partial cross-spectrum) between processes x and y with
predictor z. The two partial auto-spectra are fxx|z(λ) and
fyy|z(λ). Partial coherence estimates have proved useful
in identifying direct interactions from common inputs in
functional connectivity studies of neural circuits (Rosen-
berg et al., 1998; Eichler et al., 2003; Salvador et al., 2005;
Medkour et al., 2009).

The link between the partial coherence function in equa-
tion (3) and the partial correlation coefficient in equation
(2) can be made by considering the residual variance in the
partial regression model, σ2

y|x,z. In the frequency domain

this residual variance is the residual spectrum fyy|x,z(λ).
Using the same derivation as the bivariate framework (Hal-
liday, 2015) we can derive the result

∣

∣Ryx|z(λ)
∣

∣

2
=

fyy|z(λ)− fyy|x,z(λ)

fyy|z(λ)
(4)

We have used the partial gain function (Halliday et al.,

1995),
fyx|z(λ)

fxx|z(λ)
, in this derivation. Thus, as in the bivari-

ate case, there is a close correspondence between the par-
tial coherence function in equation (4) and the partial re-
gression coefficient in equation (2). The partial coherence

2



function decomposes the R2 value by frequency, thus R2
yx|z

can be recovered by integrating the partial coherence

R2
yx|z =

1

2π

∫ +π

−π

∣

∣Ryx|z(λ)
∣

∣

2
dλ (5)

where the partial coherence is defined over the normalised
angluar frequency range [−π,+π].

Application of the minimummean square error (MMSE)
pre-whitening step (Eldar and Oppenheim, 2003) is next
applied to reduce the partial coherence to the partial cross
spectrum. Directionality measures can be derived using a
similar sequence of steps as in the bivariate case (Halli-
day, 2015). The aim of the pre-whitening step is to reduce
the two partial auto spectra to have the value 1 at each
frequency in equation (3), which requires the application
of two pre-whitening filters that must reflect the proper-
ties of the two processes x and y and their relationship to
the predictor, z. This can be achieved using pre-whitened
conditional discrete Fourier transforms as described below.

Auto spectra are traditionally defined in terms of the
expectation operator as (Brillinger, 1975)

fxx(λ) = lim
T→∞

1

2πT
E
{

dTx (λ)d
T
x (λ)

}

(6)

fyy(λ) = lim
T→∞

1

2πT
E
{

dTy (λ)d
T
y (λ)

}

(7)

where dTx (λ) and dTy (λ) are the finite Fourier transforms
of length T from processes x and y respectively, and the
overbar indicates a complex conjugate. A finite Fourier
transform conditioned on a third process, z, can be defined
(Tick, 1963; Brillinger, 1988) as

dTx|z(λ) = dTx (λ) −
fxz(λ)

fzz(λ)
dTz (λ) (8)

dTy|z(λ) = dTy (λ) −
fyz(λ)

fzz(λ)
dTz (λ) (9)

The quantities fxz(λ), fyz(λ) and fzz(λ) are the two cross
spectra between the conditioning process, z and the origi-
nal processes and the auto spectra of z, respectively. Defin-
ing conditioned Fourier transforms in this manner allows
the partial auto spectra to be defined as

fxx|z(λ) = lim
T→∞

1

2πT
E
{

dTx|z(λ)d
T
x|z(λ)

}

(10)

fyy|z(λ) = lim
T→∞

1

2πT
E
{

dTy|z(λ)d
T
y|z(λ)

}

(11)

The pre-whitening step is applied using an approach simi-
lar to the bivariate case presented in Halliday (2015). Ex-
tending the concept of the MMSE pre-whitening filter in-
troduced in Eldar and Oppenheim (2003), we define the
MMSE pre-whitening filters for the two partial spectra as

wxx|z(λ) = fxx|z(λ)
−1/2 (12)

wyy|z(λ) = fyy|z(λ)
−1/2 (13)

Using these filters the pre-whitened transforms can be gen-
erated as

dwT
x|z(λ) = dTx|z(λ)wxx|z(λ) (14)

dwT
y|z(λ) = dTy|z(λ)wyy|z(λ) (15)

Equations (14) and (15) mimic the frequency domain im-
plementation applying pre-whitening filters to the pro-
cesses x and y that was used in the bivariate case. The dif-
ference here is that the output of the filters are conditioned
Fourier transforms which are optimally pre-whitened. Auto
spectra estimated by replacing the expectation in equa-
tions (10) and (11) with ensemble or segment averaging
will have the value 1 at all frequencies:

fw
xx|z(λ) = 1, fw

yy|z(λ) = 1 (16)

Estimation of the partial cross spectrum from the pre-
whitened conditioned Fourier transforms, equations (14)
and (15), will be equivalent to the partial coherence

∣

∣

∣
Rw

yx|z(λ)
∣

∣

∣

2

=
∣

∣

∣
fw
yx|z(λ)

∣

∣

∣

2

(17)

Conditioned directionality measures can then be de-
rived from the pre-whitened partial cross spectrum, fw

yx|z(λ),

in a manner similar to the bivariate case (Halliday, 2015).
The overall scalar measure of dependence between x and
y conditioned (linearly) on z, R2

yx|z, is

R2
yx|z =

1

2π

∫ +π

−π

∣

∣

∣
fw
yx|z(λ)

∣

∣

∣

2

dλ (18)

To decompose R2
yx|z by direction we define a correlation

function, ρyx|z(τ) which is the inverse Fourier transform
of the pre-whitened partial cross spectrum

ρyx|z(τ) =
1

2π

∫ +π

−π

fw
yx|z(λ)e

iλτ dλ (19)

The function defined in equation (19) could be referred
to as a lagged conditional correlation function between x
and y. Following Brillinger (1975), second order spectra
are assumed periodic in λ with period 2π (Brillinger, 1975,
Th 2.5.1). Decomposition of R2

yx|z by lag is achieved as

R2
yx|z =

∫ +∞

−∞

|ρyx|z(τ)|2dτ (20)

The proof of this central result follows closely that for the
bivariate case (Halliday, 2015), using Parseval’s theorem
(Priestley, 1981). Adopting the same approach as in the
bivariate case allows the overall dependence to be decom-
posed summatively by direction

R2
yx|z =

∫

τ<0

|ρyx|z(τ)|2dτ+|ρyx|z(0)|2+
∫

τ>0

|ρyx|z(τ)|2dτ
(21)
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which we write, with an obvious extension to the notation,
as

R2
yx|z = R2

yx|z;− +R2
yx|z;0 +R2

yx|z;+ (22)

In the frequency domain the decomposition also follows
closely the approach adopted in the bivariate case. The f ′

measures are defined as

f ′
yx|z;−(λ) =

∫

τ<0

ρyx|z(τ)e
−iλτ dτ (23)

f ′
yx|z;0(λ) = ρyx|z(0) (24)

f ′
yx|z;+(λ) =

∫

τ>0

ρyx|z(τ)e
−iλτ dτ (25)

with decomposition of the partial coherence, |Ryx|z(λ)|2,
summatively at each frequency given by

|Ryx|z(λ)|2 = |R′
yx|z;−(λ)|2 + |R′

yx|z;0(λ)|2 + |R′
yx|z;+(λ)|2

(26)
where the R′ functions are scaled according to the relative
magnitude of the f ′ functions at each frequency as

|R′
yx|z;−(λ)|2 =

|f ′
yx|z;−(λ)|2

|f ′
yx|z;−(λ)|2 + |f ′

yx|z;0(λ)|2 + |f ′
yx|z;+(λ)|2

|Ryx|z(λ)|2

(27)

|R′
yx|z;0(λ)|2 =

|f ′
yx|z;0(λ)|2

|f ′
y|zx;−(λ)|2 + |f ′

y|zx;0(λ)|2 + |f ′
yx|z;+(λ)|2

|Ryx|z(λ)|2

(28)

|R′
yx|z;+(λ)|2 =

|f ′
yx|z;+(λ)|2

|f ′
yx|z;−(λ)|2 + |f ′

yx|z;0(λ)|2 + |f ′
yx|z;+(λ)|2

|Ryx|z(λ)|2

(29)

The validity of this decomposition in the bivariate case is
discussed in Halliday (2015).

2.2. Algorithms

The directionality measures can be constructed as a
straightforward extension to a typical multivariate spec-
tral analysis. The conditional directionality measures, in
this case, assume that three random processes, x, y and z,
are available for analysis. The directionality measures are
constructed using a two stage process. In the first stage
the discrete Fourier transforms are calculated in the usual
way, and estimates of second order spectra are calculated -
these are the estimated auto spectra, f̂xx(λj), f̂yy(λj) and

f̂zz(λj), along with the estimated cross spectra, f̂yx(λj),

f̂xz(λj) and f̂yz(λj). Estimates are indicated through the
use of the hat symbol, ,̂ the λj are the Fourier frequen-

cies, and the terminology for cross spectra, f̂yx(λj), treats
x as the reference (or input) process. A number of well
documented approaches exist for construction of second

order spectral estimates. Here we use the average peri-
odogram approach, described in detail in Halliday et al.
(1995), which involves sectioning a record into L sections
each containing T data points, thus analysing a record of
duration R = LT samples. Alternatively, the direction-
ality measures could be derived from alternative spectral
estimation procedures, for example using multi-taper esti-
mates (Percival and Walden, 1993).

The second stage constructs the conditional direction-
ality estimates starting from the discrete Fourier transform
for each segment, l (l = 1, . . . , L), from processes x and y
which are referred to as dTx (λj , l) and dTy (λj , l). The condi-
tioned Fourier transforms for each segment are constructed
as

dTx|z(λj , l) = dTx (λj , l)−
f̂xz(λj)

f̂zz(λj)
dTz (λj , l) (l = 1, . . . , L)

(30)

dTy|z(λj , l) = dTy (λj , l)−
f̂yz(λj)

f̂zz(λj)
dTz (λj , l) (l = 1, . . . , L)

(31)

This gives a conditioned Fourier transform for each seg-
ment, l, that is conditioned on the (common) process z.

The conditioning factors (or gains)
f̂xz(λj)

f̂zz(λj)
and

f̂yz(λj)

f̂zz(λj)
are

the same for each segment and use the spectral estimates
constructed in the first stage analysis. The first order par-
tial spectra are then estimated from the conditioned dis-
crete Fourier transforms. Here an average is taken across
segments, for process x this is

f̂xx|z(λj) =
1

2πLT

L
∑

l=1

∣

∣

∣
dTx|z(λj , l)

∣

∣

∣

2

(32)

The 1
2πT factor follows the convention in the bivariate case.

A similar expression is used to estimate f̂yy|z(λj). The pre-
whitening filters are constructed as

ŵxx|z(λj) = f̂xx|z(λj)
−1/2 (33)

ŵyy|z(λj) = f̂yy|z(λj)
−1/2 (34)

The hat indicates that these are estimates constructed
from a single realisation of the three processes. A different
realisation will result in a different pair of pre-whitening
filters, this will achieve the objective of pre-whitening the
conditioned auto-spectral estimates to 1 at each frequency.
The pre-whitened discrete Fourier transforms for each seg-
ment, l are

dwT
x|z(λj , l) = dTx|z(λj , l) ŵxx|z(λj) (l = 1, . . . L) (35)

dwT
y|z(λj , l) = dTy|z(λj , l) ŵyy|z(λj) (l = 1, . . . L) (36)

Whitened partial auto and cross spectra are estimated us-
ing expressions similar to equation (32). To ensure that

the whitened conditional auto spectral estimates, f̂w
xx|z(λ)
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and f̂w
yy|z(λ), have the value 1 at all frequencies, the same

averaging (or weighted averaging) should be applied to the
same data segments when calculating the whitened spec-
tra. The partial coherence can then be obtained directly
from the whitened partial cross spectrum as

|R̂w
yx|z(λj)|2 = |f̂w

yx|z(λj)|2 (37)

From this the partial correlation function, ρyx|z(τ), is esti-
mated using a standard inverse Fourier transform of length
T (Halliday et al., 1995).

The estimation of the directional metrics, the overall
measure R2

yx|z and directional components R2
yx|z;−, R

2
yx|z;0

and R2
yx|z;+ are estimated from ρ̂yx|z(τk) using the same al-

gorithms as in the bivariate case, by substituting ρ̂yx|z(τk)
for ρ̂yx(τk) (Halliday, 2015). The same substitution al-

lows the estimated f ′ functions, f̂ ′
yx|z;−(λj), f̂ ′

yx|z;0(λj)

and f̂ ′
yx|z;+(λj), to be obtained from ρ̂yx|z(τk) and from

these the estimated conditioned directional coherence func-
tions, |R̂′

yx|z;−(λj)|2, |R̂′
yx|z;0(λj)|2 and |R̂′

yx|z;+(λj)|2 by
direct substitution of the appropriate estimates into equa-
tions (27) - (29). Algorithmic level descriptions of the
conditional, three variable, analysis and the unconditional,
two variable (Halliday, 2015) analysis are given in the Ap-
pendix.

2.3. Significance testing

The approach here follows that adopted in the bivariate
case (Halliday, 2015). The scalar measure of overall con-
ditional correlation, R2

yx|z is estimated by integration of
partial coherence estimates. Confidence limits on partial
coherence estimates are used as an indicator of a statisti-
cally significant interaction. The setting of significance
levels for partial coherence estimates constructed using
average periodograms over L segments can be found in
Brillinger (1975); Rosenberg et al. (1989); Halliday et al.
(1995). In particular an upper 95% confidence limit based
on a null hypothesis of no correlation after removal of com-
mon linear effects from a single predictor can be estimated
as (Rosenberg et al., 1989)

1− 0.051/(L−2) (38)

This confidence limit can be used to assess the significance
of R̂2

yx|z. We assume that significant values of R̂2
yx|z will

result when the corresponding partial coherence estimate
has significant values (at frequencies of interest).

The variance of the bivariate correlation function, ρyx(τ),
was considered in Halliday (2015). The expression in-
volved integration over the product of the prewhitened
spectra, which have the value 1 at all frequencies. We use
the same approach for the multivariate correlation func-
tion, except that the integration is over the product of
the two pre-whitened partial spectra fw

xx|z(λ) and fw
yy|z(λ).

Since these are similarly equal to 1 at all frequencies we

obtain the same result var
{

ρyx|z(τ)
}

= 1/R. Approxi-
mate upper and lower 95% confidence limits can be set
as

0± 1.96√
R

(39)

where R = LT , the total number of points analysed. The
interpretation in the multivariate case is similar to that
for the bivariate case. Significant values of ρ̂yx|z(τ) at lags
τ < 0 indicates a significant R2

yx|z;−, and significant values

of ρ̂yx|z(τ) at lags τ > 0 indicates a significant R2
yx|z;+. A

significant value of ρ̂yx|z(0) indicates a significant R2
yx|z;0.

The validity of equation (39) was checked using Monte-
Carlo simulations using three examples of time series data
(rows 1, 3, 5 from Table 1) and three examples of spike
train data (configurations a and b from Figure 1 and 1 set
of Poisson spike trains). In each example 100 repeat runs
were undertaken with parameters L = 97 and T = 1024
and the percentage of points in estimates of ρ̂yx|z(τ) above
and below the confidence limits calculated using equation
(39) calculated. The percentage of values outside the up-
per and lower 95% confidence limits ranged from 5.03%
to 5.19%, suggesting good agreement with equation (39).
In addition Q-Q plots of the simulated data against an as-
sumedN (0, 1) distribution (not shown) further suggest the
assumptions behind equation (39) are reasonable. Inter-
estingly these Monte-Carlo simulations highlighted a small
bias in the point-process case where the distribution of val-
ues outside the [lower, upper] confidence limits is around
[2, 3]% instead of the expected [2.5, 2.5]%. The reason for
this bias may be related to applying the same assumptions
to time series and point process data as it only affects anal-
ysis of spike trains. It is of the order of 0.5%, large scale
studies should take this additional bias into account, how-
ever, it should have limited impact on interpretation of
individual records.

3. Results

The conditional directionality measures are applied to
simulated and experimental data. The first set of simu-
lations uses the same three cortical neuron networks that
were used to validate the bivariate measures. Application
to simulated time series data uses three correlated random
processes (mixtures of Gaussian noise with and without
additional delays), these simple times series models have
the advantage of known, theoretical correlation values and
are used as a validation of the R2

yx|z conditional direction-
ality measures and estimates of the conditional directional
coherence, |R′

yx|z;·(λ)|2 functions. Application to exper-
imental data is illustrated through analysis of a data set
consisting of simultaneous bilateral recordings of local field
potentials from CA1 and CA3 in the rat.

3.1. Simulated 3 neuron networks

The configurations that are used are illustrated schemat-
ically in Figure 1. The neurons are simulated cortical neu-
rons (Troyer and Miller, 1997), the neuron parameters,
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large scale background synaptic activation parameters and
dynamics of the connections from 1 → 2 and 1 → 3 are
the same as and described in detail in Halliday (2015). In
brief, the model neurons have a time constant of 20 ms,
and all receive independent excitatory and inhibitory in-
puts, 4000 excitatory inputs/sec, 300µV EPSPs and 1000
inhibitory inputs /sec, shunting inhibition, simulating the
balanced large scale background synaptic activation seen
in vivo (Destexhe et al., 2003). The common excitatory
inputs from 1 → 2 and 1 → 3 have 2000µV EPSPs and
in configurations b), c) and d) an additional synaptic con-
duction delay of 5 ms is included from 1 → 2 in addition
to the existing synaptic conduction process. Synaptic de-
lays are an important component of neural circuits, they
are included here to test the ability of the non parametric
directionality framework to correctly infer direction in the
presence of delays. Configurations a) and b) have no direct
connections between neurons 2 and 3, thus the correlation
which is induced by the common inputs from neuron 1
should be removed in the conditional directionality analy-
sis when using the spikes from neuron 1 as the predictor.
Configurations c) and d) have direct connections between
neurons 2 and 3, the results below investigate whether
the conditional directionality estimates accurately capture
the features of these direct connections after removing the
common influence of the spikes from neuron 1.

1

3

2+

+

a)

1

3

2
b)

+

+

5ms delay

1

3

2
d)

+

+

5ms delay

1

3

2
c)

+

+

5ms delay

+ +

-

Figure 1: Network configuration for cortical network simulations.
Excitatory connections are indicated: “+”, inhibitory connections
are indicated: “-”. In configurations b) – d) the connection from
1→ 2 has an additional synaptic delay of 5 ms.

Figure 2 illustrates the bivariate time domain analysis
between the firing sequences of neurons 2 and 3. These
figures were generated from a single sample record of du-
ration 100 seconds. The firing rate of all neurons varied
from 10.5 - 18 spikes/sec, and the coefficient of variation
varied from 0.69 - 0.78, over the four examples illustrated.
The four estimates in figure 2 show the estimated bivariate
correlation, ρ̂32(τ), between neurons 2 and 3, with neuron
2 the reference. Configuration a) has no connection be-
tween neurons 2 and 3, however, the common input does

induce an apparent correlation between the two neurons.
This is seen as a significant peak centred around time zero.
Configurations b) - d) have the same pattern of common
inputs as configuration a), except with an additional delay
of 5 ms from 1 → 2 which induces an apparent direction-
ality from 2 ← 3. This is observed as the peak in the
unconditional estimate ρ̂32(τ) at negative values of lag τ
in figures 2b-2d. Configurations c) and d) also have excita-
tory connections from 2→ 3 this appears as an additional
peak in ρ̂32(τ) at positive values of τ in figures 2c and 2d.
Configuration d) has an additional inhibitory connection
from 2 ← 3, we would expect to see a depression at neg-
ative lags in figure 2d, however there is little evidence of
this as it is masked by the apparent excitatory association
induced by the common input from neuron 1. Thus the
unconditional directionality analysis does not provide an
accurate indication of the interactions between neurons 2
and 3.
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Figure 2: Bivariate directionality analysis for interactions between
neurons 2 and 3. Configurations as shown in figure 1. Plots show the
estimated correlation function, ρ̂32(τ), along with null value (dashed
horizontal line at zero) and upper and lower 95% confidence limits
(solid horizontal lines) based on the assumption of uncorrelated pro-
cesses. The lag ranges are the same for all panels, a dotted vertical
line at τ = 0 is included for reference.

Figure 3 shows the estimated conditional correlation
function, ρ̂32|1(τ), here the interaction between neurons 2
and 3 is conditioned on the spike timings from neuron 1.
The configuration, lag range and the individual vertical
axes in each plot are the same as in fig 2. Configurations
a) and b) have no direct connection between neurons 2 and
3, thus we would expect to see a conditional directional-
ity estimate that is not significantly different from zero.
This is the case in figure 3a,b where there is no evidence
of any relationship. Configuration c) has a single excita-
tory connection from 2 → 3. The conditional estimate in
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fig 3c has a significant peak at positive lags in ρ̂32|1(τ), in
agreement with fig 1c. Configuration d) has an excitatory
connection from 2→ 3 and an inhibitory connection from
2 ← 3. Both these are connections are accurately cap-
tured by the estimate in fig 3d, in particular removal of
the common input to neurons 2 and 3 has unmasked the
inhibitory connection (compare fig 3d with fig 2d), there
is now a clear, significant depression at negative time lags
in ρ̂32|1(τ) in figure 3d.
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Figure 3: Conditional directionality analysis for interactions between
neurons 2 and 3, conditioned on neuron 1. Configurations as shown
in figure 1. Plots show the estimated conditional correlation func-
tion, ρ̂32|1(τ), along with null value (dashed horizontal line at zero)
and upper and lower 95% confidence limits (solid horizontal lines)
based on the assumption of uncorrelated processes. The lag ranges
are the same for all panels, the vertical axes are the same as the
corresponding plot in figure 2. A dotted vertical line at τ = 0 is
included for reference.

3.2. Application to time series with known correlation struc-

ture

This section considers application of the conditional di-
rectionality metrics and functions to simulated time series
data. The data are generated using combinations of white
noise, from iid N (0, 1), with known weights and delays.
The first set consists of three random processes, where the
bivariate correlation between x and y is entirely due to the
common effects of process z, used as predictor in the condi-
tional directionality analysis. The results are summarised
in Table 1 which gives the theoretical (target) values for
R2

yx, the mean and range (mean ±2 SD) of the estimates

R̂2
yx and R̂2

yx|z. Values were estimated from 100 indepen-
dent trials, where each trial used 100 segments of length
210 samples.

The second set consists of a similar analysis, except in
this case the theoretical (or target) conditional correlation,

R2
yx R̂2

yx R̂2
yx range R̂2

yx|z R̂2
yx|z range

0.1 0.108 0.105, 0.111 0.01 0.0091, 0.0110
0.3 0.305 0.301, 0.309 0.01 0.0092, 0.0110
0.5 0.502 0.500, 0.505 0.01 0.0092, 0.0110
0.7 0.700 0.698, 0.702 0.01 0.0092, 0.0107
0.9 0.899 0.899, 0.900 0.01 0.0092, 0.0110

Table 1: Theoretical values of R2
yx

and mean and range (mean±2SD)

of R̂2
yx

and R̂2

yx|z
for simulated time series where the correlation

between x and y is due entirely to the common influence of process
z used as predictor in the conditional directionality analysis. The
target value of R2

yx|z
is zero in all cases. Metrics calculated from 100

trials, each trial used 100 segments with 210 samples per segment.

R2
yx|z, differs from zero. The second set consists of a simi-

lar analysis, except in this case the theoretical (or target)
conditional correlation, R2

yx|z, differs from zero. Here x
and y were generated from a mixture of Gaussian model
as in Table 1, except two processes were common to both x
and y, only one is the predictor z, thus the residual corre-
lation R2

yx|z is non zero. The results are summarised in Ta-
ble 2 which also includes the target and estimated residual
correlation, all configurations have non zero target values
of R2

yx and R2
yx|z. The results in tables 1, 2 suggest that

estimates of the conditional directionality metric, R2
yx|z

can usefully distinguish direct interactions from common
effects in multivariate time series.

R2
yx R̂2

yx R̂2
yx range R2

yx|z R̂2
yx|z R̂2

yx|z range

0.4 0.403 0.399, 0.407 0.30 0.303 0.299, 0.308
0.4 0.403 0.399, 0.407 0.21 0.220 0.216, 0.224
0.5 0.502 0.498, 0.506 0.39 0.398 0.394, 0.402
0.5 0.502 0.498, 0.506 0.11 0.114 0.112, 0.117
0.6 0.601 0.598, 0.604 0.40 0.403 0.400, 0.406
0.6 0.601 0.598, 0.604 0.17 0.173 0.169, 0.176
0.8 0.800 0.798, 0.802 0.65 0.655 0.653, 0.658
0.8 0.800 0.798, 0.801 0.40 0.399 0.396, 0.402

Table 2: Theoretical values of R2
yx

(column 1) and R2

yx|z
(column 4)

and mean and range (mean±2SD) of R̂2
yx and R̂2

yx|z
for simulated

time series where the correlation between x and y is partly accounted
for by the common influence of process z used as predictor in the con-
ditional directionality analysis. Metrics calculated from 100 trials,
each trial used 100 segments with 210 samples per segment.

The results presented in Table 2 use an instantaneous
mixing of signals to generate the dependencies, thus co-
herence, directional coherence and conditional directional
coherence estimates are constant at all frequencies. In-
troduction of delays into the generation of the processes
x and y will modulate the bivariate relationship across
frequency, which should be removed in the conditional es-
timates. The next example considers this scenario using
two random processes generated according to the model:
x(t) = a1z1(t − 1) + a2z2(t) +

√

1− (a21 + a22)ε1(t) and
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Figure 4: Conditional and unconditional directionality analyses of
the relationship between four simulated processes, z1, z2 (predic-
tors) and x, y. a) Estimated ordinary coherence between x and y

(grey) compared with theoretical model (black). b) Estimated for-
ward component of conditional coherence estimate with z1 as pre-
dictor (grey) compared with theoretical model (black). c) Estimated
forward (black) and reverse (grey) components of coherence estimate
in panel a). The theoretical values are shown in grey and black for
forward and reverse estimates, respectively. d) Estimated reverse
component of conditional coherence estimate with z2 as predictor
(grey) compared with theoretical model (black). Plots are shown
against fractional frequency where 0.5 corresponds to the Nyquist
frequency. See text for parameters and further details.

y(t) = a1z1(t) + a2z2(t− 1) +
√

1− (a21 + a22)ε2(t), where
the four random processes z1, z2, ε1 and ε2 are iid N (0, 1),
and (a21 + a22) < 1. The coherence is |Ryx(λ)|2 = a41 + a42+
2a21a

2
2 cos(2λ), here λ is radian frequency. The directional

components are |R′
yx;−(λ)|2 = a41

(

a41 + a42
)−1 |Ryx(λ)|2 and

|R′
yx;+(λ)|2 = a42

(

a41 + a42
)−1 |Ryx(λ)|2, these can be de-

rived from (Halliday, 2015, eq (2.18), (2.20)). The two
partial coherence estimates are |Ryx|z1(λ)|2 = a42(1−a21)−2

and |Ryx|z2(λ)|2 = a41(1− a22)
−2, respectively. This exam-

ple should demonstrate an unmasking effect in the partial
coherence estimates, which are constant over frequency,
compared with the ordinary coherence which is modu-
lated over frequency. Figure 4 illustrates analysis of a
single trial, using 100 segments of length 210 points gen-
erated using this model for x and y with parameters a1 =
√

2/3
√
0.9 and a2 =

√

1/3
√
0.9.

For these parameters the coherence at zero frequency
is |Ryx(0)|2 = 0.9. The two partial coherence functions
are |Ryx|z1(λ)|2 = 0.74 and |Ryx|z2(λ)|2 = 0.855, inde-
pendent of frequency. The differential delays used in the
generation of x(t) and y(t) will induce directionality into
the pattern of dependencies. Common input z1 influences
y before x thus induces directionality x ← y, in contrast

common input z2 induces directional interaction x → y.
Thus the ordinary coherence should have components in
the forward and reverse direction and we would expect to
see non zero |R̂′

yx;+(λ)|2 and |R̂′
yx;−(λ)|2. In the condi-

tional case the residual correlation after removal of z1 will
be in the forward direction , x → y, thus |R̂′

yx|z1;+
(λ)|2

should agree with |Ryx|z1(λ)|2. The residual correlation
after removal of z2 will be in the reverse direction , x← y,
thus |R̂′

yx|z2;−
(λ)|2 should agree with |Ryx|z1(λ)|2.

The results in figure 4 are in good agreement with these
expectations. Fig 4a shows the ordinary coherence esti-
mate (grey) against the theoretical curve (black). There is
good agreement. The other three panels explore how the
non parametric directionality measures capture the uncon-
ditional and conditional relationship between x and y. Fig
4c shows the two bivariate directionality estimates, for-
ward |R̂′

yx;+(λ)|2 (black), and reverse |R̂′
yx;−(λ)|2 (grey).

These two estimates sum to give the coherence estimate
in fig 4a. Both estimates agree with the theoretical di-
rectional components shown superimposed on each trace.
The induced interaction is stronger in the reverse direc-
tion, since a1 > a2 in the above time series model. Fig-
ure 4b shows the constant theoretical |Ryx|z1(λ)|2, 0.74
(black) and the estimated conditional forward coherence
estimate |R̂′

yx|z1;+
(λ)|2 (grey). There is good agreement

between these two, the other estimated directional compo-
nents, |R̂′

yx|z1;−
(λ)|2 and |R̂′

yx|z1;0
(λ)|2 are negligible (not

shown). Similarly in fig 4d there is good agreement be-
tween the theoretical |Ryx|z2(λ)|2 = 0.855 (black) and the

estimated |R̂′
yx|z2;−

(λ)|2 (grey), where the conditional di-
rectional analysis correctly identifies the interaction in the
reverse direction. The other estimated directional compo-
nents |R̂′

yx|z2;+
(λ)|2 and |R̂′

yx|z2;0
(λ)|2 are negligible (not

shown). Thus, the unconditional and conditional direc-
tionality analysis is able to correctly infer the strength
and direction between the four simulated processes z1, z2,
x and y.

3.3. Application to bilateral Hippocampal in vivo record-

ings - Bivariate directionality analysis

This section describes application of the bivariate di-
rectionality analysis to local field potential (LFP) record-
ings from bilateral Hippocampus (HPC). The data is from
a larger study investigating intra- and inter-hippocampal
connectivity in a model of kainic acid (KA) induced mesial
temporal lobe epilepsy (mTLE) in rat (Senik et al., 2013).
Isoflurane anaesthetised Lister-hooded rats (300-400g) had
microelectrode arrays positioned in the left and right hip-
pocampus. A cannula was attached to the left electrode for
local injection of saline or kainic acid (1 mM, 1 µL) follow-
ing a 30 min basal period. Multiple single-unit and local
field potential activity (LFPs; filtered at 0.07 - 300 Hz)
were recorded simultaneously using a Plexon Multichan-
nel Acquisition Processor (MAP) system, see Coomber et
al. (2008) for further details. All procedures had ethical
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approval and were carried out in accordance with the An-
imals (Scientific Procedures) Act 1986, UK.

The approach is applied to a single record of dura-
tion 211 minutes. Here we consider bivariate direction-
ality analysis between simultaneous LFP records in CA1
and CA3 hippocampal regions in each hemisphere. Fig-
ure 5 shows the estimated coherence (|R̂yx(λ)|2, top) and
the forward (|R̂′

yx;+(λ)|2, middle) and reverse (|R̂′
yx;−(λ)|2,

lower) components for CA3-CA1 in left hemisphere. Fig-
ure 6 shows the estimates for CA3-CA1 in the right hemi-
sphere, in both cases CA3 region is the reference. The
complete record was split into blocks for analysis, these
blocks consisted of 58 segments of length 1024 points.
Each block was analysed separately and bivariate direc-
tionality parameters calculated as described in Halliday
(2015). Adjacent blocks were non-overlapping. Each block
is approximately 1 minute in duration, 59.39 sec, with sam-
pling rate 1ms.

Both sets demonstrate strong coherence between CA3
and CA1 LFP signals, and exhibit a modulation of the co-
herence and the directional components after application
of KA. Both the strength of coherence and range of fre-
quencies change after KA is applied. This can be seen more
clearly in the sections illustrated in figures 7 and 8. These
illustrate the frequency (left) and time domain (right) bi-
variate directionality analysis for fixed blocks 6 (top; pre
KA injection), 50 (middle; soon after KA injection) and
150 (lower; well after KA injection), respectively, corre-
sponding to ∼1 minute blocks centred at 5.4, 49 and 148
minutes into the data set. These figures represent vertical
sections through the time-frequency plots in figs 5 and 6,
at fixed times.

For the left (ipsilateral) side the overall strength of in-
teraction between CA3 and CA1 decreases after local in-
jection of KA. The range of frequencies that exhibit signif-
icant coherence decreases from 200 Hz (block 6) to 125 Hz
and 115Hz (blocks 50 and 150, respectively). The inter-
action tends to become more balanced, the percentage of
R̂2

yx;200, the overall strength of correlation at frequencies
up to 200 Hz, in the forward direction remains constant at
54%, the percentage in the reverse direction increases from
22% in block 6 to 32% in block 50 and 36% in block 150,
accompanied by a decrease in the percentage at zero lag.
For this data, the frequencies where the directional com-
ponents are strongest are not those where the original co-
herence is strongest. For the left side, the forward compo-
nent (red) peaks at lower frequencies, whereas the reverse
component (blue) peaks at higher frequencies than the or-
dinary coherence. In block 6 the ordinary coherence peaks
around 30 Hz, the forward component peaks around 20 Hz
and the reverse component peaks at frequencies > 100Hz.
In block 150 the coherence and forward component have
peaks at similar frequencies to block 6, whereas the reverse
component has a peak around 50 Hz.

Injection of local KA into the left hemisphere also mod-
ulates the interaction between the CA3 and CA1 LFP sig-

nals in the right hemisphere as shown by the sections in
figure 8. The range of frequencies that exhibit significant
coherence decreases from 110 Hz (block 6) to 85 Hz and
75Hz (blocks 50 and 150, respectively). The interaction
tends to become more one directional, the percentage of
R̂2

yx;200, in the forward direction increases from 67% in
block 6 to 86% in block 50 and 90% in block 150. For
the right side in block 6 the coherence and forward com-
ponents both have peaks around 30 Hz, in contrast the
reverse component has a peak around 50 Hz. In later sec-
tions the magnitude of the reverse component is greatly
reduced thus the forward component is very similar to the
ordinary coherence, in block 150 the maximum is around
20 Hz.

The time domain estimates (right column) gives further
insight into the characteristics of the interaction between
CA3 and CA1. The positive peak in ρ̂yx(τ) indicates a
latency of around 3-4 ms from CA3→CA1. In the basal
section (block 6) an interaction can be seen in the oppo-
site direction, CA3←CA1, this has a similar latency of
around 3 ms. Interestingly this feature has negative mag-
nitude (fig 8b, negative lag) suggestive of an inhibitory
effect. The application of KA abolished this CA3←CA1
interaction in the contralateral HPC (fig 8d, f). The re-
sults demonstrate that unilateral local KA injection has a
marked effect on the strength and directionality of inter-
action between CA3 and CA1 in both left and right HPC.
The KA appears to have different effects on each hemi-
sphere, the strength of CA3←CA1 interaction increases
in the ipsilateral (left) hemisphere (Figure 7, blue lines),
whereas it reduces in the contralateral (right) hemisphere
(Figure 8, blue lines). These effects persist for the duration
of the available record, 3 hours post injection.

4. Discussion

This article presents two important developments to
the non parametric directionality framework in Halliday
(2015). The first is the development of conditional di-
rectionality measures, the second considers applicability
to time series data. Conditional measures are derived by
decomposing the MMSE pre-whitened (Eldar and Oppen-
heim, 2003) partial coherence in the same manner as the
unconditional measures decompose the ordinary coherence
(Halliday, 2015). The MMSE pre-whitening step ensures
equality between the partial cross spectrum and partial co-
herence, equation 17, allowing the conditional scalar mea-
sure of dependence, R2

yx|z, to be determined by integra-

tion of the pre-whitened partial cross spectrum fw
yx|z(λ),

equation 18. Estimates of this, and the decomposition into
three directional components, R2

yx|z;−, R
2
yx|z;0 and R2

yx|z;+,
provide scalar measures of linear association, on a scale
from 0 to 1, of the interaction between processes (x, y) af-
ter taking into account any common linear influence from
process z. An additional set of functions, |R′

yx|z;−(λ)|2,
|R′

yx|z;0(λ)|2 and |R′
yx|z;+(λ)|2 decompose the partial co-
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Figure 5: Bivariate directionality analysis of LFP recordings from CA3 and CA1 in left hippocampus in an anaesthetised rat. Kainic acid was
injected locally into the left hippocampus at 30 minutes. The plots show the estimated coherence (top) and forward (CA3→CA1, middle)
and reverse (CA3←CA1, bottom) components, with CA3 as the reference. Analysis was undertaken by splitting the complete record in to
non-overlapping blocks of duration approximately 1 minute. Scale bars on the right indicate the strength of coherence (top) and directional
(middle, bottom) components, all to the same scale. The 95% significance level for the coherence estimate (top) is 0.0512, based on the
assumption of uncorrelated signals.
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Figure 6: Bivariate directionality analysis of LFP recordings from CA3 and CA1 in right hippocampus in an anaesthetised rat. Kainic acid
was injected into the left hippocampus after 30 minutes basal recording. The plots show the estimated coherence (top) and forward (middle)
and reverse (bottom) components, with CA3 as the reference. Analysis used same parameters as for Left Hippocampus, see legend for Figure
5.
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Figure 7: Directionality analysis for 1 minute blocks centred at
5.4 (block 6, top), 49 (block 50 centre) and 148 minutes (block 150
lower). Analysis is for CA3-CA1 interaction in left hemisphere (CA3-
CA1 L), ipsilateral to local KA injection. Left column shows fre-
quency domain analysis, with coherence (grey), forward component
(red) reverse component (blue) and zero lag component (black). The
dashed horizontal line is the estimated upper 95% confidence limit
for the coherence based on the assumption of uncorrelated signals.
Right column illustrates time domain analysis showing estimated
correlation function, along with null value (dashed horizontal line)
and upper and lower 95% confidence limits based on the assumption
of uncorrelated signals. Further discussion in text.

herence summatively into reverse, zero lag, and forward
components, equation 26, in an analogous manner to that
for the ordinary coherence in Halliday (2015). A comple-
mentary time domain partial correlation function, ρyx|z(τ)
provides a time domain view of the conditional dependence
between x and y with predictor z.

The concept of partial coherence is not new (Tick,
1963), it has been used as a technique to infer neuronal
connectivity that can distinguish common inputs from di-
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Figure 8: Directionality analysis for 1 minute blocks centred at
5.4 (block 6, top), 49 (block 50 centre) and 148 minutes (block 150
lower). Analysis is for hippocampal CA3-CA1 interaction in the
right hemisphere (CA3-CA1 R), contralateral to local KA injection.
Layout, format and confidence limits same as in figure 7. Further
discussion in text.

rect connections (Rosenberg et al., 1989, 1998; Eichler et
al., 2003; Halliday, 2005; Salvador et al., 2005; Medkour et
al., 2009). The novelty here is to incorporate non paramet-
ric directionality measures into partial coherence functions
of order one. This conditioning on a predictor allows the
partial coherence, and its decomposition by direction, to
correctly infer the connectivity in the simulated cortical
neuron networks in figure 1, compare figure 3 with figure
2, by removing the common influence from neuron 1 onto
neurons 2 and 3. Applicability of the framework to time
series follows in a direct way from the discussions on analy-
sis of hybrid data (mixed time series and point process) in
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Brillinger (1974); Halliday et al. (1995). The relationship
between our non-parametric approach and parametric and
other non-parametric approaches is discussed in Halliday
(2015), these comments also apply to the conditional case
considered here. The results using simulated data in ta-
bles 1 and 2 demonstrate that the unconditional and con-
ditional non parametric directionality measures correctly
infer the relationship between simulated time series signals
generated from mixtures of Gaussians. Partial coherence
analysis of spike train data using up to 7 predictors, and
of human EEG using up to 8 predictors is presented in
Halliday (2005) and Medkour et al. (2009), respectively.
Partial coherence analysis of neural spike trains can distin-
guish between direct and indirect connections, increasing
numbers of predictors can give a more accurate representa-
tion of synaptic interactions (Eichler et al., 2003). Future
work will consider how the MMSE pre-whitening step can
be extended to allow partial coherence estimates of order
greater than 1 to be decomposed by direction.

The framework is applied to experimental times se-
ries data using LFP records from bilateral hippocampus
in anaesthetised rat. Figures 5 and 6 show how the direc-
tionality changes over the 211 minute record in response
to local injection of kainic acid to induce epileptiform ac-
tivity after 30 minutes. Figures 7 and 8 illustrate a bi-
variate directionality analysis at fixed points before and
after application of kainic acid and demonstrate system-
atic changes in the pattern and direction of interaction
between CA1 and CA3 LFP signals in each hemisphere in
response to drug injection. Changes in overall correlation
and directionality can be quantified if necessary using the
scalar metrics defined in equation 22. A more detailed
analysis of this data will be presented elsewhere including
non parametric conditional analysis of the intra and inter
hemispheric interactions.

In this paper we have introduced a non parametric ap-
proach to estimate conditional directionality. The analysis
decomposes the partial coherence by direction of interac-
tion, providing a set of scalar measures which decompose
the conditional correlation, R2

yx|z, summatively into three

components: R2
yx|z;−, R

2
yx|z;0 and R2

yx|z;+ representing the
components in the reverse, zero lag and forward directions,
respectively. The estimated partial coherence, |R̂yx|z(λ)|2
is decomposed summatively into three directional compo-
nents: |R̂′

yx|z;−(λ)|2, |R̂′
yx|z;0(λ)|2 and |R̂′

yx|z;+(λ)|2. The
framework includes complementary time and frequency
domain measures. The time domain function, ρyx|z(τ),
which is free from within variable effects, provides a direct
indication of the directionality between processes (x, y) af-
ter removal of the common effects of process z.

Our framework has applicability to both time series
and spike train data. As advances in multielectrode array
recordings generate ever larger multivariate data sets with
LFP and single unit recordings there is a need for appro-
priate signal processing tools to infer network dynamics.
The novel non parametric method presented here has the

flexibility to combine spike train and time series data in a
single framework, and is free from any concerns regarding
the use of low order auto regressive models to represent
electrophysiological signals. The framework should have
broad application to a wide range of data including human
electroencephalography (EEG) and magnetoencephalogra-
phy (MEG).
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Appendix A. Algorithmic descriptions for two and

three variable cases.

This appendix includes algorithmic level descriptions
of the two variable (Halliday, 2015), R2

yx, and three vari-
able, R2

yx|z, analyses and their related quantities: direc-
tional metrics, frequency domain functions and time do-
main functions. The data vectors are assumed to have
length R, where R = LT , the analysis uses only complete
segments. The first step in both cases is the calculation
of the discrete Fourier transform of the disjoint sections of
length T over all L segments. This is indicated in line 3 of
Algorithm 1 and line 3 of Algorithm 2 with the statement
- Calculate: dTx (λ, l), . . .. Summations are indicated using
the notation sum{·}, where necessary the range of the in-
dex is indicated after this, for example, all τ in line 16, or
τ < 0 in line 17 of Algorithm 1. Forward and inverse dis-
crete Fourier transforms calculated with an fft algorithm
are indicated using the notation fft{·} and ifft{·}, respec-
tively. Any reduced range in the independent variable is
indicated using the same notation as the summation, for
example, τ < 0 in line 20 of Algorithm 1 indicates an FFT
calculated using only negative values of τ , but using the
same Fourier frequencies, all discrete Fourier transforms
have length T , using zero padding where necessary. These
algorithm descriptions follow the convention in MATLAB
with respect to scaling factors in forward and reverse fft
algorithms, namely a factor of T−1 is associated with the
reverse transform, no scaling factor is included in the for-
ward transform.
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Algorithm 1 Unconditional directionality: R2
yx

Input: x, y, T
Output: Metrics: R̂2

yx, R̂
2
yx;−, R̂

2
yx;0, R̂

2
yx;+

Output: Frequency domain: |R̂yx(λ)|2, |R̂′
yx;−(λ)|2,

|R̂′
yx;0(λ)|2, |R̂′

yx;+(λ)|2
Output: Time domain: ρ̂yx(τ)
1: L← R/T
2: for l = 1 to L do

3: Calculate dFT: dTx (λ, l), d
T
y (λ, l)

4: end for

5: f̂xx(λ)← (2πLT )
−1× sum

{

|dTx (λ, l)|2
}

, l = 1 . . . L

6: f̂yy(λ)← (2πLT )
−1× sum

{

|dTy (λ, l)|2
}

, l = 1 . . . L

7: ŵxx(λ)← f̂xx(λ)
−1/2

8: ŵyy(λ)← f̂yy(λ)
−1/2

9: for l = 1 to L do

10: dwT
x (λ, l)← dTx (λ, l)× ŵxx(λ)

11: dwT
y (λ, l)← dTy (λ, l)× ŵyy(λ)

12: end for

13: f̂w
yx(λ) ← (2πLT )−1× sum

{

dwT
y (λ, l)× dwT

x (λ, l)
}

,

l = 1 . . . L
14: |R̂yx(λ)|2 ← |f̂w

yx(λ)|2

15: ρ̂yx(τ)← ifft
{

f̂w
yx(λ)

}

16: R̂2
yx ← sum

{

ρ̂yx(τ)
2
}

, all τ

17: R̂2
yx;− ← sum

{

ρ̂yx(τ)
2
}

, τ < 0

18: R̂2
yx;0 ←

{

ρ̂yx(0)
2
}

19: R̂2
yx;+ ← sum

{

ρ̂yx(τ)
2
}

, τ > 0

20: f̂ ′
yx;−(λ)← fft{ρ̂yx(τ)}, τ < 0

21: f̂ ′
yx;0(λ)← ρ̂yx(0)

22: f̂ ′
yx;+(λ)← fft{ρ̂yx(τ)}, τ > 0

23: Syx(λ)← |f̂ ′
yx;−(λ)|2 + |f̂ ′

yx;0(λ)|2 + |f̂ ′
yx;+(λ)|2

24: |R̂′
yx;−(λ)|2 ←

(

|f̂ ′
yx;−(λ)|2/Syx(λ)

)

× |R̂yx(λ)|2

25: |R̂′
yx;0(λ)|2 ←

(

|f̂ ′
yx;0(λ)|2/Syx(λ)

)

× |R̂yx(λ)|2

26: |R̂′
yx;+(λ)|2 ←

(

|f̂ ′
yx;+(λ)|2/Syx(λ)

)

× |R̂yx(λ)|2
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Algorithm 2 Conditional directionality: R2
yx|z

Input: x, y, z, T
Output: Metrics: R̂2

yx|z, R̂
2
yx|z;−, R̂

2
yx|z;0, R̂

2
yx|z;+

Output: Frequency domain: |R̂yx|z(λ)|2, |R̂′
yx|z;−(λ)|2,

|R̂′
yx|z;0(λ)|2, |R̂′

yx|z;+(λ)|2
Output: Time domain: ρ̂yx|z(τ)
1: L← R/T
2: for l = 1 to L do

3: Calculate: dTx (λ, l), d
T
y (λ, l), d

T
z (λ, l)

4: end for

5: f̂zz(λ)← (2πLT )−1× sum
{

|dTz (λ, l)|2
}

, l = 1 . . . L

6: f̂xz(λ) ← (2πLT )−1× sum
{

dTx (λ, l)× dTz (λ, l)
}

, l =

1 . . . L
7: f̂yz(λ) ← (2πLT )

−1× sum
{

dTy (λ, l)× dTz (λ, l)
}

, l =

1 . . . L
8: for l = 1 to L do

9: dTx|z(λ, l)← dTx (λ, l)−
(

f̂xz(λ)/f̂zz(λ)
)

× dTz (λ, l)

10: dTy|z(λ, l)← dTy (λ, l)−
(

f̂yz(λ)/f̂zz(λ)
)

× dTz (λ, l)

11: end for

12: f̂xx|z(λ)← (2πLT )−1× sum
{

|dTx|z(λ, l)|2
}

, l = 1 . . . L

13: f̂yy|z(λ)← (2πLT )
−1× sum

{

|dTy|z(λ, l)|2
}

, l = 1 . . . L

14: ŵxx|z(λ)← f̂xx|z(λ)
−1/2

15: ŵyy|z(λ)← f̂yy|z(λ)
−1/2

16: for l = 1 to L do

17: dwT
x|z(λ, l)← dTx|z(λ, l)× ŵxx|z(λ)

18: dwT
y|z(λ, l)← dTy|z(λ, l)× ŵyy|z(λ)

19: end for

20: f̂w
yx|z(λ) ← (2πLT )−1 ×
sum

{

dwT
y|z(λ, l)× dwT

x|z(λ, l)
}

, l = 1 . . . L

21: |R̂yx|z(λ)|2 ← |f̂w
yx|z(λ)|2

22: ρ̂yx|z(τ)← ifft
{

f̂w
yx|z(λ)

}

23: R̂2
yx|z ← sum

{

ρ̂yx|z(τ)
2
}

, all τ

24: R̂2
yx|z;− ← sum

{

ρ̂yx|z(τ)
2
}

, τ < 0

25: R̂2
yx|z;0 ←

{

ρ̂yx|z(0)
2
}

26: R̂2
yx|z;+ ← sum

{

ρ̂yx|z(τ)
2
}

, τ > 0

27: f̂ ′
yx|z;−(λ)← fft

{

ρ̂yx|z(τ)
}

, τ < 0

28: f̂ ′
yx|z;0(λ)← ρ̂yx|z(0)

29: f̂ ′
yx|z;+(λ)← fft

{

ρ̂yx|z(τ)
}

, τ > 0

30: Syx|z(λ)← |f̂ ′
yx|z;−(λ)|2 + |f̂ ′

yx|z;0(λ)|2 + |f̂ ′
yx|z;+(λ)|2

31: |R̂′
yx|z;−(λ)|2 ←

(

|f̂ ′
yx|z;−(λ)|2/Syx|z(λ)

)

× |R̂yx|z(λ)|2

32: |R̂′
yx|z;0(λ)|2 ←

(

|f̂ ′
yx|z;0(λ)|2/Syx|z(λ)

)

× |R̂yx|z(λ)|2

33: |R̂′
yx|z;+(λ)|2 ←

(

|f̂ ′
yx|z;+(λ)|2/Syx|z(λ)

)

× |R̂yx|z(λ)|2
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