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CORRIGENDUM

Corrigendum: Spectral thresholding quantum tomography for low
rank states (2015New J. Phys.17 113050)

Cristina Butucea1,Măda ̆linGuta̧ ̆2 andTheodoreKypraios2
1 Université Paris-EstMarne-la-Vallée, LAMA(UMR8050), UPEMLVF-77454,Marne-la-Vallée, France
2 University of Nottingham, School ofMathematical Sciences, University Park,NottinghamNG7 2RD,UK

In this corrigendum to the paper Butucea et al (2015New J. Phys. 17 113050)we point out an error in one of the
theoretical results describing the upper bound to the operator norm error of the least squares estimator.We
provide a corrected version of the upper boundwith a new convergence rate, and discuss the implications for
other results which rely on the above upper bound.

Proposition 1 as stated in the paper is incorrect, in particular the dependence of the upper bound ( )n 2 on
the number of atoms k is not valid. The error lies in the evaluation of the upper boundW of the variance term in
the concentration bound. Belowwe provide a new version of proposition 1with a corrected rate ( )nc

2 replacing
the rate ( )n 2 stated in the paper. Ignoring the logarithmic factors, the new upper bound scales as N3k

compared to erroneous rate N2k , where k is the number of atoms and =N n3k is the total number of
measurements.We note that although the corrected bound is weaker that the one claimed in the paper, it is still
an improvement compared to the previously known bound [2]which scaled as N4k .

Wewill nowdiscuss the implication of the correction to subsequent results in the paper. Proposition 2,
theorem1, corollary 1, and theorem 2 establish error rates for estimators obtained by normalising, penalising or
thresholding the least square estimator. The proofs of these results use the operator norm error rate ( )n 2 as a
generic expression, and are therefore not affected by its concrete dependence on the number of atoms k.
Therefore proposition 2, theorem1, corollary 1, and theorem2hold truewhen the operator norm rate is taken
to have expression ( )nc

2 in proposition 1 below. In particular, the upper bounds on the Frobenius square norm
error in corollary 1 and theorem2, will scale as · ( )n e =r r N3c

k2 rather than =rd N r N2k . The remaining
results including the lower bound in theorem 3 and the simulation results are independent of proposition 1 and
do not require any correction.

Proposition 1. Let ( )rn
ls be the linear estimator of r. Then, for any e > 0, the following operator norm inequality

holds, for n large enough, with probability larger than e-1 under r
( )( )  r r n e- ,n

ls
c
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with ≔ ·N n 3k the total number ofmeasurements. The same bound holds when ( )=k k n as long as ( )n e  0.

Proof of proposition 1.Note that the empirical frequencies canwritten as ( ∣ ) ( )= å =f I Xo s o
n i is
1

, , where the

randomvariables X is, are independent for all settings s and all i from1 to n. To estimate the risk of the linear
estimator wewrite
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whereW is, are independent and centeredHermitian randommatrices.Wewill apply the following extension of
the Bernsteinmatrix inequality [1] due to Tropp, see also [4, 6].

Proposition 2 (Bernstein inequality, Tropp). Let ¼Y Y, , n1 be independent, centered, ´m m Hermitian random
matrices. Suppose that, for some constants >V W, 0 we have  Y Vj , for all j from 1 to n, and that

( )  å Y Wj j
2 . Then, for all t 0,

( )   + + -
+

⎛
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t

W tV
... 2 exp

2

3
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2

In our setup,W is, play the role ofYj.We bound  W Vis, for all s and i and ( ) * å W W Wi i is s s, , , ,
whereV W, are evaluated below.Wehave
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Now, denote by ( ∣ ) ( ∣ )( ) s= å - -B Ao s o s2 3k d
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In the last inequality we used that

( ) ≔ ( ( ) ( )) ( ∣ ) ( ∣ ) · ( ∣ )d= = ¢ = - ¢¢ ¢I X I X p p ps o o o s o s o sCov Cov ,o o s s o o, ,1 ,1 ,

which implies the following inequality between ´2 2k k matrices: ( ) ( ) ps sCov where ( )p s is the diagonal
matrix with elements ( ) ( ∣ )d=¢ ¢p ps o so o o o, , .

By expressing ( ∣ )B o s in terms of sb as above, we get
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Before giving the upper boundwe introduce some combinatorial notationswhichwill be used below. Let
{ }Î x y z Ib , , , k and recall that ≔ { } { }= ÌE i b I k: 1 ,...,ib .We say that b agrees with a setting s if bj= sj for

all Îj E c
b. In this case b is completely determined by the set Eb, for afixed s. This fact will be used to replace the

sums over b and ¢b with those over Eb and ¢Eb inT. Indeed since ( ∣ )A o sb is proportional to dÏj E b s,j jb
, the sums

over b and ¢b inT are restricted to sequences which agree with s.We denote by
≔ ( ⧹ ) ( ⧹ )Ç È¢ ¢ ¢E E E E E Eb b b b b b and Ç ¢E Eb b the symmetric difference and respectively the intersection of Eb

and ¢Eb .With these notations we have

( ∣ ) ( ∣ ) ·s s s=¢ ¢
Î D ¢

A A oo s o s
j E E

jb b b b g

b b

where ( )= D ¢E Eg g s, b b is the sequencewith ( )= D ¢E E E c
g b b , and it agrees with s.With these notationswe

have
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In the last expressionwe rewrite the sumover settings s as a double sumover s̃ and s̃c where s̃ is the restriction of
s to D ¢E Eb b and s̃c is the restriction to ( )D ¢E E c

b b . Note that ( )D ¢E Eg s, b b depends on s only through the
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In the second equality we have used formulas (2.3) and (2.6) in the paper [3], to evaluate the interior sumas a
Fourier coefficient of ρ. In the third equality we replaced the sumover s̃ with an equivalent sumover sequences
g such that ( )= D ¢E E E c

g b b .
Note that any pair ( )¢E E, is uniquely determined by three disjoint subsets, ( ⧹ ⧹ )Ç¢ ¢ ¢E E E E E E, , , or

equivalently by the symmetric difference ≔ D ¢D E E togetherwith ≔ ⧹ ¢ ÌF E E D and ≔ Ç ¢M E E . The sum
over ¢E E, in (2) is computed by summing over all triples D F M, , satisfying the above conditions:
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Indeed, the sumover ÌF D gives a factor 2 D since the summands do not depend on F. Next, the sumoverM is
performed by summing over the size ∣ ∣=m M and the binomial coefficient represents the number of setsM of a
given size.
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Thefinal sumgoes over subsetsD and over sequences g such that =E Dc
g , and is similar to the Fourier

decomposition of ρ except that each terms is weighted by the factor -5 D . In fact, a closer inspection shows that
theweighted sum is nothing but the output state of a product of depolarising channels acting in parallel in the
state ρ, where an individual depolarising channel is defined by
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For an arbitrary quantum channel  , let ( ) ≔ ( ( ) )n ttT Tsup Trp
p p1 be its p-norm,where the supremum is

taken over all input states τ; in particular for  ¥p this becomes the¥-norm ( ) ≔ ( ) n tt¥ T Tsup . For the
depolarising channel  defined above, the¥-norm can be computed easily by applying the channel to an
arbitrary pure state and is equal to ( )n =¥ 3 5.Moreover, it is known [5] that the depolarising channel has
multiplicative p-norm, i.e. ( ) ( ) n n=Ä ,p

k
p

k which implies that ( ) ( )  rÄ 3 5k k. Together with (3) this
gives upper bound
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