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Abstract This study provides an extended approach to the mathematical simulation of thin-film flow on a
flat inclined plane relevant to flows subject to high surface shear. Motivated by modelling thin-film structures
within an industrial context, wave structures are investigated for flows with moderate inertial effects and
small film depth aspect ratio e. Approximations are made assuming a Reynolds number, Re ~ O (5_1) and
depth-averaging used to simplify the governing Navier-Stokes equations. A parallel Stokes flow is expected
in the absence of any wave disturbance and a generalisation for the flow is based on a local quadratic profile.
This approch provides a more general system which includes inertial effects and is solved numerically. Flow
structures are compared with studies for Stokes flow in the limit of negligible inertial effects. Both two-tier
and three-tier wave disturbances are used to study film profile evolution. A parametric study is provided for
wave disturbances with increasing film Reynolds number. An evaluation of standing wave and transient film
profiles is undertaken and identifies new profiles not previously predicted when inertial effects are neglected.
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1 Introduction

Oil films on the internal surfaces of an aero-engine bearing chamber are a primary mechanism in removing
heat from the chamber as oil is continuously collected, externally cooled and recycled. In a generic bearing
chamber, the oil film is typically driven by a strong shearing airflow, associated with high-speed rotating
parts within the chamber. Inertial effects, relevant to high-speed applications, have been included within a
recent two-dimensional film flow formulation [9]. Using this approach, leading nonlinear inertial effects are
retained to analyse more general flow patterns and to provide comparison with existing thin-film asymptotic
studies. Importantly the study aims to investigate the effect of inertia on some typical thin-film solutions,
obtain greater insight into existing thin-film solutions and seek more general film solutions.

Lubrication theory is typically used to model general thin-film flows, based on the ratio of film thickness
to a typical geometric length scale being sufficiently small and the effects of inertia negligible; i.e. taking
the limit as the film Reynolds number tends to zero. However, for films subject to a high surface shear, the
inertial effects at leading order may have a substantial impact in modifying high-speed film profiles, providing
a general smoothing effect on the film profiles, extending the range of existing film solutions and forming
possible new film profiles. Recent studies [9] within a cylindrical geometry demonstrate that modified wave
structures are predicted on including film inertial effects into a film lubrication formulation.

Numerous studies involving flow on an inclined plane range from near-horizontal flows [24] to vertical
falling films [4, 5, 14]. Previous studies, for example [17, 23], for shear driven flow on an inclined plane
describe wave structures depending on their initial profiles as well as uniform upstream and downstream
boundary conditions. Initial profiles were chosen to be of a two-tier configuration, with either the upstream
or downstream film height the higher of the two. Additionally various three-tier configurations may exist in
which the central section may be the highest or lowest of three heights or a successive increase or decrease
in the three heights, as shown later in figures 4 and 5.

It is common to make thin-film approximations of the Navier-Stokes equations, using the ratio ¢ of film
thickness and typical length scale of disturbances of the flow; typically the long wave equation or the integral
boundary layer approach. Often used for describing falling films, the long wave equation, and other similar
models, are derived using a perturbation expansion method for the stream function, determined to O(e), and
then substituted into the surface kinematic boundary condition. An early publication using this method by
Benney [2] gives a single evolution equation for film thickness, however this has been criticised as predicting
unrealistic wave profiles as the wave amplitude increases [14], as well as leading to finite-time singularities
[20, 21].



The integral boundary layer model takes the full Navier-Stokes equations and applies a thin-film assump-
tion, leading to neglecting several terms. A local velocity profile, assumed parabolic by many, including
[5, 14, 21], is then substituted into this thin-film model. The Kérmédn-Polhausen depth-averaging technique
can be applied, integrating throughout the thickness of the film to reduce the dimensionality of the system,
achieving what is commonly referred to, in literature, as the Shkadov model. The Shkadov model, too, has its
criticisms. It does not predict the Hopf bifurcation, necessary to foresee the formation of periodic waves on
uniform thickness film flow on inclined planes [14]. Ruyer-Quil et al. [17] claim that fluid films in a moving
frame of reference flowing down an inclined plane are unstable against waves when their thickness becomes
larger than a specified threshold value hn. = (3 RC)%7 R. being a critical Reynolds number. The critical
Reynolds number is given by Cheng and Chang [6] as R, = cot# who claim that periodic forcing applied
at the inlet leads to disturbances propagating downstream whilst growing in amplitude - this happens at
Reynolds numbers larger than critical [16]. An example of sinusoidal waves at the inlet which have evolved
into much larger amplitude solitary pulses is given in [5]. Ruyer-Quil et al. [18] also claim that there are
limitations to the Shkadov model deriving from the lack of freedom in the description of the hydrodynamic
fields, due to the nature of the depth-averaging technique. Notably, the simplification has the benefit of
reduced computational cost on reducing the dimensionality of the Navier-Stokes equation.

Furthermore, thin-film flows having free surface shock structures are known to form capillary ripples at
the front of the shock. In some cases, breakdown of the numerical results can occur in the simulation of
Shkadov models due to over-prediction of capillary wave amplitudes, resulting in very thin film thickness.
The accuracy of the Shkadov model in predicting capillary ripples is shown to decrease with increasing
Reynolds number (see figures 4 and 5 of [18]), with larger than actual capillary waves being predicted.
Indeed, an essential assumption of this model concerns the number of degrees of freedom of polynomials
used to approximate the crosswise distribution of the streamwise velocity. A study by Malamataris et al.
[13] observes that a self-similar parabolic profile provides a good approximation of the velocity field in regions
where deviations are small, but also concludes that there is a change of behaviour around the region in front
of a wave hump. Computed velocity profiles with backflow are depicted in figure 7 of [13], with potential
inflexion points which could indicate that a cubic profile may be a more suitable approximation in this
region. This is in agreement with work by Samanta et al. [20], who conclude that in a nonlinear regime,
the backflow phenomenon is shown to be intensified by a no-slip condition enforced between the fluid and
the plane. Backflow in the capillary region is investigated experimentally by Dietze et al. [7]. It should also
be noted that Malamataris et al. comment on a parabolic profile, which is the exact solution of uniform
film flow, as making the problem analytically tractable. Studies by Prokopiou et al. [16] and Yu et al. [25]
extend the Shkadov model in order to allow for higher order description of film profiles relevant at higher
Reynolds numbers. Referred to as the second-order boundary layer model, this retains terms of O(£?), and
hence the modified model includes additional viscous terms, tangential and normal stress conditions and
pressure variations across the film.

An investigation of travelling wave solutions on an inclined plane by Benilov [1] describes a depth-averaged
approach based on the Stokes equations, i.e. neglecting inertial effects. It is suggested in this study that the
model can be extended with a term accounting for surface tension.

The above mentioned literature predominantly investigate gravity driven film flow. Several other studies
take similar approaches but with the imposition of surface shear. Kay et al. [9] study two-dimensional thin-
film rimming flow within a fixed cylindrical geometry subject to surface shear. Extending previous leading-
order thin-film models, inertial effects are included relevant to very high surface shear and correspondingly
high-speed film flow applications. Using a hydraulic model approach enabled leading non-linear inertial
effects to be retained. Kay et al. use a local quadratic velocity profile for its consistency with lubrication
theory, but also extended to a cubic velocity profile, where the extra profile parameter permits modelling of
wall roughness effects. Important to this study, the effects of inertia on some typical rimming-flow solutions
provide new and greater insight into existing film solutions.

Samanta [19] investigates the mechanism of instability in shear imposed flow on an inclined plane. The
geometry of the problem studied is very similar to the model we propose but with disturbances generated
at the inlet which evolve into periodic travelling waves. There are also significant differences in the order of
scaling used - the dimensionless governing equations include diffusive terms which, as will later be shown,
are disregarded in our formulation due to the nature of the thin-film approximations. Another important
comparison is the magnitude of the Reynolds number which differs from what we term the reduced Reynolds
number by €. The avenue of exploration in [19] is predominantly concerning the linear instability threshold



and recovering the critical Reynolds and Froude numbers for the shear-imposed falling film. Although we
will not be conducting any formal stability analysis, section 5 contains some discussion about the evolution
of perturbations in order to characterise waves structures.

A numerical study based on the Stokes equations using a boundary element approach was given by Shuaib
et al. [23] to determine the different patterns of possible wave structures which can be observed on a thin
film flowing on an inclined plane when subject to a constant surface shear, and categorises conditions for
different types of film profiles. Studies by Bertozzi et al. [3] proposed that there are several different types
of shock waves that connect films of different heights on an inclined plane when the flow is driven by surface
shear and gravity. Solutions with more than one type of shock wave were also reported, dependent on the
initial configuration of the flow. Bertozzi reports three different types of wave profiles, namely compressive
shocks, undercompressive shocks and rarefaction waves. In order to obtain the classification of the type of
wave, a shock speed S, given by the Rankine-Hugoniot condition
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is compared with the velocity Fy of propagation of small disturbances. In (1.1) Hi and Q4 are the fluid
depth and flux respectively, with + and — referring to values either side of the shock. A compressive shock
satisfies the Lax shock inequalities F, < S < F_, assuming travel from left to right; a non-classical shock
satisfies the inequalities S > F_ and S > F, and is also known as an undercompressive shock. The third
type of structure is a rarefaction wave - a smooth, continuous profile gradually joining H_ and H,.

This study investigates the importance of inertia on possible two-dimensional film profiles on an inclined
plane under constant surface shear. The geometry is illustrated in figure 1, where uniform flow solutions
can exist corresponding to three possible conjugate height and wave solutions. Validation of the modelling
and numerical calculations will be sought from comparisons with previously published literature, including
Shuaib [23] and Bertozzi [3], in the limit of negligible inertial terms. To investigate leading order inertial
effects on the film profile, especially in regions where the film profile changes rapidly, modelling will be
restricted to at most moderate Reynolds numbers (see Kay et al. [9]). Depth-averaging as used by Benilov,
Bertozzi, and Kay [1, 3, 9] and many other authors, is used to reduce the governing equations to fewer
dependent variables and leads to Shkadov-type integral boundary layer model upon adoption of an assumed
velocity profile. A pair of coupled partial differential equations for film thickness and local film flux result.

It is noted that there exists some criticisms of an integral boundary layer approach. Some of these
problems arise when investigating surface waves periodically forced at the inlet, such as in [5]. The other
issue raised with the Shkadov model is that capillary ripples at the base of the main shock are exaggerated
and can in some cases cause the numerical simulation to exhibit a singularity. The present work investigates
moving shock structures defined between the thickness of different uniform flow conditions. However, as
we will show later in section 5, the inclusion of surface shear decreases the capillary wave amplitudes while
increasing their wavelength, allowing the prediction of wave profiles with shock structures and concurrent
front capillary ripples at moderate Reynolds number with the use of Shkadov depth-averaged models.

For flow down an inclined plane, a constant-height exact basic flow configuration with quadratic lon-
gitudinal velocity profile, known as the Nusselt solution, is considered far away from any shock structure.
For a specified steady value of flux, this can provide up to three physically valid conjugate Nusselt heights.
Additional solutions with transitions from the conjugate states may be able to coexist to form a piecewise
steady film profile. Shuaib has investigated both travelling wave and transient film profiles whilst neglect-
ing the effects of inertia. A major aim of this study is to extend current studies through investigating the
impact of inertial terms present in the Navier-Stokes equations, on the thin-film shock structures formed on
an inclined plane.

In section 2 we look at the formulation of the mathematical model, before progressing to evaluate this
model in the context of a uniform Stokes flow in section 3. Application of thin film approximations are used
and analysis of the resulting depth-averaged approach is provided in section 4 along with a brief summary
of the numerical solver. Numerical results corresponding to enhanced understanding of existing and new
features are included section 5. Concluding remarks in section 6 provide an evaluation of limiting solutions
for moderate Reynolds number film flow in comparison with Stokes flow solutions.



2 Model formulation

A Cartesian coordinate system is used to describe the flow down a flat, inclined plane with the velocity
vector u = (@, ), where @ is the component of the velocity in the Z-direction and v is the component in
the g-direction. The angle of inclination, 6, is measured in the anticlockwise direction from the horizontal,
and so the angle depicted in figure 1 would be negative. The flow is subject to a constant surface shear 7
opposing gravity and a pressure p, at the free surface with typical wave speed Uy. For this study, we choose
a transformation to a moving coordinate system with the plane moving with fixed speed Uy in the negative
Z-direction, as shown in figure 1.

The film is assumed to be incompressible, with constant density p and constant viscosity p. Gravity is
acting with components g = (gsinf, —gcosf). The unit normal vector i and the unit tangential vector t to

the free surface are
1

f=(14h2) "7 (=hs,1), t=(1+h2)"2(1,hy). (2.1)

The incompressible Navier-Stokes equations are taken as the governing equations - conservation of mass is
described by

and, taking v = %, the conservation of momentum is given by

No-slip and no-penetration boundary conditions are imposed at the wall giving
u=-Up and =0 on y=0 (2.5)

and the kinematic condition on the free surface gives

hi +thz; =0 on §=h(z,1). (2.6)

Taking the surface of the film to have surface tension o, a balance of forces on the interface between liquid
and gas, when written in component form [17], leads to the normal stress boundary condition,
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ohzz (L4 h2) 2 4+ 2u(1 4+ hg) "2 (hs (g + 05) — h2tz —0y) +P—pa =0 on §=h (2.7)

and the tangential stress condition,

T =2phs (0 — Uz) + p (1 —h2) (4; +v;) on §=h. (2.8)

The model is non-dimensionalised using the following choice of scalings:

_ h U U
h = hoh, T = 70377 y = hoyv u = UOU, v = ‘C:UOUa p = Q}% p_(l. = Mpaa
€ ehg ehg
- ho, 5 _ U
t=—t,0=20 d =—7. (29
ot and T P 7. (2.9)

Uy is the speed of the wall, hq is a typical height of the film and % is an Z-lengthscale, where ¢ < 1 is the
ratio of vertical film thickness to the horizontal lengthscales associated with a wave disturbance. This choice
of non-dimensionalisation is typical of a thin-film model.

The Navier-Stokes equations (2.2)-(2.4) in the non-dimensional variables are

Uy + vy =0, (2.10)
eRe (ug + wtty + vuy) = —py + €Uy + Uy + Asin b, (2.11)
e3Re (vy + uv, + VUy) = —py + e gy + E2vyy —eAcosb, (2.12)
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where the film Reynolds number Re = UOT"O is the ratio of inertial to viscous forces and A = ’:L g(?(? = %. The
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Froude number, Fr = ;]Too’ is the ratio of inertial to gravitational forces. The non-dimensional form of the

kinematic boundary condition (2.6) is
hi +uh, =v on y=h (2.13)
and the no-slip and no-penetration conditions (2.5) become
u=-1 and v=0 on y=0. (2.14)

The normal stress boundary condition (2.7) gives

3

€ 3 _
ghm(l +e2h,2) % +2(1 + 2hy,) 2 (e%ha (uy + %05) — e*hiuy — e®vy) +p—pa =0 on y=h. (2.15)
The capillary number, Ca = “?U", relates the effects of viscosity to surface tension across the interface between

a liquid and a gas, although in various other formulations [14, 21], the Weber and Kapitza numbers have
been included as a similar comparison between surface tension and other fluid forces. Gjevik [8] takes the
Weber number to be of O(¢72), corresponding to a choice of Capillary number in our formulation of O(g~2)
- resulting in an overall surface tension term of O(e). The tangential stress condition (2.8) becomes

T =22h, (vy — uy) + (1 — 52h$2) (uy + EQUI) on y=h. (2.16)

3 Uniform flow down an inclined plane
In the context of Stokes flow, we take the limit Re < 1 and the governing equations become

Uy + vy = 0,
—Dz + ugy + Uyy + Asinf =0

—py + €040 + %0y — eXcos O = 0.

Thin-film flow studies evaluate equations (3.1)-(3.3) in the context of lubrication theory, with ¢ < 1.
We consider unidirectional uniform flow by taking the component of the velocity perpendicular to the plane
v = 0 at leading order. Thus, assuming no variation in the z-coordinate direction, (3.2) is reduced to

Uyy + Asingd = 0. (3.4)

Together with the no-slip boundary condition (2.14) on the lower wall and the surface shear condition (2.16)
on the free surface, which becomes
uy, =7 on y=~h (3.5)

when € < 1, this yields a quadratic velocity profile for the component of film velocity parallel to the inclined
plane

1
u=7TYy+ A <hy— 2y2> sinf — 1. (3.6)
The film flux is calculated by integrating the velocity profile, ¢ = foh udy, giving

AR3 Th?
¢=-3 sin g + 5 h. (3.7)
For a fixed flux and for specified values of A,  and 7, the cubic polynomial (3.7) yields up to three possible
conjugate heights for a uniform profile. In order for three distinct values of h satisfying the same ¢, the range
of values which surface shear 7 may take is limited, as can be seen in figure 2. The curves for 7 = 1.8320
and 7 = 2.6171 (to 4 d.p.) represent limiting case scenarios which result in two distinct heights for a given
flux, beyond which there is only a single height possible.



4 Thin-film calculation at moderate Reynolds numbers

4.1 Approximations at Re ~ O (¢71)

Thin films subject to strong surface shear may experience moderate inertial effects at leading order on taking
the following formal approximations:

e<l, Re~O(e7) and A~ O(). (4.1)

These lead to moderate values of Reynolds number that can be compared to classical lubrication theory [23],
where ¢ < 1 and Re — 0. The Navier-Stokes equations (2.10)-(2.12), to O(e), are

Uy + vy = 0, (4.2)
Re" (us + uug + vuy) = —py + uyy + Asind, (4.3)
Dy +eAcosf =0, (4.4)

where Re* = ¢ Re is the reduced Reynolds number. The no-slip and no-penetration conditions remain.

In considering the normal stress boundary condition (2.15), we retain the surface tension term involving
hso although it is negligible in the majority of the flow as it can become comparable to the other terms in
regions of any shock transitions between conjugate height solutions and therefore may have a dominant local
effect on the flow. This approach is consistent also with other thin-film studies [8, 9, 14] and the normal
stress condition (2.15) is approximated as

3

%haz‘r"_p_pa:o on y:h (45)

The tangential stress boundary condition (2.16) under the above approximation is

T=u, on y=h. (4.6)

4.2 Integral boundary layer model

Depth-averaging is used to reduce the system of equations by integrating (4.2)-(4.4) from the wall at y =0
through to the surface of the film at y = h. Kay [9] uses a similar technique to remove radial dependence in
a film flow within a polar coordinate system.

Integrating the continuity equation (4.2) and incorporating the no-slip, no-penetration and kinematic
boundary conditions gives

where ¢ is the dimensionless volume flux. Integrating equation (4.4) and applying the normal stress boundary
condition (4.5) gives the pressure within the film as

3

P =Dpa+eA(h —y)cosb — %hm. (4.8)

Depth-averaging of equation (4.3), after some algebraic manipulation, gives

g3

G s (4.9)

h
Re* (qt+88;v/0 u2dy> = Ahsin® + 1 — uy|,_, — eAhhy cosf +

We now assume a quadratic form of the film profile similar to Nguyen and Balakotaiah [14], who use a
stream function of the form ¥ (x,y,t) = A(x,t)y*> + B(x,t)y>. A quadratic general velocity profile at O(1)
is written as

u = ag+ a1y + asy?, (4.10)

where the coefficients ag, a1 and as, which may vary with position in the plane x, can be calculated using
the surface shear condition on y = h and the no-slip condition on y = 0, with volume flux ¢ and shear 7.
Application of these conditions gives expressions for the profile coefficients as

3 T 3q 3 3T 3q

a():_l, 0/1:7_5"'? and GQZ—W-FE—% (411)



The profile (4.10) is used to evaluate the integral term in equation (4.9). By substitution and simplification
of the associated algebra, (4.9) can be written as
3 31t 3¢ 3

* . 13
Re* (¢t + I1hy + I2q,) = Ahsinf — 7 + 5 T eAhcosBh, + ahhmm. (4.12)

I, and I, are functions of h, g and 7, given by

I 4h3T 4 hi71? — 4842 + 2qh*T + 8h?

8h + h2T + 48¢
1 = .

oh2 and Ip = == (4.13)

Equations (4.7) and (4.12) compare directly with the coupled partial differential equations of the Shkadov
model [22]. As commented in the introduction, the system of equations (4.7) and (4.12) is used here for
the numerical simulation of moving shock structures on thin films that are subject to imposed exterior
surface shear. Although differences between the present formulation and the Shkadov model are slight, their
implications on the numerical simulations reported here are significant. A key difference is that the Shkadov
model does not incorporate surface shear (7 = 0). The inclusion of surface shear, as shown later in section
5.1, leads to stabilisation of the capillary ripples and allows for numerical simulations at higher Reynolds
numbers.

4.3 Film evolution equations

Following from the previous section, film height and film flux are given from solving

3
Re* (q; + I1hy — Ishy) — Ahsin6 + % - 377 + % + eMhcos Ohy — &hhmz =0 (4.14)
and
ht + g, = 0. (4.15)
These are subject to general constant far-field boundary conditions
h=h,qg=q as x— —0o0 (4.16)
and
h=hy,g=¢ as x— 0. (4.17)

4.4 Numerical computation

The governing equations (4.14)-(4.15) and associated boundary conditions are solved numerically on a com-
putational domain 0 < z < L, discretised by n — 1 interior nodes x;, for i = 1...n — 1; domain selection is
sufficient for flow at x¢ and x,, to be assumed uniform. Values of ¢ and h are given at g and z,,.

A finite difference approach is used to calculate the approximate values of the spatial derivatives at each
of the interior points. A linear upwind differencing scheme (LUDS) [15] provides an approximation of the
first derivative of film height, h,, and for the third derivative h,,, we use a second-order central difference.

It is assumed that the film profile is sufficiently level at the boundaries of the computation domain. We
employ an implicit first-order Euler method [11] to approximate time variation in both the momentum and
continuity equations. This yields a system of 2n — 2 equations for values of grid variables hq, ..., h,_1 and
q1,---,qn_1- An iterative solver based on Newton’s method is used to find a solution at each time-step. As
with other Newton method based iterative procedures, we anticipate quadratic convergence given a suitable
initial guess. The initial profile for the first time-step is chosen as a smoothed function dependent on values
of h given by the cubic equation (3.7), and subsequent initial profiles for Newton’s method are taken as the
converged solution from the previous time-step.

5 Film profile solutions

Solutions obtained from the inertial model developed in this study may be validated against the non-inertial
limiting case film profiles obtained in previous literature. Shuaib [23] has investigated a similar problem in
the context of Stokes flow. Taking Re = 0 gives an expression for flux,

h? ( 3 3T oh &3 83h)

q= 3 AMsinf — — + — —eMhcos@— + —h

h 2 dr ' Ca 0x3 (5.1)



and insertion of (5.1) into (4.15) yields, in non-dimensional form,

oh 0 (1 5, 1 5. 30 (30 0 (1 | 4 oh oh
5 Jr@x <27h + 3)\h s1n0> = " 3Caon h 9 Jr@x 35)\h Cosgaa: Jr@x' (5.2)

Equation (5.2) is comparable to the evolution equation for the film thickness h in [23] given that the appro-
priate parameter values are chosen. Hence, solutions obtained by Shuaib should correspond to setting the
reduced Reynolds number to be zero and choosing our parameters as

A=1Ca=1x10"% 7 =2.14914, ¢ = —0.2068 and e=1x 1072 (5.3)

A reference velocity corresponding to the dimensional velocity of the wall is calculated by inserting
the dimensional equivalent of the cubic expression for flux within a uniform flow (3.7) into the Rankine-
Hugoniot condition (1.1). The flux in (1.1) corresponds to a stationary reference system, and so we make
the substitution ¢§ = q + h, where ¢ and ¢ are in the fluxes in the stationary and moving reference frames
respectively. With the appropriate algebraic manipulation, we obtain

U0:<pgsin9h(2)) (1—b3)+(rho> (1—1)2>7 (5.4)
3u 1-b 20 1-b

where b is the ratio of the film heights at the upper and lower ends of the plane respectively. The dimensional
reference velocity may be used to obtain more information about speed and direction of propagation of fronts
to aid with classification of the different types of wave features. Within a moving frame of reference, we
consider the motion of perturbations relative to the front. Perturbations on either side of a Lax shock travel
towards the compressive front and impinge upon it (figure 3a); perturbations either side of an undercom-
pressive front appear to move through the feature with both perturbations propagating in the same direction
(figure 3b). A rarefaction wave appears to be spreading out, with perturbations either side moving away
from the wave feature (figure 3c). Figure 3 depicts upstream facing structures with flow from right to left in
a moving frame of reference - downstream facing structures are classified as reverse compressive or reverse
undercompressive.

For a given slope inclination, conjugate values of h are calculated by specifying flux ¢, surface shear, 7,
and gravity parameter, A. Solving the cubic equation (3.7) yields hy, ho and hs (see table 1), all of which
can theoretically coexist for the values of 7 chosen.

Wave structures are instigated from defining an initial film profile and we investigate how standing waves
and transient film profiles evolve. Two-tier initial profiles are illustrated in figures 4a and 4b that involve
choosing two of the conjugate heights hy; < he < hg for given values of § and 7. Figures ba to 5f illustrate
three-tier initial profiles involving all of the allowable conjugate heights. For ease of notation, we label the
height of the initial film profile on the left hand side of the domain h;, height on the right hand side h, and,
if applicable, the height of the middle tier h,,.

Results are included for § = —45, which are typical of profiles obtained at most slope inclination angles
and for § = —80, where exceptions were observed. Features within profiles are classified as: compressive (C),
reverse compressive (RC), undercompressive (UC), reverse undercompressive (RUC) or a rarefaction wave
(Rw).

Solutions reported in this work that appear as stationary are standing shocks moving up the plane with
the reference velocity (5.4) in the corresponding fixed physical coordinate system, while those that appear
as travelling fronts are moving faster or slower than the reference velocity. In all the cases reported here the
imposed surface shear overcomes the gravitational force and the resulting fronts always move upwardly in
the plane.

5.1 Smoothing effects of inertia

An initial film profile of the form in figure 4a develops into a compressive wave-front under initial conditions
where h;y = hg and h, = hjp, as shown in figure 6. Results are comparable to the non-inertial profiles
reported by Levy and Shearer [12], and Shuaib [23]. Increasing the Reynolds number results, as expected
from increasing film inertial effects, in a smoothing of the film profile at the top of the shock. In addition, we
find the formation of very short wavelength capillary ripples at its base, as shown in figure 6¢. These capillary
ripples are mesh-independent, indicating this is a model feature. They are also present in profiles obtained



in other numerical studies which include the effects of inertia [19], as well as observed in experimental work
by Kofman et al. [10]. Further investigations were carried out by varying the surface shear. As previously
noted for figure 2, there is a limitation to the range of values 7 is able to take in order to support three
unique film depths. Expanded plots of the capillary ripples for three different values of 7 are given in figure
7. It can be seen that with increasing surface shear, the wavelength of the capillary ripples also increases,
while the amplitude decreases. This aids with numerical stability of the solution and hence, we were able to
achieve solutions for the full range of values for which our approximation Re ~ O (%) is valid without any
finite-time singularities.

Wave structures are typically classified as either compressive, undercompressive or a rarefaction wave
using the direction of travel of perturbations. An example of this is given in figure 6b, which contains the
film profile in figure 6a together with finite-amplitude perturbations on either side of the shock front. It can
be seen the the perturbations either side of the front are travelling towards the front in the moving frame
of reference, and therefore this is classified as a compressive shock. Another point to note from figure 6b
is that the perturbations decay in amplitude as they travel towards the shock front without any numerical
instability. This was found in all other cases investigated and reported here, suggesting that film profiles are
stable to finite-amplitude perturbations (nonlinear stability) and that imposing surface shear on the integral
boundary layer model makes it less susceptible to singularities and numerical instabilities than reported of
the Shkadov model in previous literature.

Figure 8, with boundary conditions as in figure 6, but an intermediate tier in the initial profile at
hm = hs, shows the time development of a compressive wave front at Re* = 0. The initial peak in figure
8a decreases in height steadily and tends towards the intermediate film conjugate height hy = 0.8848,
eventually reaching a steady solution in a moving frame of reference, correlating to a travelling wave in a
stationary frame of reference. Shuaib [23] also reports this type of wave profile with Re* = 0. When inertial
effects are considered (figure 8b); two wave fronts develop - a leading and a trailing front, giving a RUC-C
combination. The trailing (left hand) front, although appearing to propagate in the negative direction, in
the corresponding fixed reference (stationary frame) system, is moving upwards with a velocity slower than
the reference one while the right hand side corresponds to an under-compressive front moving faster than
the reference velocity. Both the leading and the trailing fronts are travelling up the plane in a stationary
frame of reference. The height of the trailing front in figure 8b is decreasing with time, and it is anticipated
that this will ultimately tend towards the height of the left hand boundary. The height of the front on the
right hand side has also decreased with time and is tending towards a compressive shock front, noting also
the capillary ripples at its base. The results in figure 8 confirm uniqueness of solution with respect to figure
6. As time progresses the film profiles in figures 8a and 8b tend to those in figures 6a and 6¢ respectively,
corresponding to differences in the Reynolds numbers.

Figure 9, with boundary conditions h; = hg, h,. = hg, illustrates the smoothing effect of inertia from
an initial steep reverse compressive front for Re* = 0 with a profile that develops into a steady solution
in a moving frame of reference, physically representing a standing wave travelling up the plane. With the
inclusion of inertia the profile evolves with time, becoming smoother and in figure 9b can be seen moving in
the negative x direction at a non-dimensional speed of 0.61. This is slower than the non-dimensional reference
velocity of -1, at which the entire system is moving, and so the net movement of this wave structure is up
the plane, in the direction of the applied surface shear. Similar profiles are observed in figure 10, where
the boundary conditions match but the initial profile contains an addition tier h,, = h; in the interior of
the domain. Once again, the Re* = 0 profile represents a travelling wave solution comparable to figure 9a.
When increasing the Reynolds number (figure 10b), we obtain a smoothed C-RUC profile that is evolving
with time as in figure 9b.

Figure 11 illustrates the development of two-tier initial profiles with h; = hy and h, = hg, while figure
12 contains three-tier initial profiles with the same boundary conditions and an interior tier at h,, = hs.
Again, similarity is observed between different profiles provided the boundary conditions are consistent, as
illustrated with figure 11 and 12, highlighting uniqueness of the solutions obtained. At Re* = 0, we observe
a central tier developing at h = 0.4374, to the left of the main standing wave. This is not a solution of the
cubic equation (3.7) which would be consistent with the flux at the inlet and outlet. The profiles in figures
11a and 12a are similar to a solution obtained by Levy and Shearer, figure 4.4 [12], who reported a large
downward facing travelling wave followed by a smaller upward facing travelling wave. Although both waves
are moving upwards, the speed of the larger wave is greater than that of the smaller one and the distance
between them increases, leaving the interior film depth at h = 0.4374. Increasing the Reynolds number,



in both the two-tier and three-tier initial profile cases, has the effect of eliminating this feature, as well as
smoothing the solution. Both inertial profiles 11b and 12b are of the same structure and the presence of the
tier at h,, = ho in the interior of the three-tier initial profile does not affect the structure formed as time
increases, once again indicating uniqueness of the solutions.

A typical rarefaction wave structure (figure 13) was also observed, such as in figure 5b of [23], with
boundary conditions h; = hy, h, = hso. Increasing the Reynolds number had a minimal effect in this type of
film profile, varying the speed of evolution, but with little change to the overall structure of the profile. When
investigating the three-tier profile with boundary conditions equivalent to the rarefaction wave profile, we
observe a decaying UC-Rw film profile as in figure 14. It is anticipated that this is a transient process tending
towards the rarefaction wave over an extended period of time. The most significant difference between the
non-inertial and inertial profiles in figures 14a and 14b is the smoothing of the wave structure, as is expected
with increasing Reynolds number.

The cases exhibited in figures 6 to 14 are representative of the types of film profile obtained at most
angles of inclination investigated. However, on increasing the slope inclination to # = —80, the evolution of
the film profile at Re* = 0 reveals a wave feature not evident at § = —45. At 0 < Re* < 1, the formation of
an interior tier at a height of 1.9 is observed as in figure 15a. When increasing the film Reynolds number, the
profile becomes identical in structure to the case at § = —45 with equivalent boundary conditions (figure 8).
This feature is observed in cases where h,, = hy irrespective of whether the initial profile is of a two-tier or
three-tier configuration and is classified as a compressive-undercompressive structure. The compressive wave
is moving to the left of the domain at a slower speed than the reference velocity and therefore physically
represents a wave structure moving in the positive z-direction, up the plane. The undercompressive wave is
also moving up the plane, but at a faster rate, and so the tier at h = 1.9 will become increasingly dominant
throughout the domain. The inclusion of a small film Reynolds number is enough to eliminate this feature,
as in figure 15b, and increasing the Reynolds number further (figure 15¢) illustrates the uniqueness of the
solution in comparison to figure 6¢.

5.2 Formation of new fronts

A new feature observed with the inclusion of inertia is the formation of an evolving region that is not a
conjugate height in table 1. The heights of the fronts depend on the boundary conditions of the initial
profiles. In order to verify that the effects observed are a physical feature, the initial conditions are modified
to maintain the same boundary conditions, but with modified conditions in the interior of the domain.

A profile initiated by h; = hs (figures 16-19) produces an undercompressive front at Re* = 0, also reported
by Levy and Shearer [12]. We observe commonality of solution exhibited by changes in initial profile with
equivalent boundary conditions developing into identically shaped wave structures. This is evident in figures
16a and the equivalent three-tier initial profile solution 17a, where h,, = h1, h, = hs, as well as with figures
18a and 19a, where h,, = hs, h, = h;. When increasing the Reynolds number, we observe the formation
of a secondary undercompressive front - this is a new feature not reported in any Stokes flow study. The
height of the intermediate state depends on the boundary conditions, so different initial profiles with identical
boundary conditions form intermediate fronts of the same height. In figure 16b, the secondary front has an
approximate film height of 1.5 - higher than the intermediate film height ho = 0.8848 associated with an
slope inclination of § = —45. As in the previous section, the features produced from two-tier initial profiles
can be replicated by allowing three-tier initial profiles with the respective boundary conditions to develop,
suggesting that these are unique solutions given the boundary conditions in figures 16 and 17. The film
profiles in figure 18a and 19a with boundary conditions h; = hs, h, = hy, both develop into identically
structured undercompressive waves with both the two-tier and the three-tier initial profile configurations.
With the inclusion of inertia, as can be seen in figures 18b and 19b, there is development of a secondary
undercompressive front with an approximate film height of 1, marginally lower than the intermediate film
height.

6 Summary and conclusions
Thin film flow models are extensively used in modelling flows in industrial contexts, typically those associated

with Stokes flow (Re = 0) or low Reynolds number flows, to identify characteristic film flow behaviour and
potential wave structures. The development of newer industrial technologies may require the film flow to be
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associated with an increased Reynolds number. This study provides an extended formulation for thin film
flow corresponding to moderate Reynolds number associated with highly sheared flows. The paper evaluates
the effect of increasing Reynolds number on existing film solutions, potential new wave structures and the
influence of capillary ripples.

Model formulation uses a depth-averaged approach leading to a formulation similar to a Shkadov model
approach but, importantly, incorporating surface tension effects which, together with a balance of gravity
and surface shear, allows combinations of two or more uniform steady flow solutions. Characteristic wave
solutions for increasing Reynolds number are sought involving shock structures linking these conjugate
states. Numerical solutions are obtained using a finite-difference scheme with suitable upwinding applied.
The formation of capillary ripples at the base of the main shock can happen, as reported in previous
literature, and potential exaggeration of the amplitude of these ripples is a known problem of the Shkadov
integral boundary layer model, leading to numerical singularities above a certain threshold Reynolds number.
However this is not a critical issue in our work as the inclusion of surface shear and surface tension is
shown to decrease the amplitude of these capillary ripples, whilst increasing their wavelength. The profiles
exhibit uniqueness of solution, in the sense that initial profiles of identical boundary conditions develop
into identically structured waves, providing credible evidence that these waves structures are physically
representative of the model. Thus, the revised Shkadov model proposed in this study, together with the finite
difference numerical implementation, has been able to obtain solutions for an extended range of Reynolds
numbers for which the thin-film approximation is valid.

For modelling Stokes flow we were able to reproduce profiles obtained in previous literature. The Reynolds
number was then increased to allow the initial profiles such as those illustrated in figures 4 and 5 to develop
under the influence of inertia. For some initial profiles the inclusion of inertia had a marginal impact
on the film profile. In other cases however, a significant change developed from the non-inertial profile.
When comparing figures 17a and 17b, for example, both evolved from the same conjugate states selected
from table 1. Developed profiles involved either modification and smoothing as the Reynolds number was
increased, or the formation of fronts at intermediate (non-conjugate) heights. These heights were consistent
throughout, with three-tier initial profiles producing similar wave structures to their two-tier counterparts
when equivalent boundary conditions were applied.

In addition, we were also able to produce wave profiles present only at larger angles of slope inclination
and demonstrate that changing the Reynolds number has a significant effect. Figure 15 illustrates, for an
inclination angle of # = —80, the formation of a tier that is damped and then eliminated with the inclusion of
a small film Reynolds number to the point where it is identical in structure to profiles obtained at 6 = —45.
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7 Figures and tables

Figure 1: Plane geometry in dimensional coordinate system

28

24

1=2.14914

na

Figure 2: Cubic polynomial y = %hiﬂ + %hz — h — q plotted for increasing values of 7. Parameters: A = 1,
0 = —45, g = —0.2068.

-— - —

(a) Compressive (C) (b) Undercompressive (UC) (c) Rarefaction wave (Rw)

Figure 3: Direction of propagation of perturbations in a moving frame of reference.
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T 0 hl h2 h3
2 -45 | 0.2801 | 1.0910 | 2.8716
2.14914 | -45 | 0.2933 | 0.8848 | 3.3809
2.4 -45 | 0.3266 | 0.6535 | 4.1111
2.14914 | -80 | 0.2822 | 1.2878 | 1.6975

Table 1: Conjugate values of h for ¢ = —0.2068 and A = 1.
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Figure 4: Two-tier initial profiles
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Figure 5: Three-tier initial profiles
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