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ABSTRACT  

This study observed the influence of temperature, initial Cu(II) ion concentration, and 

sorbent dosage on the Cu(II) removal from the water matrix using surface-oxidized 

cellulose nanowhiskers (CNWs) bearing carboxylate functionalities. In addition, this 

study focused on the actual conditions in a wastewater treatment plant. Conductometric 

titration of CNWs suspensions showed a surface charge of 54 and 410 mmol/kg for the 

unmodified and modified CNWs, respectively, which indicated that the modified CNWs 

provide a relatively high surface area per unit mass than the unmodified CNWs. In 

addition, the stability of the modified CNWs was tested under different conditions and 

proved that the functional groups were permanent and not degraded. Response surface 

methodology (RSM) and artificial neural network (ANN) models were employed in 

order to optimize the system and to create a predictive model to evaluate the Cu(II) 

removal performance of the modified CNWs. The performance of the ANN and RSM 

models were statistically evaluated in terms of the coefficient of determination (R2), 
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absolute average deviation (AAD), and the root mean squared error (RMSE) on 

predicted experiment outcomes. Moreover, to confirm the model suitability, unseen 

experiments were conducted for 14 new trials not belonging to the training data set and 

located both inside and outside of the training set boundaries. Result showed that the 

ANN model (R2=0.9925, AAD = 1.15%, RMSE = 1.66) outperformed the RSM model 

(R2=0.9541, AAD = 7.07%, RMSE = 3.99) in terms of the R2, AAD, and RMSE when 

predicting the Cu (II) removal and is thus more reliable. The Langmuir and Freundlich 

isotherm models were applied to the equilibrium data and the results revealed that 

Langmuir isotherm (R2 = 0.9998) had better correlation than the Freundlich isotherm 

(R2 = 0.9461). Experimental data were also tested in terms of kinetics studies using 

pseudo-first order and pseudo-second order kinetic models. The results showed that the 

pseudo-second-order model accurately described the kinetics of adsorption. 
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1. Introduction  

The amount of heavy metals released into the aqueous environment has been 

increasing as a result of anthropogenic activities such as mining, sludge disposal, and 

electroplating, with the effects of these metals on the ecosystem causing global concern 

(Shojaeimehr et al., 2014; Svecova et al., 2006; Wang et al., 2013). Adsorption offers an 

alternative to the remediation of industrial and municipal wastewater effluent as 

conventional technologies such as ion exchange, reverse osmosis, filtration, 

electrochemical treatment, and membrane technologies are expensive and generate large 

amounts of sludge waste (O'Connell et al., 2008b). The adsorption process is very 

effective and simple compared to other treatments, especially in removing low 

concentrations of heavy metals from the water matrix (Ashraf et al., 2011). Removal of 

these pollutants by an adsorption process also offers the opportunity to consider waste 

as a resource and recover the heavy metals for reuse by regenerating the adsorbent.  

The development of adsorption technology is for a large part focussed on the 

development of the most efficient adsorbent. Cellulose is one such adsorbent that has 

been investigated for the adsorption of heavy metal ions (Isobe et al., 2013; O'Connell 

et al., 2008a). Cellulose is the most abundant natural, renewable, and biodegradable 

polymer and as a raw material is available at relatively low cost for the preparation of 

various functional polymers (O'Connell et al., 2008a). Chemical modification of 

cellulose by grafting of functional groups has the potential to improve its adsorption 

capacity and to enhance its performance under desired conditions. Carboxylic acid 

groups are one example of a functional group that can be introduced onto the cellulose 

surface by (TEMPO)-mediated oxidation and this oxidized cellulose adsorbent has been 

shown to be capable of adsorbing 465.1 mg/g Pb(II) from aqueous solution (Yu et al., 

2013). However, only limited work has been published on using cellulose nanowhiskers 

(CNWs) as an adsorbent, as the majority of the literature has mainly focused on 

macroscopic lignocellulosic biomass such as jute, orange peel, wood sawdust, wood 

pulp and sugarcane bagasse fibres, rather than pure cellulose (Reddy, 2012). Although 

most of the adsorbents mentioned above are considered good adsorbents, CNWs offer 

higher adsorption capacity and performance due to high specific surface areas and a 

high reactive group density on the surface (Eyley and Thielemans, 2014). In addition to 

acting as an adsorbent, the cellulose-derived material  has also showed potential as a 
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support for a primary adsorbent (activated carbon) in wastewater treatment, or also 

served as a backbone structure upon which the main adsorbent is attached (Zhu et al., 

2009) is a further example for the use of modified CNWs as an adsorbent to remove 

pollutants from water. 

Besides (TEMPO)-mediated oxidation, the carboxyl functional groups can also be 

introduced through esterification, which may increase the amount of carboxylic acid 

functionalities on the cellulose surface, as secondary hydroxyl groups can also be 

converted to carboxylates, and thus the adsorption capacity of the modified adsorbent. 

For example, CNWs were chemically modified with succinic anhydride to obtained 

carboxylated CNWs. However, the reported modification process using succinic 

anhydride as an active agent was time consuming and not very sustainable as this 

process required 12 h under pyridine reflux in order to obtained the final modified 

adsorbent (Yu et al., 2013). Moreover, pyridine is a well known problem in the 

chemical industry and is avoided as much as possible as it may cause harmful health 

effects (U.S. Public Health Service, 1992). In addition, refluxing in pyridine, where 

pyridine vapour is generated is not considered sustainable (Xu et al., 2015). 

In many studies, the range of the investigated parameters for the adsorption 

process is often not representative of the actual conditions in a wastewater treatment 

plant (WWTP) (Thirumavalavan et al., 2010). For example, the majority of the studies 

are performed with a high initial metal ion concentration (100–1000 mg/L) which is 

unrealistic for actual commercial adsorption processes as they are generally applied to 

low concentration streams. This is the case because the majority of the conventional 

technologies are impractical at treating heavy metal contamination at low concentration 

due to high operational and maintenance cost (Ashraf et al., 2011). Furthermore, most 

of the reported experiments are also conducted under unrealistic conditions to a 

wastewater treatment environment such as a relatively high temperature up to 45C, as 

too high temperature could accelerate decomposition of chelating efficiency, leading to 

the decrease of the adsorption ratio (Sahan et al., 2010). Moreover, a range of pH 

without considering the metal hydroxide precipitation will also effect the removal of 

Cu(II) from the water matrix (Thirumavalavan et al., 2010). Finally, the adsorbent 

dosage is an important parameter in the adsorption process as it will provide the 
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required amount of sorbent dosage for a given initial concentration, thereby defining the 

separation cost and the total water treatment cost (Anupam et al., 2011). 

As reported in the literature, studies tend to focus on one single parameter at a 

time. This will inherently require a longer time to determine the optimum adsorption 

conditions and is assumed as non-practical since parameter interactions cannot be 

elucidated using this approach (Turan et al., 2013). Thus, to overcome this difficulty, 

experimental factorial design can be employed to optimize the adsorption of Cu(II) from 

the water matrix (Zolgharnein et al., 2013). Among the various experimental designs, it 

was found that two common designs, central composite design (CCD) and Box-

Behnken design (BBD), have been used frequently for the final optimization of desired 

processes (Turan et al., 2013; Zolgharnein et al., 2013). In this study, the CCD was 

selected because it has better predictive capabilities and it has been extensively applied 

in adsorption studies (Bingol et al., 2012; Shanmugaprakash and Sivakumar, 2013).   

Response surface methodology (RSM) and artificial neural network (ANN) are 

models that are applied extensively in industry in the optimization of process design 

parameters. RSM is a practical method for studying the effect of multiple parameters or 

variables that influence the process response by varying them simultaneously and 

reducing the number of required experiments. Artificial neural networks (ANNs) are 

mathematical models that predict the output on the basis of input data without a clear 

relationship between them. Therefore, the utilization of ANNs in the field of adsorption 

processes by using biomass has recently gained interest, given the difficulty that can be 

encountered to fully characterize all the functionalities found in common biomass 

(Shojaeimehr et al., 2014). For example, ANNs have been successfully used to model 

the biosorption of Pb(II) using black cumin (Bingol et al., 2012), the removal of fluoride 

by bone char (Tovar Gomez et al., 2013), and the removal of Cu(II) using sunflower 

shells (Oguz and Ersoy, 2010). This approach has also been used for the study of 

adsorption of dyes and organic compounds (Witek-Krowiak et al., 2014). However, 

most of the previous literature focuses its attention on adsorption studies by using either 

RSM or ANN without comparing the performances. Furthermore, the testing of both 

RSM and ANN using new sets of experiments not belonging to the training data set, has 

only be undertaken by a limited number of studies on biomass adsorption and without 

consideration of how the additional experiments represent the system and gives a more 
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accurate indicator of performance (Bingol et al., 2012; Ghosh et al., 2015). Therefore, 

model suitability for interpolated and extrapolated experimental parameters was tested, 

which is rare in the existing literature but provides valuable insights into applicability of 

the approaches tested in this work. Moreover, with the kinetics and isotherms studies, 

this study will offer better understanding regarding adsorption mechanisms and 

equilibrium behaviour of adsorbent. 

The objective of this study was to build two models: RSM and ANN, and assess 

their abilities to determine the effectiveness of (TEMPO)-mediated oxidation cellulose 

nanowhiskers (CNWs) functionalized with carboxylate functionalities at removing 

copper ions from water. The first part of the study focused on the modification of 

CNWs through a controlled surface oxidation to improve the effectiveness of this 

adsorbent in removing Cu(II) from the water matrix. This study also focuses on the 

stability of the modified CNWs at different time intervals under dry conditions and in 

the water matrix. To the best knowledge of the authors, there are no papers that 

presently test the stability of this modified CNW under these conditions, relevant from 

both the manufacturing and application perspectives. Scoping experiments were then 

performed to identify the variables and parameter ranges that are able to provide as 

much information in order to help set the boundary conditions for the CCD. Next, both 

RSM and ANN models were employed to understand the obtained data and evaluate the 

predictive capability of each model for the effective Cu (II) removal from the water 

matrix. Moreover, unseen experiments that lie both inside and outside of the test 

parameter system were performed to test the model suitability. This is also novel as 

generally only a couple parameter variations are tested without checking the obtained 

model suitability for parameters lying in between the tested parameters, and certainly 

not for parameters lying outside the tested parameter space as is done in this work.  
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2. Materials and methods 

2.1.  Reagents  

All the chemical reagents used in these studies were analytical grade, including 

copper(II) sulphate pentahydrate (CuSO4.5H2O) and Cu(II) atomic absorption 

spectrometry standard solution (1000 mg/L). 

2.2.  Preparation of adsorbent 

2.2.1. TEMPO-Mediated oxidation of cellulose 

Cellulose nanowhiskers (CNWs) were produced from bleached cotton by 

hydrolysis with a mass fraction of 64% sulphuric acid to produce a suspension of highly 

crystalline CNWs according to standard procedures (Labet and Thielemans, 2011). The 

resulting CNWs were then reacted with TEMPO, sodium bromide, and sodium 

hypochlorite for 45 min under constant stirring at room temperature (T=19°C) at pH 10 

to introduce the carboxyl groups onto the CNWs’ surface followed by freeze-drying 

(Habibi et al., 2006).  

2.2.2. Characterization  

Infrared spectroscopy was used to determine functional group absorption bands in 

the modified CNWs on a Thermo-Nicolet 380 FTIR spectrometer (Thermo Fisher 

Scientific Inc., USA) in transmission mode. Two mg of the solid samples (CNWs) were 

milled with 200 mg potassium bromide (KBr) to form a very fine powder using agate 

pestle and mortar. This powder was then compressed to form a thin transparent disk at 

10 metric tonnes pressure for FTIR analysis. Zeta potential of particles was measured 

with a Malvern Instrument Nano-ZS Zetasizer (Malvern Instrument Ltd., 

Worcestershire, UK). Five mg of the solid samples (CNWs) was diluted in 5 mL of 

deionised water and sonicated for 10 min before analysis.  

2.2.3. Determination of carboxylate groups 

The content of carboxyl group on the TEMPO-oxidized CNWs was determined 

by conductometric titration (Saito and Isogai, 2004). Approximately 0.1 g of freeze-

dried CNWs was mixed with 49 mL of deionized water and 1 mL of 0.05 M sodium 

chloride (NaCl), and the mixture was stirred to obtain a well-dispersed solution. Then, 

the resulting suspension was titrated with 0.05 M sodium hydroxide (NaOH) solution at 
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the rate of 0.1 mL/min while stirring continuously and the solution conductivity was 

recorded by a conductivity meter (Model No: 9811, Hanna Instruments Ltd., UK).  The 

titration was carried out three times for each sample, and the experimental errors were 

calculated as a standard deviation.  The carboxyl content of the sample was determined 

from the conductometric titration curve and was calculated by Eq. (1), assuming that 

each added molecule of NaOH with this range neutralized exactly one carboxyl group 

and all other weak acidic groups (e.g. aldehyde groups) are oxidized to carboxyl groups 

during the oxidation reaction:  

 
𝑋 (𝑚𝑚𝑜𝑙

𝑘𝑔⁄ ) =
𝐶𝑡𝑉2

𝑚
 (1) 

where X is the total amount of carboxyl groups (mmol/kg), Ct is the concentration of the 

sodium hydroxide (mol/L), V2 is the volume of the sodium hydroxide solution 

consumed at the 2
nd

 intersection point (L), and m is the oven-dry weight of sample after 

titration (g) (Saito and Isogai, 2004). 

2.3. Preparation of Cu(II) stock solution 

Cu(II) stock solution of varying initial concentrations (10–60 mg/L) was prepared 

in different volumetric flask by dissolving the appropriate amount of CuSO4
.
5H2O in 

Milli-Q Ultrapure water.  

2.4. Determination of the Cu(II) in the solutions 

The initial and final concentration of Cu(II) in the solutions was determined by 

flame atomic absorption spectrometry (AAS) (Model No: 272, PerkinElmer Inc., USA). 

The hollow cathode lamp was operated at 10 mA and the analytical wavelength was set 

at 324.8 nm.  

The standard solutions (10–70 mg/L) that span the working ranges were prepared 

by using the provided 1000 mg/L reference standard solution (ROMIL Ltd) for Cu(II) 

with Milli-Q water. The absorbance of a sample was measured and the concentration 

was calculated from the calibration curve that was determined by the prepared standard 

solutions of Cu(II). A linear regression curve (y=0.00488x–0.00083) was obtained in 

the Cu(II) concentration range from 10 to 70 mg/L with a correlation coefficient of 

0.999.  
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The percentage of the removal Cu (II) ions by the sorbent and the adsorption capacity 

(mg Cu(II)/g) were expressed by:  

 
% 𝑟𝑒𝑚𝑜𝑣𝑎𝑙 =

𝐶𝑜 − 𝐶𝑒

𝐶𝑜
𝑥 100 (2) 

 

 
   𝑞𝑒 = (

(𝐶𝑜 − 𝐶𝑒)𝑉

𝑊
) (3) 

Where Co (mg/L) is the initial Cu(II) concentration and Ce (mg/L) is the equilibrium Cu 

(II) concentration in solution, V is the volume of the solution (L), and W is the mass of 

adsorbent (g) (Ghosh et al., 2015). 

2.5. Batch adsorption experiments 

Batch experiments were performed in 100 mL conical flasks, in an incubator 

(Model No: 120, LMS Ltd., Kent, UK), with temperature control and agitation (150 

rpm) using a mini table shaker (IKA Vibrax VXR, Germany). The contact time (30 

min), and the initial pH (pH 6.0) were selected on the basis of the results obtained from 

scoping experiments. The required weight of sorbent (0.2–10.0 g/L) was measured 

separately into the 100 mL conical flask, and then 20 mL of Cu(II) solution with the 

known concentration (10–60 mg/L) were added into the flasks. The initial pH of the 

solution was adjusted with 1 M H2SO4 and 1 M NaOH at 6, using the pH meter (Hanna 

Instruments Ltd., UK), calibrated with buffers of pH 4.0, 7.0, and 10.0 in order to 

maintain constant pH throughout the experiment. Next, the initial Cu(II) concentration 

and the final concentration after adsorption process were separated from the sorbent 

using 0.2 µm surfactant-free cellulose acetate membrane syringe filter and were 

determined using AAS.  

2.6. Experimental design 

The temperature, initial Cu(II) ion concentration, and sorbent dosage were used as 

independent (input) variables and were studied for their impact on the removal of Cu(II) 

from the water matrix. These parameters and their range were selected based on the 

literature (Cao et al., 2014; Thirumavalavan et al., 2010) and scoping studies undertaken 
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in this study. Fixed conditions for pH and time were chosen to be 6 and 30 min 

respectively as determined in the scoping studies.  

The investigated temperature range was 6
o
C–25°C in order to study the efficiency 

of the CNWs as adsorbents at different temperatures. This range of temperatures is a 

realistic range in the wastewater treatment environment where the mean annual 

temperature of wastewater varies from 10 to 25°C (Burton et al., 2013). Moreover, 

another example is the study conducted by Hanaki (2008), who showed that the 

wastewater range is 15–25 C (Hanaki, 2008).  

Since the majority of conventional technologies are impractical for treating heavy 

metal at low concentrations due to high operating cost (Gavrilescu, 2004), the range for 

the initial Cu(II) ion solution was chosen to be 10–60 mg/L. Thus, the temperature (6–

25°C), initial Cu(II) ion concentration (10–60 mg/L), and sorbent dosage (0.2–10 g/L) 

were investigated for their effect on the removal efficiency of Cu(II) from the water 

matrix. 

2.6.1. Response surface methodology 

RSM is an approach that combines mathematical and statistical techniques and 

can be applied to give a better overall understanding with a minimal number of 

experiments. Optimization studies were carried out by studying the effect of three 

variables, i.e. temperature, initial Cu(II) ion concentration, and sorbent dosage. With 

these three variables, a total of 20 experiments were required in order to find the 

optimum operating condition for the removal of Cu(II) using modified CNWs. The 

experimental data was processed using Minitab 16 Statistical Software.  The parameters 

are shown in reverse with their coded levels (–α, -1, 0, 1, α; α = 1.633), respectively. 

The value of α, which depends on the number of factors, is chosen to maintain 

rotatability, which refers to the uniformity of the prediction error. The predicted 

percentage of the removal Cu(II) ions is explained by the following quadratic equation: 

 

𝑌(%) = 𝛽0 + ∑ 𝛽𝑖𝑥𝑖 + ∑ 𝛽𝑖𝑖𝑥𝑖
2 + ∑ ∑ 𝛽𝑖𝑗𝑥𝑖𝑥𝑗 + 𝜀

𝑖<𝑗

𝑘

𝑖=1

𝑘

𝑖=1

 
(

(4) 
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Where Y is the predicted response, xi and xj are the input variables, βo is the intercept 

term, βi is the coefficient of linear effect, βii is the coefficient of squared effect, βij is the 

coefficient of interaction effect and ε is a random error. 

2.7. Artificial neural network  

ANN is a powerful tool and has been widely used to model the effect of 

parameters influencing adsorption processes (Shanmugaprakash and Sivakumar, 2013). 

This is due to their capability in solving the non-linear functional relationship between 

several parameters and variables involved in the process under study. The ability of 

ANN to learn and capture the behaviour of any complex and non-linear process makes it 

a potential modelling tool. On the other hand, RSM uses quantitative data in an 

experimental design to search for the optimum conditions. For a better accuracy, the 

experimental responses to design of experiments (DOEs) are fitted to a quadratic 

equation. 

Although there are many well-known ANN types such as multilayer perceptron, 

radial basis function networks, linear networks, Bayesian networks, and Kohonen 

networks, currently the most popular network architecture is multilayer perceptron 

(MLP) (Savic et al., 2012) . One of the common structures of an artificial network 

consists of three different layers: inputs, hidden layer and outputs layer and is 

commonly applied in the prediction of the performance of many processes (Pilkington 

et al., 2014; Witek-Krowiak et al., 2014). In order to use the ANN model for predicting 

Cu(II) removal from the water matrix, a feed-forward backpropagation algorithm was 

used for modelling the experimental design. The ANN was built in MATLAB (Figure 

1) with three input neurons indicating the temperature, initial Cu(II) concentration and 

sorbent dosage, a single hidden layer of neurons, and an output neuron indicating the 

percentage of Cu(II) removal. Three input neurons are connected to the hidden neurons, 

which represent nonlinear activation functions that transform the inputs into something 

the output layer can utilise. The single hidden layer with a tangent sigmoid transfer 

function (tansig), required a minimum of 6 hidden neurons for the simulation and 

prediction of Cu(II) removal.   

In this study, the first layer of neurons representing the independent variables 

were identical to the factors considered in RSM approach, namely temperature (6–
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25°C), initial Cu(II) ion concentration (10–60 mg/L), and sorbent dosage (0.2–10 g/L). 

Similar to the RSM model, the outputs represented the percentage removal of Cu(II) 

under the investigated conditions.  

 

Figure 1: Architecture of the developed artificial neural network (ANN)  

2.8. Stability of the modified adsorbent 

The stability of the modified CNWs was tested at different time intervals under 

dry conditions and in the water matrix. For dry stability, the carboxylate content of the 

modified CNWs was determined using conductometric titration on the modified CNWs 

stored under dry conditions for different times (7, 14 and 28 days).  

For the wet stability test, freeze-dried CNWs were mixed with deionized water 

and left for 30 min, 24 h and 7 days under constant shaking at a rate of 150 rpm in an 

incubator before titration experiments. Next, the suspensions were freeze-dried and used 

for the batch experiments. Batch experiments were carried out in conical flasks by 

adding modified CNWs in 20 mL of aqueous copper solution at the same conditions 

The initial and final concentrations of Cu(II) solutions were determined using AAS. 

Freshly prepared modified CNWs were used as the control experiment.  
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3. Results and discussion 

3.1. Characterisation of carboxylate group on CNWs 

The proof of the negative surface charge induced by the modification step comes 

from zeta potential measurements where nanoparticles with a high zeta potential 

(greater than ±25 mV) are electrically stabilized while nanoparticles with low zeta 

potential tend to flocculate or coagulate (Saito et al., 2009). The average zeta potentials 

for the unmodified and modified CNWs were –37.6 mV and –74.4 mV, respectively. 

The oxidized CNWs showed much higher negative zeta potential caused by the 

introduction of carboxylic acid groups at the surface of CNWs. FTIR spectra of CNWs 

are compared before and after modification. After modification, the presence of band 

near at 1730 cm
-1

 corresponds to the C=O stretching frequency of carboxyl groups have 

been incorporated onto CNWs, indicating successful oxidation at the surface.  

3.2. Determination of carboxylate contents 

The carboxyl content of chemically modified CNWs was measured using 

conductivity titration method and determined to be 54 and 410 mmol/kg for the 

unmodified and modified CNWs respectively. The content is notably within the range 

what has been reported in the literature (Saito et al., 2005). Similar performance was 

also found for modified CNWs kept under wet or dry conditions for different time 

intervals. The sorbent ability for each sample did not change or reduce, which proved 

that CNWs are stable in water for the tested time period of up to 7 days and may be 

stored under dry conditions for the period time examined (up to 28 days). This showed 

that this functional group is permanent under the conditions tested as the groups are 

stable and not removed/ degraded.  

A control experiment was then carried out to compare the ability of unmodified 

and modified CNWs to remove Cu(II) from the water matrix. For the same amount of 

sorbent dosage under similar conditions, modified CNWs were able to remove ±66.75% 

of Cu(II) while the unmodified CNWs removed only ±3.64% of Cu(II) from the water 

matrix. The adsorption capacity of these adsorbents was 14.65 mg/g and 0.59 mg/g, 

respectively.  

This is because of the carboxyl groups introduced on the CNW surface by the 

TEMPO-mediated oxidation process. This has been confirmed by other researchers that 
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cellulose containing carboxyl will enhance the adsorption process in removing the 

heavy metals from the water matrix (Liu et al., 2009). 

3.3. Scoping studies 

The purpose of the scoping studies was to identify the variables and parameter 

ranges that influence the adsorption process and help set the boundary conditions for the 

CCD. The optimum pH range (4-6) for the adsorption process published in the literature 

were considered too acidic since a pH below 6 will increase the competition between 

protons and metal ions for active sites (Reddy, 2012). Moreover, to prevent the 

formation of metal hydroxide precipitation at pH higher than 6, it was decided that the 

optimum pH for the removal of Cu(II) ions using modified CNWs was at pH 6. This has 

been confirmed by control experiments, where the optimum pH value for maximum 

removal of Cu(II) was observed at pH 6 with 91.3% (2.04 mg/g) of Cu(II) removed, 

while at pH 4 only 85.5% (1.88 mg/g) Cu(II) removal was achieved.  

The contact time for the adsorption process was chosen to be 30 min in 

accordance with results obtained from the scoping studies since further increase in the 

contact time did not show a significant change in percentage removal.  From the results, 

it was found that the adsorption increased sharply with contact time during the first 5 

min, contributing to more than 91% of Cu(II) removal. It then decreased slowly to reach 

plateau and it was observed that 30 min was enough to reach the adsorption equilibrium. 

The adsorption of metal ions using the modified CNWs was then tested through 

batch experiments, keeping the contact time at 30 min and the pH at 6 while varying 

temperature, absorbent dose and copper ion concentration based on values used in 

industrial processes and environmental regulations (Thirumavalavan et al., 2010).  

Control experiments were carried out to identify the most appropriate filter to 

ascertain that the membrane material used did not adsorb any remaining metal ions in 

solution. Surfactant-free cellulose acetate filters were identified as most suitable with an 

average adsorption of ±0.8%, and results corrected for this. 
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3.4. Modelling of adsorption process 

3.4.1. RSM model 

Results for the percentage of Cu(II) removal were obtained by performing the 

batch experiments according to the CCD matrix of conditions. Table 1 shows the 

experimental results obtained from the experimental runs and the predicted values by 

the built RSM and ANN models. One of the 20 experiments, with 0.2 g/L sorbent 

dosage, showed a large residual error with 10.9% for the RSM model, which influence 

the value of R
2
. Similar problems occurred but not to the same degree of error when less 

than 2.10 g/L sorbent dosage was used to remove Cu(II) from the water matrix. This 

problem is believed to be due to the presence of adsorbed species at the surface of the 

cellulose nanowhiskers blocking reactive sites (Labet and Thielemans, 2011). For the 

higher sorbent dosage, it will not impact the adsorption process due to greater 

availability of reactive sites on the CNWs. Similar results were reported for other heavy 

metal adsorption onto biomass (Sugashini and Begum, 2013). However, from Figure 2, 

it still can be observed that the predicted values by the RSM model and the actual 

experimental data are in good agreement, with a coefficient of determination (R
2
 = 

0.9541). Moreover, the more reliable way to evaluate the quality of the fitted model is 

by application of analysis of variance (ANOVA). The significance of each term in the 

equation on the percentage of the adsorbed Cu(II) ions was validated by this statistical 

test.   

From the 20 experiments, the adsorption capacity (mg Cu(II)/ g adsorbent) was 

calculated (Table 1) identifying the initial Cu(II) concentration and sorbent dosage as 

the most important parameters affecting adsorption capacity. The adsorption capacities 

increased with increasing initial Cu(II) concentration due to the Cu(II) concentration 

providing driving force to overcome the mass transfer resistance. 
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Table 1: Experimental ranges and levels of the independent variables 

Independent variable Symbols Range and level 

  
 

-α -1 0 1 +α 

Temperature, T (°C) X1 6 9.68 15.5 21.32 25 

Initial Cu (II) ion 

concentration, C (mg/L) 
X2 10 19.69 35 50.31 60 

Sorbent dosage, m (g/L) X3 0.2 2.09 5.1 8.1 10 

 

Run 

Number 

T    

(°C) 

C 

(mg/L) 

m 

(g/L) 

q 

(mg/g) 

Cu (II) removal (%) 

Experimental RSM Residual ANN Residual 

1 21.3 50.31 2.10 10.63 44.50 39.35 5.15 44.75 0.25 

2 21.3 19.69 8.10 2.47 95.72 96.33 0.61 96.06 0.34 

3 9.7 19.69 2.10 6.53 74.81 68.83 5.98 74.77 0.04 

4 15.5 35.00 5.10 5.05 76.95 77.51 0.56 77.45 0.49 

5 15.5 35.00 5.10 4.95 76.35 77.51 1.16 77.45 1.10 

6 9.7 50.31 8.10 4.56 77.80 78.46 0.66 77.66 0.14 

7 21.3 19.69 2.10 5.75 72.54 67.49 5.05 70.00 2.54 

8 15.5 35.00 5.10 5.14 78.97 77.51 1.46 77.45 1.52 

9 15.5 35.00 5.10 4.78 75.68 77.51 1.83 77.45 1.77 

10 9.7 19.69 8.10 2.09 93.24 94.00 0.76 98.27 5.03 

11 9.7 50.31 2.10 9.63 42.93 37.93 5.00 42.89 0.03 

12 21.3 50.31 8.10 5.30 81.94 83.54 1.60 81.59 0.35 

13 6.0 35.00 5.10 4.77 74.33 78.09 3.76 75.18 0.84 

14 15.5 35.00 10.00 2.99 88.65 84.34 4.31 88.84 0.19 

15 15.5 35.00 5.10 4.72 78.08 77.51 0.57 77.45 0.63 

16 15.5 60.00 5.10 6.50 58.26 61.00 2.74 58.03 0.23 

17 25.0 35.00 5.10 5.07 78.33 81.14 2.81 78.15 0.17 

18 15.5 10.00 5.10 1.58 92.85 96.68 3.83 93.82 0.97 

19 15.5 35.00 5.10 5.07 81.20 77.51 3.69 77.45 3.75 

20 15.5 35.00 0.20 20.67 16.81 27.70 10.89 16.86 0.05 
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Figure 2: The experimentally obtained for Cu (II) removal compared to that predicted 

by the response surface methodology (RSM) 

Remarkably, as can be seen in the Table 2, it can be shown that most of the terms 

in the quadratic model are statistically insignificant (P>0.05) for their effect on the 

Cu(II) percentage removal with a model F-value of 23.09.  

Table 2: Regression analysis of the RSM model for the % removal of Cu, with the 

associated statistical significance of each coefficient 

Coefficient Coefficient F–Value P–Value 

Constant 77.5063 
  

T (X1) 0.9339 0.360 0.560 

C (X2) -10.9219 49.810 0.000 

m (X3) 17.3425 125.600 0.000 

T*T (X1
2
) 0.7922 0.260 0.621 

C*C (X2
2
) 0.5016 0.100 0.754 

m*m (X3
2
) -8.0577 26.850 0.000 

T*C (X1X2) 0.6875 0.120 0.738 

T*m (X1X3) 0.915 0.210 0.657 

C*m (X2X3) 3.8375 3.690 0.084 
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The ANOVA of this model is presented in Table 3 and the model was assessed for 

its suitability by examining the lack of fit through ANOVA. From the results, the lack 

of fit obtained is significant due to low probability (P=0.005) and higher F-test value of 

14.73. Thus, this results showed that the RSM model is unable to predict the removal of 

Cu(II) from water matrix.  

Table 3: ANOVA to determine the suitability of the developed quadratic model in 

fitting the experimental data 

Source Sum of squares Degree of freedom F–value P–value 

Model 6635.87 9 23.09 0 

Residual error 319.29 10 - - 

Lack-of-fit 299 5 14.73 0.005 

Pure error 20.3 5 - - 

As can be seen from Table 2, the initial Cu(II) concentration and sorbent dosage, 

X2 and X3, have both a significant effect, while the second-order effects of sorbent 

dosage (X3
2
) on the Cu(II) percentage removal has the highest significant effect among 

the other second-order effects. The negative value of the main effect coefficient, initial 

Cu(II) concentration, demonstrates that Cu percentage removal decreases with 

increasing initial Cu(II) concentration. Plus, the negative coefficient of the second order 

parameters, shows a maximum value in response within selected range of the 

parameters, which showed that large amount of sorbent dosage will give higher removal 

of Cu(II) from the water matrix (Shojaeimehr et al., 2014).  

3.4.2. ANN model 

In this study, an ANN-based model was also developed for describing the removal 

of Cu(II) by modified CNWs.  Similar to RSM modelling, the data generated through 

CCD were used to determine the optimal architecture of the ANN model. The total of 

20 experiments was divided into three subsets comprising of training (12 data points), 

validation (4 data points) and testing (4 data points) points. The aim of the splitting of 

data into three subsets was to measure the capability of the model for the prediction of 

unseen experiments, which were not used for training. Thus, the overview performance 

of ANN model can be assessed.  
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The actual and predicted percentage removal of Cu(II) by the ANN model is 

presented in Figure 3 and the coefficient of determination R
2
 was found to be 0.9925, 

showing good agreement with the two sets of results. 

 

Figure 3: The experimentally obtained for Cu (II) removal compared to that predicted 

by the artificial neural network (ANN) 

For better graphical interpretation of the Cu(II) adsorption process, three-

dimensional response surface plots were generated. Figure 4 shows the effect of the 

investigated parameters on the removal of Cu(II), with one of the three parameters held 

constant at its intermediate value (15.5 °C, 35 mg/L, or 5.10 g/L). Figure 4 (A) shows 

the response of the Cu(II) removal when varying the initial Cu(II) concentration and 

sorbent dosage.  

Generally, ANN-based data analysis indicated that a high amount of sorbent 

dosage and a low initial Cu(II) ion concentration increased the percentage removal of 

Cu(II) from the water matrix due to availability of adsorption sites. As can been seen 

from Figure 4(A), the percentage removal of Cu(II) increased when raising the sorbent 

dosage up to 8 g/L and then removal stayed constant with further increase of sorbent 

dosage above.  These results are consistent with findings reported in literature (Geyikci 

et al., 2012). The increased in the percentage removal when the sorbent dosage 
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increased is due to the concentration gradient acting as a driving force between the 

solute concentration and that adsorbed onto the surface of the modified CNWs. 

Figure 4 (B) shows that the variation of temperature only had a slight effect on the 

Cu(II) removal. This indicates that higher temperature values did not damage the active 

sites in the sorbent or weaken the adsorptive force between the active sites of the 

adsorbent and Cu(II) ions significantly, at least not in the temperature range studied in 

this work. 

Figure 4 (C) shows that the percentage removal of Cu(II) decreases at higher 

initial Cu(II) concentration as there will be a relative decrease of available active metal 

binding sites per Cu(II) ion for adsorption. At a fixed sorbent dosage, there was a 

decrease in the percentage removal with further increasing of the initial Cu(II) 

concentration due to the saturation of CNWs surface with Cu(II) ions. On the other 

hand, the change in temperature had no significant effect on the response over the range 

of temperatures investigated in this study. This result differs to other studies and likely 

explained due to the literature experiments being conducted under temperatures that are 

not realistic to a wastewater treatment environment (Bingol et al., 2012; Shojaeimehr et 

al., 2014). Cao et al. (2014) presented the effects of temperature (10-50°C) and showed 

that the adsorption of Cr(VI) increased with increasing temperature even when the range 

was higher and unrealistic conditions to a wastewater treatment environment (Cao et al., 

2014).  
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Figure 4: Surface plots (left) and corresponding contour plots (right) showing the 

effects of adsorption parameters on the Cu(II) removal as predicted by the ANN model 

with temperature held at constant at 15.5 °C (A), initial Cu(II) concentration held at 

constant 35 mg/L (B), and sorbent dosage held constant at 5.10 g/L (C). 
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3.5. Comparison of RSM and ANN 

Besides examining the poorness of the fit using ANOVA for the RSM model as 

determined in Section 3.4.1, the abilities of the ANN and RSM model in predicting the 

Cu(II) removal from the water matrix were statistically evaluated, in terms of the 

coefficient of determination (R2), absolute average deviation (AAD), and the root mean 

squared error (RMSE). The AAD and RMSE are defined as follows (Geyikci et al., 

2012): 

 
𝐴𝐴𝐷 = (

1

𝑛
∑ (

𝑦𝑝 − 𝑦𝑒

𝑦𝑒
)

𝑛

𝑖=1

) × 100 (5) 

 

 

𝑅𝑀𝑆𝐸 = (
1

𝑛
∑(𝑦𝑝 − 𝑦𝑒)

2
𝑛

𝑖=1

)

1
2⁄

 (6) 

Where n is the number of points, yp is the predicted value, ye is the experimental value.  

The AAD and RMSE for the RSM model were calculated to be 7.07% and 3.99, 

whilst that of the ANN model was 1.15% and 1.66. Moreover, with the R
2 

for both 

models (R2 
= 0.9541 for RSM, R2 = 0.9925 for ANN), showed that ANN model predicts 

more accurately than the RSM model. 

For further validation, 14 extra experiments were conducted in addition to those 

determined by the CCD, consisting of combinations of experimental parameters not 

found in the training data set for the models. 3D scatter plots for the unseen experiments 

are displayed in Figure 6, and include a comparison of 3D scatter plots derived from 

data contained in two other studies. In general, the limited number of studies that do 

conduct unseen experiments tend to use a limited number and the chosen unseen 

experiments do not represent the system of conditions making it difficult to 

appropriately evaluate the predictive capability of the models. In Figure 6(C), Bingol et 

al.  (Bingol et al., 2012) tested the validity of the models by conducting 11 new trials 

that are all concentrated on one side of the system whilst Ghosh et al. (Ghosh et al., 
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2015) , depicted in Figure 6(B), conducted 8 unseen experiments which do not represent 

the whole system, in order to study the validity of the RSM and ANN models.   

The 14 unseen experiments undertaken in this study and illustrated in Figure 6(A) 

were chosen to represent parameter space both inside and outside the system, in order to 

give better understanding in testing the validity of the models. The actual and predicted 

values of the responses along with their residual values for both models are given in 

Table 4. The prediction abilities of the newly constructed ANN and RSM models were 

statistically measured, in terms of R2, AAD, and RMSE. Table 5 shows the statistical 

comparison of both models based on the 20 CCD and unseen experiments that represent 

both inside and outside of the system. From the results, it is confirmed that the ANN 

model predicts more accurately than the RSM model, both the original 20 CCD and 14 

unseen experiments.   

Although both the RSM and ANN models provided good quality predictions (R
2
) 

for the parameters within the design range, the ANN model showed a clear superiority 

over the RSM model for both data fitting and estimation capabilities for the parameters 

that were outside of the design range (Figure 5). The results showed similar findings 

with other research that compared both models for removal of pollutants from a water 

matrix (Bingol et al., 2012; Shojaeimehr et al., 2014). Therefore, the ANN model is 

more flexible and predictable which allows the addition of a new set of experiment to 

build a new dependable model. This is because the RSM model has the limitation where 

it assumes only quadratic non-linear correlation whilst the ANN model overcomes this 

limitation since this model can inherently capture almost any complex and non-linear 

process (Bingol et al., 2012; Geyikci et al., 2012). 
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Table 4: Validation data for 14 unseen experiments  

 Run 
T 

(°c) 

C 

(mg/L) 

m 

(g/L) 

Adsorption 

capacity 

(mg/g) 

Cu (II) 

removal 

(%) 

ANN RSM 

Data 

index 
Predicted Residual Predicted Residual 

W
it

h
in

 t
h
e 

sy
st

em
 

1 21.3 50.31 5.1 5.27 62.21 66.82 -4.61 69.35 -7.14 

2 9.7 19.69 5.1 3.17 84.06 92.57 -8.51 89.45 -5.39 

3 15.5 35.00 8.1 4.23 82.39 89.09 -6.7 86.72 -4.33 

4 18 55.00 8.1 4.76 74.19 77.83 -3.64 79.56 -5.37 

5 10 55.00 4.0 5.75 60.41 53.96 6.45 53.97 6.44 

6 20 35.00 9.5 1.23 82.64 86.87 -4.23 87.77 -5.13 

7 20 15.00 5.1 3.10 88.31 93.27 -4.96 92.67 -4.36 

O
u
ts

id
e 

th
e 

sy
st

em
 

8 6 10.00 8.1 1.13 91.37 100 -8.63 100 -8.63 

9 25 60.00 8.1 5.57 70.43 79.34 -8.91 83.33 -12.9 

10 25 60.00 4.0 9.26 57.2 52.72 4.48 56.01 1.19 

11 10 10.00 4.0 1.84 92.23 100 -7.77 92.73 -0.50 

12 6 35.00 2.1 5.58 55.75 63.49 -7.74 54.14 1.61 

13 6 20.00 2.1 3.21 86.24 88.62 -2.38 70.22 16.02 

14 10 10.00 2.1 2.32 90.02 94.3 -4.28 79.3 10.72 

 

Table 5: Comparison of the predictive abilities of RSM and ANN model 

  Correlation coefficient (R2) AAD (%) RMSE 

Data index ANN RSM ANN RSM ANN RSM 

20 CCD 0.9925 0.9541 1.15 7.07 1.66 4.00 

14 unseen 0.9357 0.7324 7.98 8.28 6.29 7.70 

7 Inside 0.9530 0.9162 7.43 7.46 5.81 9.39 

7 Outside 0.9395 0.6783 8.54 9.11 6.74 9.39 
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Figure 5: Comparison of the experimental and predicted results for unseen experiments 

between RSM and ANN 
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Figure 6: 3D scatter plots showing comparison of the CCD with unseen experiments 

within the systems (A) for this work (B) (Ghosh et al., 2015) (C) (Bingol et al., 2012). 



27 
 

3.6. Adsorption isotherm 

In order to understand the behaviour of adsorbent, two common adsorption 

isotherms (Langmuir and Freundlich) were used to evaluate the adsorption system 

design and to describe the adsorption capacities of the modified adsorbent (Shojaeimehr 

et al., 2014). These isotherms were expressed in linear form as: 

 
𝐿𝑎𝑛𝑔𝑚𝑢𝑖𝑟:

𝐶𝑒

𝑞𝑒
=

𝐶𝑒

𝑞𝑚
+

1

𝐾𝐿𝑞𝑚
 (7) 

Where qe (mg/g) is the equilibrium amount of Cu(II) adsorbed per unit mass of sorbent, 

qm (mg/g) is the maximum Cu(II) ions adsorption capacity to form a complete 

monolayer on the surface bound and KL (l/mg) is the Langmuir constant which related 

to the affinity of the binding sites. 

 
𝐹𝑟𝑒𝑢𝑛𝑑𝑙𝑖𝑐ℎ: 𝑙𝑜𝑔𝑞𝑒 = log 𝐾𝑓 + (

1

𝑛
) 𝑙𝑜𝑔𝐶𝑒 (8) 

Where Kf and nf are the Freundlich constants that indicates adsorption capacity and 

adsorption intensity, respectively. The Freundlich isotherm indicates the heterogeneous 

surface.  

From the results, the coefficient of determination (R2) showed that the Langmuir 

isotherm (R2 = 0.9998) had a better correlation than the Freundlich isotherm (R2 = 

0.9461), which indicated the homogeneous distribution of active sites on the adsorbent 

surface. The maximum monolayer adsorption capacity as obtained from the Langmuir 

isotherm was found as 14.65 mg/g, and KL was 1.4025 L/mg. Moreover, the nf value 

from the Freundlich isotherm was 5.19 (1<n<10) indicating adsorption is favourable for 

the studied concentration range (Singh et al., 2010).  

 In addition, the comparison of Cu(II) sorption performance is better based on a 

complete Cu(II) sorption isotherm curve . Therefore, the qm value which was obtained 

from the Langmuir isotherm has been compared with other sorbents reported in 

literature based on their maximum adsorption capacity of Cu(II) ions (Table 6) (Calero 

et al., 2011). It is important to emphasize that a direct comparison of the qm from this 

study with qm of other sorbents is challenging due to experimental conditions not being 

comparable. Although the reported Cu adsorption capacity of modified CNWs was 
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relatively smaller than some other adsorbents in other studies, the experimental 

conditions in this study were informed by conditions in the wastewater treatment 

process. For example, one of the important factors affecting adsorption capacities is the 

pH of the Cu(II) in water. However, other studies commonly (Table 6) commonly 

evaluate in the pH range 4.0-5.0, which as an acidic environment not representative of 

the actual conditions in the WWTP.  

Table 6: Comparison of maximum adsorption capacities of Cu(II) ions by different 

adsorbents  

Adsorbents 

Experimental conditions 
qm 

(mg/g) 
References 

pH 
T 

(°C) 

Ci 

(mg/L) 

Time 

(min) 

Modified CNWs 6 10 10-60 30 14.65 This study 

Cotton stalks 3 25 20-200 30 4.0 Nada et al. (2006)  

Olive pomace 6.5 20 50-200 60 1.0-5.0 
Pagnanelli et al. 

(2003) 

Cellulose graft 

polymers 
4 20 200 300 17.16 Guclu et al. (2003) 

Starch-graft-acrylic 

acid copolymers 
4 20 200 300 16.52 

Keles and Guclu 

(2006)  

Granular activated 

carbon 
5 30 

a a
 5.08 An et al. (2001) 

Commercial resins 

(Duolite GT-73) 
5 

a
 

a
 

a
 61.63 

Vaughan et al. 

(2001) 

a
: not reported  
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3.7. Adsorption kinetics 

The prediction of adsorption rate is important in providing the necessary 

information for the design of the adsorption system. Two kinetic models which are 

Lagergren’s pseudo-first order and pseudo-second order model, were applied to 

experimental data in order to clarify the adsorption kinetics of Cu(II) onto modified 

CNWs. The linear forms of the pseudo-first-order and second-order rate equation by 

Lagergren are given as (Sarı and Tuzen, 2009): 

 
log(𝑞𝑒 − 𝑞𝑡) = 𝑙𝑜𝑔𝑞𝑒 −

𝑘1

2.303
𝑡 (9) 

 𝑡

𝑞𝑡
= (

1

𝑞𝑒
) 𝑡 +

1

𝑘2𝑞𝑒
2
 (10) 

Where qt and qe (mg/g) are the amounts of the metal ions adsorbed at time (min) and at 

equilibrium, respectively. k1 and k2 (min-1) is the Lagergren rate constant for first and 

second-order equation, respectively. The adsorption rate (k1) can be determined by 

plotting log (qe-qt) against t while a plot of t/qt versus t is used for second order kinetic 

model and k2 was found from the slop of the plot.  

The kinetics parameters obtained from both models were presented in Table 7. 

From the results, it can be concluded from the coefficients of determination (R2 = 1.000) 

that the adsorption mechanism of Cu(II) onto modified CNWs follow the pseudo second 

order kinetic model. Moreover, the calculated qe value was in good agreement with 

experimental qe for the pseudo second order kinetic model. This model predicts the 

behaviour over the whole range of adsorption and is in agreement with chemical 

sorption being the rate controlling step. Similar results where the adsorption mechanism 

follow the pseudo second order kinetic model were reported by other researchers 

regarding the adsorption of Cu(II) onto the different adsorbents (Mata et al., 2008; 

Ofomaja et al., 2010). 
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Table 7: Adsorption kinetic parameters of Cu(II) onto modified CNWs 

Kinetic equation and parameter Cu(II) 

Experimental 

Co (mg/L) 10.0 60.0 

qe (mg/g) 1.91 9.19 

First-order kinetic equation 

k1 (min−1) 0.0207 0.0230 

q1(mg/g) 0.3502 4.1468 

R2 0.7863 0.8872 

Second-order kinetic equation 

k2 (g/mg min) 0.2993 0.0191 

q2(mg/g) 1.91 9.35 

R2 1.0000 0.9996 

 

4. Conclusion 

In this study, chemically modified CNWs were effective in removing Cu(II) from 

the water matrix, offering the potential to be an abundant and inexpensive available 

adsorbent and suitable alternative to expensive adsorbents. Carboxyl contents of the 

modified CNWs were determined to be 410 mmol/kg and the zeta potential of this 

adsorbent dispersed in water was approximately -74.4 mV. The adsorption capacity of 

modified and unmodified CNWs was found to be 14.65 mg/g and 0.59 mg/g, 

respectively. These results indicated that the modification step has been successfully 

modified the nanoparticle surface. Moreover, RSM and ANN models were used to 

understand the operational conditions for the removal of Cu(II) using the modified 

CNWs. To test the predictive capability of both models, unseen experiments not used in 

developing the RSM and ANN models were chosen to represent both inside and outside 

the system. The performance of both models, which were statistically evaluated, 

indicated that ANN has better superior capability than RSM model. From isotherm and 

kinetics study, it was observed that the adsorption process followed Langmuir 

adsorption isotherm and pseudo-second-order kinetics. 
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