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Abstract—Objective: We describeand evaluatean automated software tool for nerve fibre detection and quantification in 

corneal confocal microscopy (CCM) images, combining sensitive nerve fibre detection with morphological descriptors. Method: 

We have evaluated the toolfor quantification of Diabetic Sensorimotor Polyneuropathy (DSPN) using both new and previously 

published morphological features.The evaluation used 888 images from 176 subjects (84 controls and 92 patients with Type 1 

diabetes). The patient group was further subdivided into those with (n=69) and without (n=23) DSPN. Results: We achieve 

improved nerve-fibre detection over previous results (95% sensitivity and specificityin identifying nerve-fibre pixels). Automatic 

quantification of nerve morphology shows a high correlation with previously reported, manually measured, features. ROC 

analysis of both manual and automatic measurement regimes resulted in similar resultsin distinguishing patients with DSPN 

from those without: AUC of about 0.78 and 72% sensitivity/specificity at the equal error rate point. Conclusion: Automated 

quantification of corneal nerves in CCM images provides a sensitive tool for identification of DSPN. Its performance is 

equivalent to manual quantification, while improving speed and repeatability. Significance: Corneal confocal microscopy is a 

novel in-vivo imaging modality that has the potential to be a non-invasive and objective image biomarker for peripheral 

neuropathy. Automatic quantification of nerve morphology is a major step forward in the early diagnosis and assessment of 

progression, and, in particular, for use in clinical trials to establish therapeutic benefit in diabetic and other peripheral 

neuropathies. 

Index Terms—Diabetic Sensorimotor Polyneuropathy, Computer Aided Diagnosis, Corneal Confocal Microscopy, Image 

Analysis, Nerve Fibre Quantification 

———————————————————— 

1 INTRODUCTION

iabetic sensorimotor polyneuropathy (DSPN) is one 
of most common long term complications of diabe-

tes. Up to 50% of diabetic patients suffer from it [1], and it 
is estimated that about one in six diabetic patients have 
chronic painful neuropathy [2].  Several methods are cur-
rently used to quantify neuropathy, including clinical 
scoring of symptoms, quantitative sensory testing, nerve 
conduction measurements and microscopic measurement 
of intra-epidermal nerve-fibre density in skin biopsy 
samples.These methods have their advantages and limita-
tions. Thus, whilst symptoms and signs are directly rele-
vant to the patient and are easily recorded, they aresub-
jective resulting in poor repeatability [3]. Neurophysiolo-
gy is moreobjective; however it only assesses large fibres, 
which constitute a tiny proportion of all the nerve fibres 
present in a peripheral nerve and have also been shown 
to have limited reproducibility [4]. The quantification of 

intra-epidermal nerve fibre density in skin biopsies is 
objective, but is clearly invasive and requires considerable 
expertise in assessment.  There is a need for a rapid, non-
invasive assessment that is truly quantitative and assesses 
small nerve fibres, which are more likely to be involved in 
neuropathy [5, 6].  
Corneal confocal microscopy (CCM) images of nerve fi-
bres are captured from the sub-basal plexus immediately 
above Bowman’s membrane of the cornea by an in-vivo 
laser confocal microscope. Fig. 1a shows an example im-
age. One of the advantages of CCM is the entirely non-
invasive and relatively rapid (about 2 minutes) acquisi-
tion of images of small nerve fibres and other corneal 
structures. Clinical studies [7] have shown that CCM is 
capable of making quantitative assessment of DSPN and 
has the potential to be an ideal surrogate endpoint. It has 
also recently been shown to have a predictive ability ini-
dentifying diabetic patients at risk of developing DSPN 
[8] and has been used in several clinical intervention stud-
ies showing nerve fibre repair [9-11]. Interactive analysis 
has been used to derive measurements from these images, 
such as corneal nerve fibre length (CNFL), corneal nerve 
fibre density (CNFD) and corneal nerve branch density 
(CNBD) [12, 13] (Fig. 1). CNFL is defined as the total 
length of all nerve fibres visible in the CCM image per 
square millimetre. CNFD and CNBD are the number of 
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the major nerves (red lines in Fig. 1b) per square millime-
tre and the number of primary branchesemanating from 
those major nerve trunks (green dots in Fig. 1b) per 
square millimetre respectively. Although an association 
has been demonstrated between these quantitative fea-
tures and the severity of DSPN [7] in cross sectional stud-
ies, the manual analysis suffers from the usual problems 
of being labour-intensive and subjective and therefore 
raises considerable difficulties, particularly when under-
taking longitudinal follow-up studies [14]. Consequently 
the quantification results show poor reproducibility, es-
pecially in CNBD [15]. For the technology to be clinically 
useful, the analysis of images needs to be done automati-
cally. 
Here we describe a fully automatic nerve fibre detection 
and quantification system. Fig. 1a indicates that the ap-
pearance of nerve fibres in CCM images covers a wide 
contrast range, with some fibres appearing very faint on a 
noisy background, whilst other, larger, fibres show strong 
contrast. A number of studies have presented methods of 
detecting similar linear structures in different types of 
images e.g. the detection of blood vessels in retinal imag-
es [16], and the detection of curvilinear structure in 
mammograms [17]. Previous studies aimed at automatic 
fibre detection in CCM images include Scarpa et al. [18] 
who described a method for tracing nerve fibres based on 
automatically initialised seed points, and Holmes et al. 
[19] who indentified fibres based on ridge points. Sindt et 
al. [20] detected several types of objects visible in CCM 
images, including dendritic immune cells and wing cells 
in addition to nerve fibres. Dabbah et al. [21] presented a 
method of fibre detection based on a multi-scale Gabor 
filter with responses trained using a neural network. The 
best detection performance in various applications are 
achieved using methods based on machine learning, in 
which features are derived from training images.[16, 17, 
21]. 
Following fibre detection, it is required to extract indi-
vidual fibres, identify branches and quantify appropriate 
features for classification. A number of studies have in-
vestigated the quantification of a variety of image fea-
tures, describing the morphology of nerve fibres delineat-
ed either manually or automatically [13, 19, 20, 22, 23]. 
These studies have shown the relationship between sev-
eral features, including those listed above, and neuro-

pathic status. None of them, however, has addressed the 
question of diagnosis of individual subjects. 
Here we describe the development of fibre detection de-
scribed in [21] into a tool for automatic measurement of 
nerve fibre morphology to act as a diagnostic aid.  We 
have previously reported clinical results of applying this 
system to DSPN [24].  In this paper we describe the algo-
rithmic details and technical validation.  We compare the 
fibre detector with another, successful, linear feature de-
scriptor and demonstrate the best reported performance 
in detecting nerve fibres. We present algorithms for quan-
tification of morphometric features, including the estab-
lished features (CNFD, CNFL, CNBD) and novel features: 
Corneal Nerve Fibre Width Histogram (CNFWH) and 
Corneal Nerve Fibre Orientation Histogram (CNFOH). 
Finally, we report a technical validation ofthe proposed 
system based on CCM images obtained from 84 control 
subjects and 92 type 1 diabetic patients. 

2 METHODS 

2.1 CCM Images and Manual Measurement 

CCM images (Fig. 1a) were captured from all participants 
using the Heidelberg Retina Tomograph Rostock Cornea 
Module (HRT-III) as described in[13]. The image dimen-
sions are 384×384 pixels with the pixel size of 1.0417μm. 
During CCM scan, images captured from all corneal lay-
ers and six sub-basal images from the right and left eyes 
were selected for analysis. Criteria for image selection 
were depth, focus position and contrast. A single experi-
enced examiner, masked from the outcome of the medical  
and peripheral neuropathy assessment, manually quanti-
fied images of all study participants using purpose-
writtenproprietary software (CCMetrics: M. A. Dabbah, 
Imaging Science, University of Manchester) to delineate 
main fibres, branch fibres and branch points (red lines, 
blue lines and green dots respectively in Fig. 1b). The re-
producibility and reliability of manual annotation are 
reported in [15]. The specific parameters measured in 
each frame were: Corneal Nerve Fibre Density (CNFD), 
Corneal Nerve Fibre Length (CNFL) and Corneal Nerve 
Branch Density (CNBD), as described in section 1 in ac-
cordance with our previously published protocol [13]. 

 

                                      (a)                                                        (b)                                                   (c)  
Fig. 1. (a) Original CCM image.(b) Manually quantified CCM image. (c) Automatically quantified CCM image. Red lines represent main 
nerve fibres, blue lines are branches and green spots indicate branch points on the main nerve trunks. Refer to online coloured version. 



CHEN ET AL. ET AL.:  TITLE 3 

 

2.2 Automated CCM Measurement 

The automated CCM measurement process consists of 
two main steps: nerve fibre detection and nerve fibre 
quantification.  

2.2.1 Nerve Fibre Detection 

In this and similar applications [16, 17], methods based on 
machine learning have been reported to outperform oth-
ers in detection of curvilinear features. The machine 
learning method normally consists of two key elements, 
feature description and classifier training on a set of sam-
ples. 

For the feature description process, we have imple-
mented and adapted two of the most successful methods 
[17, 21] for representing curvilinear structures. Dabbah et 
al. [23] proposed a “dual-model filter” (DMF) that com-
bines a foreground model based on a Gabor wavelet with 
a Gaussian background model that scales the output ac-
cording to the level of noise. In [21] a multi-scale version 
of this detector was described, applying the DMF ateight 
orientations and at four levels of an image pyramid to 
produce a multi-dimensional feature descriptor for each 
training pixel. Berks et al. [17], seeking to enhance linear 
structures in mammograms, used the dual-tree complex 
wavelet transform (DTW) [25] to represent the character-
istic at each training pixel location also in a multi-
resolution manner. The DTW produces a response at each 
pixel that consists of a 2 (magnitude and phase infor-

mation) ×O ×N dimensional vector. O and N are the 
number of filter orientations and the number of the levels 
in the image pyramid respectively. 

Both of these detectors outperfornmed competitors in 
their respective domains.  In this study we have subjected 
them to a comparative analysis in detecting nerve fibres. 
For classifier training, the feature descriptors and their 
corresponding fibre/non-fibre labels from a set of train-
ing samples were used as the inputs to a classifier, which 
took the form ofeither a neural network orrandom forest 
[22]. The trained classification model was then used for 
classifying fibre/non-fibre pixels in unseen CCM images. 
Fig. 2b shows the output response image resulting from 
the DMF and trained neural net classifier for an unseen 
CCM image (Fig. 2a). The evaluation and comparison of 
different combinations of the two feature descriptors and 
the two classifiers are presented in section 3.   

A threshold is applied to the response image to gener-
ate a binary image. The optimum threshold value is de-
termined by the Receiver Operating Characteristic (ROC) 
curve described in section 3.1. The binary image is then 
filtered by morphological operators to fill small gaps 
within nerve fibres and link adjacent structures. The bina-
ry structures are thinned to obtain the one-pixel wide 
skeleton (Fig. 2c). Branch and end points, identified by 
counting the neighbours of each skeleton point, are each 
assigned a unique label. For some regions, the evidence 
for nerve fibres is too weak (as highlighted in Fig. 2c) to 

 

   (a)                                                          (b)                                                           (c) 

 

                                  (d)                                                        (e)                                                             (f) 
Fig. 2. (a) Original CCM image (b) Response image after nerve fibre detection (c) Nerve Fibre skeleton with highlighted weak connection 

segments (d) Nerve fibre skeleton after assessment of weak connections. (e) Automatically detected end points (hollow circles) and inter-

section points (solid circle). (f) Final detected nerve fibres. 



4 IEEE TRANSACTIONS ON JOURNAL NAME,  MANUSCRIPT ID 

 

be detected by a global threshold. However, the undetect-
ed pixels may be important in determining the nerve-
fibre connectivity. Hence, for each end point, we extrude 
30 pixels along the fibre orientations. The orientation of 
nerve fibres at each pixel location can be estimated using 
the second eigenvalue of the Hessian matrix of the re-
sponse image. If an intersection with another fibre is de-
tected and the average probability from the response im-
age of the extruded pixels is sufficiently high (> 0.2), the 
extruded line is retained, otherwise it is eliminated (Fig. 
2d). Subsequently, independent small segments and short 
branches that are less than 15 pixels long are removed, 
and the intersection points (solid circles) and end points 
(hollow circles) are calculated again as shown in Fig. 2e. 
The final binary skeleton, as shown in Fig. 2f, is used for 
total nerve fibre quantification, described in the next sec-
tion.  

2.2.2 Nerve Fibre Quantification 

Fig. 2f shows that the output of fibre detection consists of 
several networks of interconnected line segments. In or-
der to produce similar results to the manual CNFD, 
CNFL and CNBD, it is important to identify the main 
fibres within these networks and the branch points along 
the main fibres. To connect the appropriate fibre seg-
ments together, we generate four N × N matrices (MI, 
ML, MW and MO) to store the fibre intensity, fibre length, 
fibre width (described later in this section) and fibre ori-
entation information respectively for each segment. N is 
the total number of branch and end points. If the ith and jth 
end/branch points are connected by a segment, the inten-
sity, width, length and orientation information will be 
saved at the [i, j] location of the corresponding matrices; if 
they are not connected, these elements are zero. The ma-
trices of intensity (MI), length (ML) and width (MW) are 
symmetric, as the elements at [i, j] and [j, i] should be 
identical. The [i, j] and [j, i] elements in the orientation 
matrix MO represent the respectiveorientations of the 
oppositeends of the fibre segment.  

Identification of the main nerve fibres starts with the 
most prominent segments: those with greatest length and 
width. These are identified by multiplying the corre-
sponding elements of MW and ML to produce a new ma-
trix MA. The segments are considered in sequence ac-

cording to the corresponding values of MA in descending 
order. There are normally two candidate segments that 
intersect with the current segment at a branch point. The 
candidate segments are ranked for the length, orientation 
difference, intensity and width parameters respectively. 
The candidate with the highest summed rank is chosen to 
connect with the current segment. The process continues 
till an end point is reached. The relevant entry in MA is 
set to zero and the process continues until no non-zero 
elements remain in MA. Finally, a list of connected fibres 
is obtained. Only the fibres with length greater than a 
threshold are kept as the main fibres. Fig. 1b and 1c re-
spectively show the manual and automatic quantification 
results of the CCM image in Fig. 1a. The red lines show 
the principal nerve fibres, which are counted to produce 
CNFD. The blue lines indicate the secondary nerve fibres, 
which together with the principal fibres make up CNFL. 
The green dots are the branch points from the main fibres 
that are used for CNBD calculation.  

Besides the CNFD, CNFL and CNBD features that are 
readily measured in the manual analysis, automatic quan-
tification is able to calculate additional features. These 
additional CCM features include the total corneal nerve 
fibre area per mm2 (CNFA), the corneal nerve fibre width 
histogram (CNFWH) and the corneal nerve fibre orienta-
tion histogram (CNFOH). These can be calculated if the 
width and orientation at each nerve fibre location is 
known. The orientation is calculated by the Hessian 
method referred toin section 2.2.1. The nerve fibre width 
estimation for a particular segment is illustrated in Fig. 3. 
Fig. 3a shows a highlighted example nerve fibre segment 
along with a magnified version. At each nerve fibre loca-
tion, an intensity profile line of length 13 pixels (larger 
than the thickest fibre) is extracted perpendicular to the 
nerve fibre orientation, as indicated by the short straight 
lines in Fig. 3a. The profiles corresponding to a fibre seg-
ment are averaged along the length of the segment to 
generate a representativeprofile for the segment, which is 
then further averaged (Fig. 3b) with its symmetrically 
inverted profile, smoothed by a three pixel length average 
filter and normalised (Fig. 3c). Finally a Gaussian distri-
bution is fitted to the normalised profile curve (Fig. 3c). 
The final width of that segment is calculated as 2.5 (em-
pirically determined) times the RMS widthof the fitted 

 

                                    (a)                                               (b)                                                                   (c) 
Fig. 3. (a) Original CCM image with a highlighted segment, a selection of orthogonal profile lines are indicated on the enlarged inset.  Pro-
files are calculated at each pixel along the segment. (b) Average of all the profile lines along the whole fibre segment. (c)The symmetric 
profile of (b) is firstly calculated, and then normalised (Solid line). A Gaussian distribution is fitted for nerve fibre width estimation (dash 
line). The final width equals 2.5 times the RMS width (σ) of the fitted Gaussian curve.   
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Gaussian curve. CNFWH is the number of occurrences of 
different fibre widths in the range between 1 to 8 pixels, 
at 0.2 pixels interval (36 bins).The CNFA is calculated as 
sum of fibre width × fibre length of all the fibre segments 
in mm2. The CNFOH is the number of occurrences of dif-
ferent fibre orientations in the range between 0° to 179°, at 
5 degree interval (36 bins).  

3 MATERIALS AND EVALUATION 

The evaluation was conducted on a database that con-
tained 888 images captured from 176 subjects (84 controls 
and 92 diabetic patients). The subjects were divided into 3 
groups: control (n=84), type 1 diabetic patient with 
noneuropathy (n=63) and diabetic patients with neuropa-
thy (n=29). The Toronto Diabetic Neuropathy Expert 
Group (TC) [6] recommendation was followed to define 
an individual to have DSPN if he/she met both of the 
following criteria: (1) Abnormal nerve conduction – A 
peroneal motor nerve conduction velocity of <42 m/s; (2) 
a symptom or sign of neuropathy, defined as ONE of the 
following: (a) diabetic neuropathy symptom (DNS)[28]of 
1 or more out of 4, (b) neuropathy disability score 
(NDS)[28]of 3 or more out of 10. These features, along 
with a number of other clinical and physiological parame-
ters, were measured for each subject [24]. 

3.1 Evaluation of Nerve Fibre Detection 

For the nerve fibre detection evaluation, we randomly 
chose 50 images for training, and the remaining 838 im-
ages for testing. In the case of the dual-model feature de-
scriptor, we followed [21] in using 32 dimensional vectors 
(8 orientations x 4 scale pyramid levels) to describe fea-
tures at each pixel location. The dual-tree complex wave-
let feature descriptor was a 6 (orientations) x 2 (real and 
imaginary parts of DWT) x 4 (image pyramid) dimen-
sional vector at each pixel location. The two feature de-
scriptors were then classified as fibre or background pix-
els using both Random Forest (RFC) and multi-layer per-
ceptron neural network classifiers (NNC). We optimised 
performance by varying the number of training pixels 
(500, 1000, 2000 pixels randomly selected from each of 
foreground and background regions for each image), the 
number of trees (100, 200 and 500 trees) in RFC and the 
number of hidden neurons (20, 50 and 100) in the three-
layer NNC. The response images were thresholded 
andthen thinned to one-pixel wide lines. These lines were 
then compared pixel by pixel to the manually generated 
skeletons acting as ground-truth, a true positive being 
scored if the detected pixel is within a three-pixel toler-
ance of ground truth and a false positive if it is outside 
this tolerance. By varying the threshold of the response 
images, ROC curves can be generated for each of the pa-
rameter settings. Optimum performance, in terms of de-
tection accuracy and computation time, was achieved by 
using 2000 foreground and background pixels from each 
image for training, and 200 trees for RFC and 50 hidden 
neurons for NNC. 
 
In Fig. 4, we only show the ROC curves based on the op-

timum parameter settings for the four combinations of 
feature descriptors and classifiers: DMF + RFC (DMRF), 
DMF + NNC (DMNN), DTW + RFC (DTRF) and DTW + 
NNC (DTNN). From the ROC curves, it is clear that the 
combination based on the DMF outperforms the DTW 
feature descriptor. Using the NNC classifier performed 
slightly, though not significantly, better than RFC in our 
dataset, using either feature detector. We achieved a bet-
ter detection results than reported in [21] as our training 
was based on 50 randomly selected images whereas [21] 
was based on a single CCM image. We also tested the 
reliability of the training and prediction process. The pro-
cess was repeated 10 times using the DMNN method 
with a different set of 50 randomly selected independent 
training images, using the remaining images for testing. 
The average sensitivity and specificity at equal error rate 
were 95.53% ±0.31% and 94.93% ±0.26% respectively, 
showing the high repeatability and reliability resulting 
from the use of the current parameter settings.  
 

3.2 Evaluation of Nerve Fibre Quantification 

Corneal nerve-fibre density, corneal nerve fibre length 
and corneal nerve branch density (CNFD, CNFL and 
CNBD) were measured manually in each of the images 
using the CCMetrics annotation tool (denoted MCNFD, 
MCNFL, and MCNBD, respectively).  

Corresponding automated measurements, denoted 
ACNFD, ACNFL and ACNBD, were calculated using the 
proposed system in addition to total nerve-fibre area, ori-
entation histogram and width histogram (CNFA, CNFOH 
and CNFWH).For the multi-dimensional features 
CNFOH and CNFWH, we investigated the use of the 
maximum, standard deviation, skewness, kurtosis and 
logistic regression of combing all elements of the histo-
gramfeature vectors to represent the feature. The stand-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. ROC curves for nerve fibre detection using DMRF (Dual 

Model, Random Forest), DMNN (Dual Model, Neural Network), 

DTRF (Dual-Tree Wavelet, Random Forest) and DTNN (Dual-

Tree Wavelet, neural Network) respectively. 
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ard deviation of the histogram proved to be the most ef-
fective; these are denoted as SDOH and SDWH. 

For each of the subjects, the average feature values ob-
tained from their CCM images were used. Fig. 5 and Fig. 
6 show the box plots of each of the manual and automat-
ed CCM features respectively. In Fig. 5 and Fig. 6, the 
central red lines are the median, the edges of the box are 
the 25th and 75th percentiles (q1 and q3), and the whiskers 
extend to the most extreme data points that are not identi-
fied as being outliers (within the range q1-1.5(q3-q1) to 
q3+1.5(q3-q1). The outliers are plotted individually as red 
dots. A common decreasing trend from control group to 
neuropathy group can be observed on all manual and 
automated CCM features. The Pearson correlation coeffi-
cients between automatically and manually derived 
CNFL, CNFD and CNBD measurements were 0.878, 0.870 
and 0.723 respectively. The relatively lower correlation 
between manual and automatic CNBD measurement is 
due to poor reproducibility in the manual measurement 
of this feature. This has been reported in [15] and arises 

from the subjective judgement required for identifying 
branch points.  

We used both the ANOVAtest [29] and ROC analysis 
to demonstrate the capability of using the CCM image 
features to discriminate between control and non-
neuropathic groups, and between non-neuropathic and 
neuropathic patients, as defined by the Toronto Criteria.   

Tables 1 and 2 show the respective ANOVA p-values, 
the area under the ROC curve (AUC) measures and sensi-
tivity and specificity values calculated at the equal error 
point (EEP) of the ROC curves. We experimented with 
different combinations of features, from both manual and 
automated analysis, using logistic regression in a leave-
one-out manner. In these experiments each subject was 
predicted by the logistic regression model built from the 
remaining n-1 subjects, where n is the total number of 
subjects in both groups. None of the combined features 
performed better than the best single features. For com-
parison, ROC measures for the combinations of all manu-
al features or all automated features are listed in Table 1 

 

   (a)                                                          (b)                                                              (c) 

 

                                  (d)                                                          (e)                                                             (f) 
Fig. 6. Boxplots of automatically measured features for control, non-neuropathy and neuropathy groups (a) ACNFD (b) ACNFL (c) AC-

NBD (d) CNFA (e) SDOH (f) SDWH. 

  

                                   (a)                                                         (b)                                                             (c) 
Fig. 5. Boxplots of manually measured features for control, non-neuropathy and neuropathy groups (a) MCNFD (b) MCNFL (c) MCNBD. 
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and Table 2 along with the single-feature measures.  

4 DISCUSSIONS AND CONCLUSION 

A number of studies have shown the features extracted 
from Corneal Confocal Microscopy images are associated 
with the severity of diabetic peripheral neuropathy [7, 12, 
13] and the potential of CCM to quantify severity of neu-
ropathy and assess therapeutic benefit has been demon-
strated [19]. In this paper, we have presented the details 
of a complete system that is able to automatically quanti-
fy six different types of nerve fibre features in CCM im-
ages. We have proposed an optimum configuration for 
detection of nerve fibres based on a previously reported 
foreground and background model trained with a neural 
network. The automatic quantification results show a 
high correlation with manually measured CCM features 
(CNFL, CNFD and CNBD). The automated system is also 
able to produce additional CCM features that measure the 
area, width and orientation of the nerve fibres (CNFA, 
CNFWH and CNFOH). All these measures show signifi-
cant differences between the non-neuropathic and neuro-
pathic groups (p-values of ANOVA test in table 2), with 
some features achieving 72% sensitivity/specificity at the 
equal error rate point, indicating the capacity to identify 
individuals suffering from neuropathy. Our results also 
show significant differences (p-values of ANOVA test in 
table 1) between the control and non-neuropathic group, 

indicating the system’s ability to detect early signs of 
change from a healthy to a diabetic condition.  

Petropoulos et al. [24]reported a clinical evalua-
tionstudy comparing the system described in this paper 
with manual analysis of CCM images and a broader 
range of subjective and objective clinical assessment 
methods, including the Neuropathy Symptom Profile, 
vibration perception thresholds, cool and warm thermal 
thresholds, and cold and heat induced pain. Electrophys-
iology tests included, in addition to PMNCV, peroneal 
motor nerve amplitude, sural sensory nerve amplitude 
and sural sensory nerve conduction velocity.CCM fea-
tures, measured both automatically and manually, were 
found to be significantly correlated with these meth-
ods.They noted that the automatic analysis of CCM imag-
es was significantly faster than manual analysis, taking 
10-22s per image, depending on the density of fibres, as 
opposed to 2-7 minutes.  

Based on the well-established Toronto Criteria, we 
show that both manual and automated CCM features 
discriminate diabetic patients with and without neuropa-
thy. Manual and automatic measurement regimes result 
in broadly similar results: about 0.78 AUC value and 72% 
sensitivity-specificity at the equal error rate point. There 
were no significant differences between the ROCs of 
manual (MCNFD) and automated measurements (e.g. 
p=0.42 and 0.57 for ACNFD and SDWH respectively). 
The advantages in time labour and reproducibility sug-

TABLE 2 
AUC, 95% CONFIDENCE INTERVAL VALUES AND SENSITIVI-

TY-SPECIFICITY AT THE EQUAL-ERROR POINT (EEP) FOR 

MANUAL AND AUTOMATED CCM FEATURES FOR DISCRIMI-

NATION BETWEEN NON-NEUROPATHIC AND NEUROPATHIC 

GROUPS OF DIABETIC PATIENTS.   

CCM  

FEATURES 

AUC 95% 

CI 

SENSITIVITY 

SPECIFICITY 

AT EEP 

P-VALUE 

OF ANO-

VA 

MCNFD 0.7890 [0.68 

0.90] 

0.7241 <0.0001 

MCNFL 0.7137 [0.59 

0.83] 

0.6552 0.001 

MCNBD 0.6136 [0.49 

0.74] 

0.5862 0.081 

ACNFD 0.7729 [0.66 

0.88] 

0.6552 <0.0001 

ACNFL 0.7646 [0.65 

0.88] 

0.6207 <0.0001 

ACNBD 0.7001 [0.58 

0.82] 

0.5862 0.002 

CNFA 0.7542 [0.64 

0.87] 

0.7241 <0.0001 

SDOH  0.7871 [0.68 

0.90] 

0.6897 <0.0001 

SDWH 0.7772 [0.67 

0.88] 

0.7241 <0.0001 

COMBINED 

MANUAL 

0.7843 [0.68 

0.89] 

0.7100 - 

COMBINED 

AUTOMATED 

0.7531 [0.64 

0.87] 

0.6897 - 

 

TABLE 1 
AUC, 95% CONFIDENCE INTERVAL VALUES AND SENSI-

TIVITY-SPECIFICITY AT THE EQUAL-ERROR POINT (EEP) 
FOR MANUAL AND AUTOMATED CCM FEATURES FOR 

DISCRIMINATION BETWEEN CONTROL SUBJECTS AND 

DIABETIC PATIENTS WITHOUT DSPN.   

CCM  

FEATURES 

AUC 95% 

CI 

SENSITIVITY 

SPECIFICITY 

AT EEP 

P-VALUE 

OF 

ANOVA 

MCNFD 0.8063 [0.73 

0.88] 

0.7460 <0.0001 

MCNFL 0.7627 [0.68 

0.84] 

0.6825 <0.0001 

MCNBD 0.7492 [0.67 

0.83] 

0.6984 <0.0001 

ACNFD 0.7442 [0.66 

0.82] 

0.7302 <0.0001 

ACNFL 0.7814 [0.70 

0.86] 

0.7778 <0.0001 

ACNBD 0.7303 [0.65 

0.81] 

0.6667 <0.0001 

CNFA 0.6802 [0.59 

0.77] 

0.6508 0.0002 

SDOH  0.7663 [0.69 

0.85] 

0.6984 <0.0001 

SDWH 0.7884 [0.71 

0.86] 

0.7302 <0.0001 

COMBINED 

MANUAL 

0.7940 [0.72 

0.87] 

0.7143 - 

COMBINED 

AUTOMATED 

0.7477 [0.67 

0.83] 

0.7143 - 
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gest that automatically measured features may be used as 
a new, non-invasive method for diagnosing diabetic pe-
ripheral neuropathy, providing information on small 
nerve fibre damage that is not accessible by most current-
ly used methods. The only method which addresses small 
fibre damage is the intra-epidermal nerve fibre density 
(IENFD) measure, which is invasive, requiring a skin bi-
opsy and currently cannot be evaluated automatically. 
We have recently shown [30] that analysis of CCM fea-
tures has comparable diagnostic efficacy to IENFD. 

Corneal confocal microscopy has shown considerable 
success in translation to the assessment of other neuropa-
thies including Fabry disease [31], ISFN [32], CMT1A [33], 
sarcoidosis [34]. Automated quantification of corneal 
nerves provides a major step forward in the early diagno-
sis and assessment of progression, but in particular for 
use in clinical trials to establish therapeutic benefit in dia-
betic and other peripheral neuropathies.  

The automatic quantification software can be request-
ed freely from [35] for research purposes. It is currently 
being used by over 40 research groups worldwide to in-
vestigate potential relationships between CCM features 
and different types of neuropathy [36]. 
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