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A novel Brassica-rhizotron system to unravel the dynamic changes 

in root system architecture of oilseed rape under phosphorus 

deficiency 

 

• Background and Aims An important adaptation of plants to phosphorus (P) 

deficiency is to alter root system architecture (RSA) to increase P acquisition from 

the soil, but soil-based observations of RSA are technically challenging, especially in 

mature plants. The aim of this study was to investigate the root development and 

RSA of oilseed rape (Brassica napus L.) under low and high soil P conditions during 

an entire growth cycle. 

• Methods A new large Brassica-rhizotron system (~118 L volume) was developed 

to study the RSA dynamics of B. napus cv. Zhongshuang11 in soils, using top-soils 

supplemented with of low P (LP) or high P (HP) for a full plant growth period. Total 

root length (TRL), root tip numbers (RTN), root length density (RLD), biomass and 

seed yield traits were measured. 

• Key Results TRL and RTN increased more rapidly in HP than LP plants from 

seedling to flowering stages. Both traits declined from flowering to silique stages, 

and then increased slightly in HP plants; in contrast, root senescence was observed in 

LP plants. RSA parameters measured from the polycarbonate plates were empirically 

consistent with analyses of excavated roots. Seed yield and shoot dry weights were 

closely associated positively with root dry weights, TRL, RLD and RTN at both HP 
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and LP.  

• Conclusions The Brassica-rhizotron system is an effective method for soil-based 

root phenotyping across an entire growth cycle. Given that root senescence is likely 

to occur earlier under low P conditions, crop P deficiency is likely to affect late water 

and nitrogen uptake which is critical for efficient resource use and optimal crop 

yields. 

Key words: oilseed rape (Brassica napus L.), phosphorus deficiency, root system 

architecture, dynamic changes, Brassica-rhizotron 

 

INTRODUCTION 

In plants, phosphorus (P) is a structural element of nucleic acids, enzymes, 

phosphoproteins and phospholipids, and is involved in energy transfer, enzyme 

reactions, photosynthesis and carbon partitioning (Marschner, 2012). Plant uptake of 

P is mainly as inorganic phosphate (Pi), which is typically present at concentrations 

<10 µM in the soil solution and limited by slow rates of diffusion and mass flow 

(Bieleski, 1973). In soils, Pi availability to plant roots is limited by strong binding 

with iron-aluminum oxides in acid environments and by carbonates in calcareous 

soils (Raghothama, 1999). Strategies for cultivating plants under low soil Pi 

availability include those aimed at improving P utilisation, and enhancing the 

acquisition or uptake of P (Vance, 2001), for example, by increasing root growth or 

altering root system architecture (RSA) for efficient root foraging (White et al., 

2013). 
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   Under P-limited conditions, Arabidopsis thaliana shows inhibition of primary 

root length (Ticconi et al., 2004; Sanchez-Calderon et al., 2005; Svistoonoff et al., 

2007; Fang et al., 2009; Giehl et al., 2014), stimulation of lateral roots and increased 

root hair production (Williamson et al., 2001; Linkohr et al., 2002; Malamy, 2005; 

Peret et al., 2011). The RSA of common bean and soybean is shallow at low P 

(Bonser et al., 1996; Lynch and Brown, 2001, 2008; Rubio et al., 2003). In maize 

(Mollier and Pellerin, 1999; Peng et al., 2012) and rice (Fang et al., 2009; Zhu et al., 

2011; Rose et al., 2012; Wu et al., 2013), more adventitious roots are produced 

under P deficient conditions. These alternations of RSA traits enhance plant 

acquisition of P. 

 Oilseed rape (Brassica napus L.) is one of the most important oil crops globally, 

grown on 36.5 Mha (FAO, http://faostat.fao.org/, 2013). In China, which is the 

world’s leading producer of oilseed rape, 50-70% of oilseed rape cultivated land 

(~7.52 Mha) in Hubei, Sichuan, Hunan, Anhui, Jiangsu, and Henan Provinces, is 

severely P-deficient (Yan et al., 2006). Under such conditions, oilseed rape growth is 

inhibited, with purpling of cotyledons and with older leaves becoming dark green at 

the seedling stage. At maturity, plants have fewer branches and seed setting is low 

(Ding et al., 2012; Shi TX et al., 2013a, 2013b). Application of P fertilizers increases 

the number of plant branches, pod number per plant, seeds per pod, and 1000-seed 

weight (Cheema et al., 2001). In B. napus roots, primordia and lateral roots are 

stimulated and primary root growth is reduced under P-stress at the seedling stage 

(Akhtar et al., 2008; Yang et al., 2010; Shi TX et al., 2013b). However, root growth 
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is maintained relative to shoot growth, resulting in increasing root:shoot biomass 

ratios during early flowering and ripening (Ukrainetz et al., 1975; Hermans et al., 

2006). Brassica napus cultivars with high physiological P use efficiency (PPUE) 

have been shown to have longer lateral root lengths than those cultivars with low 

PPUE under P-stress (Akhtar et al., 2008). In addition, the plant P concentration and 

the diffusion coefficient of Pi increased at LP by release of large amount of 

P-mobilizing root exudates, such as citrate, malate or oxalate (Hoffland et al., 1989; 

Zhang et al., 1997; Pearse et al., 2006; Wang et al., 2013).  

The effect of P deficiency on root development and its correlation with plant shoot 

growth during whole growth of oilseed rape has not yet been reported in detail, 

potentially for two reasons. First, it is difficult to observe roots in the field 

nondestructively. Second, the growth period (e.g. ~250 d in Wuhan) makes repeated 

observations extremely challenging. The aim of this study was to investigate the root 

development and RSA of oilseed rape (Brassica napus) under low and high soil P 

conditions during an entire growth cycle. This study sought to employ conditions 

similar to real field environment, and to determine the effects of P applied in the top 

soil (0-20 cm) on the root growth of oilseed rape at different soil depth. Given the 

difficulties of studying plant root development and RSA in field soils during an 

entire growth cycle (Nagel et al., 2012, Fender et al., 2013), a large rhizotron system 

was designed and deployed.  

 

MATERIALS AND METHODS 
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Plant material 

The oilseed rape (Brassica napus L.) cultivar used in this study was 

“Zhongshuang11”, a double low (low gluconsinolate, low erucic acid), semi-winter, 

commercial cultivar with high potential seed yields, which is grown widely in the 

middle- and lower-reaches of the Yangzi river in China. 

 

Soil type 

The soil used in this study was a grey purple sandy soil, derived from sandy shale, 

and collected from XinZhou district (Wuhan, China, 28.42°N 112.33°E). The 

basic agrochemical properties on a dry soil basis were: pH (1:1 H2O w/v) 7.7, 

organic carbon (dichromate oxidation method) 1.33 g kg-1, total nitrogen (kjeldahl 

acid-digestion method) 0.25 g kg-1, available nitrogen (alkali-hydrolyzable nitrogen) 

12.7 mg kg-1, total P 0.072 g kg-1, available P (Olsen-P) 4.0 mg kg-1 and hot water 

soluble boron (HWSB) 0.10 mg kg-1. The methods are described by Shi et al. (2013b) 

and Wang et al. (2014). 

Experimental design 

A total of 36 rhizotrons were used in this study. Each rhizotron comprised a 

container made of polyvinyl chloride (PVC) sheets, whose rear side was a 

transparent polycarbonate plate. The container was 670 mm width, 180 mm deep and 

1000 mm height, giving a volume of ~118 L. A hollow steel tube (￠50 mm × 7 

mm) was used to support the rhizotron, with the tubes fixed to grooves on two 

parallel walls made of concrete and brick. The rear side of the rhizotron was leant 

against the steel tube at approximately 15° from the vertical, which allowed the roots 



 

7 
 

grow along the polycarbonate plate. A black blow molding board was attached to the 

outside of the polycarbonate plate to create a dark environment for root growth. 

Initially, each rhizotron was filled with 120 kg of the same dry soil without 

fertilization. Soil was sieved to 4 mm. Then, a further 30 kg of the treated soils was 

added to each rhizotron so that 18 units received 5 mg P2O5 kg-1 soil (low 

phosphorus, LP) or 150 mg P2O5 kg-1 soil (high phosphorus, HP). The depth of 

topsoil with the contrasting P-treatments was ~200 mm. Ground fertilizers consisted 

of 200 mg kg-1 N ((NH4)2SO4), 150 mg kg-1 K2O (KH2PO4), and 250 mg kg-1 

MgSO4·7H2O, respectively were mixed evenly with topsoil. Next, 30 mL of 

micronutrient solution with 2.84 g L-1 H3BO3, 1.80 g L-1 MnCl2 4H2O, 0.22 g L-1 

ZnSO4·7H2O, 0.08 g L-1 CuSO4·5H2O and 0.024 g L-1 Na2MoO4·2H2O, and 30 mL 

0.05 mmol L-1 Fe-EDTA was applied uniformly to the topsoil. Finally, each rhizotron 

was irrigated pre-sowing with 6 L distilled H2O. The bulk density of soil was 1.4 g 

cm-3 and the gravimetric moisture content was 120 g kg-1. A groove in the topsoil 60 

cm long, 1 cm wide, 2 cm deep and 2 cm from the glass plate was made in each 

rhizotron, and 30 seeds were sown evenly in the groove and covered lightly with soil. 

Each rhizotron was covered with a thin plastic film until the seeds germinated (~2 d). 

The seeds were sown on Oct. 23th 2013. Two weeks after germination, seedlings 

were thinned to nine plants per rhizotron, and after a further three weeks, thinned to 

three plants per rhizotron. 

The rhizotrons were arranged in a fully randomized design with three replications. 

A total of 27 plants at the seedling stage and nine plants during the budding, bolting, 
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flowering, silique and ripening stages of each treatment were sampled respectively. 

Because P deficiency delayed the reproductive growth period of oilseed rape, 

sampling times at LP were delayed by 22 d at budding stage, 6 d at bolting stage and 

1 d at flowering stage.  

 

Root system architecture (RSA) analysis and data collection 

(1) Polycarbonate plate root system architecture 

Before sampling, the black blow molding boards attached to the polycarbonate plate 

were removed and polyester paper (670 mm wide × 1000 mm long) was attached to 

the glass plate. The root morphology was then traced with a marker with 0.2 mm 

width (Creative Wealth Stationery Co., ltd, Shaoguan, Guangdong, China). The 

whole root and two edges of the wider roots were all traced. Each sheet of polyester 

paper was then scanned with A0 size scanner (SmartLF GX+42C, Colortrac, 

Cambridge, UK) and a gray scale image was taken at a resolution of 400 dpi. Images 

were saved in JPG format and then converted to BMP format by image binarization 

with ArcMap V9 software (ArcGIS, Environmental Systems Research Institute, Inc., 

Redlands, CA, USA). Total root length (TRL, m) and the number of root tips (RTN) 

were determined with WinRHIZO program (Regent Instruments Inc., Quebec, 

Canada). Root length from the top to the bottom of each image was calculated in 5 

cm sections and polycarbonate plate root length density (RLD, mm/mm2) = root 

length (mm) / analyzed area (mm2). 
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(2) Excavated root system architecture  

After shoots were sampled, the polycarbonate plate was removed. The entire root 

system was taken out of the soil carefully and cleaned with tap water once and 

distilled H2O twice immediately. Root diameter distributions were measured using 

Vernier calipers (Everpower-557115, Lishui, Guangdong, China). First, lateral roots 

were cut from the main root. For each lateral root, the diameter was measured at the 

point of intersection with the main root in three rotational positions. Then, the root 

was put in a clear perspex tray with a film of distilled H2O and scanned with a 

modified flatbed scanner (Epson V700, Nagano-ken, Japan) at 400 dpi. Larger root 

systems were divided into several sections and scanned one-by-one. The images of 

roots were analyzed with WinRHIZO software (Regent Instruments Inc., Quebec, 

Canada).  

 

Agronomic traits 

(1) Biomass measurement 

From seedling to flowering stages, the plants were divided into shoot, (mature) 

hypocotyl and root, respectively, and the samples were cleaned with distilled H2O. 

Because almost all the leaves had senesced at silique stage, typical of oilseed rape, 

the shoot was divided into pod and straw at silique stage; and straw, pericarp and 

seed at harvest stage, respectively. Samples were oven-dried at 105°C for 30 min, 

then at 65°C for 48 h, to constant mass. Dried samples were weighed and ground to a 

powder for P determination in a micro plant grinding machine (Taisite-FZ102, 
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Jinghai, Tianjin, China).  

 

(2) Seed-yield and yield-related traits 

Plant height (PH) and branch number (BN) per plant were measured before harvest. 

Stems were then cut, pod number (PN) per plant and pod number of main 

inflorescence (PNM) were counted. 25 siliques from each plant were sampled 

randomly and seed numbers counted. After a subsequent ripening period (typically 

two weeks), all siliques from each plant were threshed and total seed yield and 

1000-seed weight determined.  

 

(3) Determination of tissue P concentration  

A micro-Kjeldahl method was used to determine P concentration in plant tissues. 

First, 0.1 g ground sample and 5 mL 98% H2SO4 were added into a 50 mL digestion 

tube and shaken for 10 h. Then, the digestion tube was put in the heating block and 

digested at 250°C for 2 h with 5-10 drops of H2O2 added. Finally, 4 mL digested 

solution from each tube was taken out and diluted with 6 mL distilled water to 

determine P concentration using a Continuous-Flow injection analyzer (AA3, Seal 

Analytical GmbH, Bran, Germany). 

  

Calculations and analysis 

The following equation was used to calculate the physiological P use efficiency 

according to Hammond et al (2009). 
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<<TYPESETTER:PLEASE INSERT EQUATION 1 HERE>> 

 

Statistical analyses  

We used Genstat®V16 (VSN International, Oxford, UK) to analyze the data. Analysis 

of variance (ANOVA) was used to identify significant differences (P= 0.05) in the 

investigated traits among treatments and growth periods. The least significant 

difference (LSD) had also been conducted to test the significant difference in the 

root length density in the same soil depth between LP and HP. Figures were made 

using Sigma Plot 11 (Systat Software Inc., Chicago, Illinois). 

RESULTS 

Large rhizotron system enables efficient phenotyping root system architecture  

Polycarbonate plate root system architecture (plate RSA) including total root length 

(TRL) and the number of root tips (RTN) (Fig. 2B, D) showed similar trends to 

excavated-RSA traits (Fig. 2A, C) during the entire growth cycle. Both plate RSA 

and excavated RSA traits indicated that P deficiency inhibited root development 

during the entire growth cycle except for TRL and RTN based on plate RSA at 

silique stage (Fig. 2).  

At LP, the maximum values of TRL and RTN of excavated-RSA and plate RSA 

traits occurred at the silique stage (Fig. 2). However, at HP, the maximum values of 

excavated-RSA traits were observed at flowering stage and plate RSA traits at the 

bolting stage (Fig. 2). Although, there was no significant difference observed in RTN 

of plate RSA traits at LP from budding to flowering stages, an increase in both of 
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excavated-RSA traits was observed during this period. 

 

Root system architecture (RSA) of cv. Zhongshuang 11 during growth under 

contrasting phosphate availabilities 

The TRL and RTN increased rapidly at HP from the seedling stage and reached a 

maximum at flowering stage (Fig. 2A, C). These root traits then declined from 

flowering to silique stages and finally increased slightly from silique to harvest 

stages. In contrast, TRL and RTN at LP increased much more slowly from seedling 

to silique stages, and then decreased significantly from silique to harvest stages (Fig. 

2A, C). Both TRL and RTN at HP were higher than at LP throughout growth, 

notably at flowering and ripening stages.  

Total root number and root number within each diameter range of 2-5 mm and 5- 

10 mm decreased from flowering to silique stages, and then increased from silique to 

harvest stages at HP (Fig. 3A), however, no significant differences were observed in 

all above-mentioned root traits at LP. Moreover, root numbers within each diameter 

range, e.g. 2-5 mm, 5-10 mm, >10 mm at LP were lower than that at HP for each 

growth period (Fig. 3A). Roots in the diameter range 2-5 mm accounted for around 

50% of the total root number at both LP and HP. In addition, RDW of each root 

diameter range of <2 mm, 2-5 mm, 5-10 mm and >10 mm were greater at HP than at 

LP in flowering, silique and ripening stages (Fig. 3B). RDW within root diameter 

range >10 mm accounted for approximately 60% of the total DW at HP and 50% of 

the total DW at LP.  
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Dynamic changes in root length density (RLD) in different soil depths occurred 

throughout growth in both P treatments (Fig. 4). At the seedling stage, peak RLD 

occurred in soil depth of 10 cm in both P treatments. RLD then declined sharply 

from soil depth of 10 cm to 40 cm in both P treatments. The RLD at HP was much 

greater than at LP from soil depths 0 to 25 cm, but slightly less than at LP from soil 

depths 30 to 45 cm (Fig. 4A). From budding to harvest stages, there were two peaks 

of RLD, one in soil depth of ~20 cm and another ranged in soil depths 60 to 80 cm, 

under both P conditions (Fig. 4B-F). The RLD at HP was greater than that at LP in 

almost all the soil layers from budding to flowering stages. At the silique stage, RLD 

at LP was slightly greater than at HP from soil depth 0 to 30 cm. However, there 

were no significant differences in RLD between LP and HP treatments from soil 

depths 30 to 75 cm at the silique stage (Fig. 4E). At the ripening stage, there was no 

significant difference in RLD between LP and HP from soil depths 0 to 15 cm, RLD 

at HP was slightly higher than that at LP from soil depths 20 cm to 80 cm (Fig. 4F).  

The average RLD of ZS11 at HP increased markedly from 0.015 mm mm-2 at 

seedling stage to 0.098 mm mm-2 at the bolting stage. It then declined to 0.058 mm 

mm-2 at the silique stage and finally increased to 0.070 at the ripening stage. The 

average RLD at LP increased constantly from 0.012 mm mm-2 at the seedling stage 

to 0.064 mm mm-2 at the silique stage, and then it decreased to be 0.053 mm mm-2 at 

ripening stage (Table 1). On the basis of this contrasting P availability in the top soil 

together with dynamic variation of RLD in different soil depths, the spatial 

distribution of RSA varied significantly with root development in soil at both LP and 
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HP. These results show that our rhizotron system can be used to identify valuable 

root traits related to P accessibility. 

 

Root and shoot biomass of cv. Zhongshuang 11 during growth under contrasting 

phosphate availabilities 

Root dry weight (RDW) at HP was significantly greater than at LP throughout the 

entire growth period (Fig. 5A). RDW at HP increased rapidly from seedling to 

bolting stages and then increased slowly from bolting to silique stages, and finally 

declined slightly from silique to ripening stages. However, at LP, RDW increased 

slowly from seedling to flowering stages, then decreased rapidly from flowering to 

silique stages, and finally increased from silique to ripening stages (Fig. 5A).  

Shoot dry weight (SDW) at HP increased rapidly from seedling to bolting stages 

and then increased more slowly from bolting to silique stages, and finally decreased 

slightly from silique to ripening stages (Fig. 5B). At LP, SDW increased slowly from 

seedling to silique stages, then decreased slightly from silique to ripening stages, 

which in contrast to the increased trend of RDW at silique stage (from flowering to 

ripening stages) at LP (Fig. 5B). At HP, the DW of pod and straw at silique stage and 

DW of pericarp, seed, and straw at ripening stage were greater than that at LP (Fig. 

5C).  

The root:shoot biomass ratio (R/S ratio) increased considerably from seedling to 

flowering stages at HP, while at LP, the R/S ratio firstly declined slightly from 

seedling to budding stages, then increased from budding to flowering stages. At both 
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LP and HP, R/S ratio declined from flowering to silique stages and finally increased 

slightly from silique to ripening stages (Fig. 5D). The R/S ratios at LP were 

significantly greater than those at HP from seedling to bolting stages, and were much 

less than at HP from silique to ripening stages (Fig. 5D). 

 Seed yield of ZS11 at HP was about three times greater than at LP (Table 2). 

Almost all the yield components at LP were far less than that at HP, such as number 

of primary branches per plant (BN), pod number per plant (PN), 1000-seed weight, 

seed number per pod (SN), yet, the height to the first primary branch (FBH) at LP 

(56.3±1.6 cm) was slight higher than that at HP (48.4±2.5 cm). There was no 

significant difference in pod number of main inflorescence (PNM) between LP and 

HP.  

 

Physiological phosphorus use efficiency of cv. Zhongshuang 11 during growth under 

contrasting phosphate availabilities 

Root and (mature) hypocotyl P concentration decreased continually from seedling to 

ripening stages at both LP and HP (except at budding stage at HP). Additionally, root 

and (mature) hypocotyl P concentrations at LP were less than those at HP, notably 

from seedling to late flowering stages (Fig. 6A, B). Root P content increased 

considerably from seedling to bolting stages, and then declined to silique stage at HP 

(Table 3). Root P content increased from seedling to budding stages at LP, then 

progressed slightly from budding to silique stages, and finally declined a little from 

silique to harvest stages. During the entire growth period, both root and (mature) 
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hypocotyl P content at LP were much lower than those at HP (Table 3).  

Shoot P concentration at HP decreased from seedling to bolting stages, and then 

increased slightly from bolting to flowering stages (Fig. 6C). In contrast, shoot P 

concentration at LP decreased sharply from seedling to budding stages, and then 

continued to decline from budding to flowering stages. Shoot P concentration at HP 

was greater than at LP from seedling to flowering stages, and shoot P contents at HP 

were far higher than at LP during the whole growth period except for at early 

seedling stage. Pod and seed accounted for high proportion in P concentrations and 

contents at silique and ripening stages (Fig. 6D).  

Physiological P use efficiency (PPUE) of roots increased more rapidly at HP than 

at LP from budding to ripening stages (Fig. 7A). The PPUE of (mature) hypocotyl 

were much greater at HP than at LP from flowering to ripening stages (Fig. 7B). 

Shoot PPUE increased from seedling to bolting stages at HP, and then declined 

slightly from bolting to flowering stages (Fig. 7C). At LP, PPUE of shoot increased 

much slowly than at HP from seedling to flowering stages. The PPUE of pod and 

straw at silique stage, straw and seed at ripening stage, were much higher at HP than 

at LP (Fig. 7D).  

 

DISCUSSION 

Brassica-rhizotron system 

Several approaches for phenotyping root system architecture (RSA) from lab to field 

have been developed. Plants grown in a nutrient solution (Gericke, 1937; Yang et al., 
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2010), paper culture (Hammond et al., 2009; Yang et al., 2010; Adu et al. 2014; 

Thomas et al., 2016) or clear gel media (Bengough et al., 2004; Iyer-Pascuzzi et al., 

2010; Shi et al., 2013c) can be used to remove the influence of complex soil 

environments on root growth. Plants cultivated in sand-filled pots or PVC tubes 

could be used to predict root development of plants in more complex substrates (Zhu 

et al., 2011). In the field, transparent tubes (minirhizotrons) can be used to 

investigate the roots which touch the tube and so can be well-suited for studying fine 

roots (Iyer-Pascuzzi et al., 2001). Additionally, wall techniques or root windows can 

be used to create an observing plane to detect root growth along soil profiles 

(Polomski and Kuhn, 2002). Other promising technologies, such as X-ray computed 

tomography (CT) or Magnetic resonance imaging (MRI) are promising tools for 

visualizing plant root systems within their natural soil environment noninvasively 

(Tracy et al., 2010; Mairhofer et al., 2012). The overarching characteristic of RSA 

studies in the field is that it is logistical challenging to adequately assess RSA 

throughout growth. Utilizing and combining different imaging systems, integrating 

measurements and image analysis where possible, and amalgamating data will allow 

researchers to gain a better understanding of root:soil interactions (Downie, et al., 

2015). 

The Brassica-rhizotron system used in this study was specifically designed to 

satisfy routine evaluation of roots growth of oilseed rape in soil environment 

throughout an entire growth period (Fig. 1). Whilst most of the roots of oilseed rape 

would be expected reach the transparent plate due to gravitropism, two or three 
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lateral roots of each plant did not touch the transparent plate. Furthermore, during 

plant development, the ratio of the roots observed at the transparent plate decreased. 

However, at both P levels, dynamic changes of TRL and RTN observed on the 

polycarbonate plate-RSA exhibited the same trend with the parameters of 

excavated-RSA during the whole growth stage (Fig. 2). These indicated that our 

rhizotron system could be used to conduct non-destructive root system phenotyping 

using polycarbonate plate RSA root parameters as a proxy. 

 

Root system growth 

Allen and Morgan (1975) identified two phases of root growth in oilseed rape, one 

up to anthesis and another 2 weeks post-anthesis. Other studies demonstrated that 

root biomass of oilseed rape progressed to the maximum at late-flowering (Gan et al., 

2009) or silique stages (Wang et al., 2014) and then decreased. Our study indicated 

that the maximum value of RDW occurred at the silique stage at HP, but occurred 

earlier at LP, at the flowering stage (Fig. 5A). However, the DW of lateral roots with 

diameter <2 mm, 2-5 mm, 5-10 mm and 10-15 mm was much higher at flowering 

than at silique stage at both P levels (Fig. 3B). These indicated that lateral root, 

rather than primary root, plays a vital role in the construction of root morphology 

and root biomass. Root length density of oilseed rape typically decreases 

exponentially with soil depth (Yu et al., 2007; Whalley et al., 2008; Liu et al., 2011). 

In our study, the decrease in RLD was not smooth from bolting to silique stages (Fig. 

4), which was probably attributed to the water and nutrients movement and 
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distribution in the soil affected by irrigation (White and Kirkegaard 2010; Jin et al., 

2015). 

 

Effect of low phosphorus on the root and shoot growth of oilseed rape 

Root and shoot biomass was less under P deficiency throughout the entire growth 

period. Moreover, the difference between the two P treatments increased during 

growth (Fig. 5). Lower biomass accumulation could be the result of reduced net 

photosynthesis (source limitation), but may also be due to direct negative effects of 

low P availability on growth (sink limitation). Reductions in root growth of rice 

under P deficiency were not caused by source limitations, but were due to a more 

direct effect of low P availability on growth. Even at sub-optimal tissue P 

concentrations <0.7 mg P g-1 DW, plants are able to produce enough assimilates to 

sustain growth that is limited directly by low P availability (Wissuwa et al. 2005). In 

this study, the P concentrations of (mature) hypocotyl, root and shoot were far more 

than 0.7 mg P g-1 DW from seedling to flowering stages (Fig. 6A-C). During the 

silique and ripening stages, although the straw concentration were less than 0.7 mg P 

g-1 DW, there were no significant differences in the straw concentration between at 

LP and at HP (Fig. 6D).  

The R/S ratio reached a maximum value at the flowering stage at both LP and HP. 

Moreover, the R/S ratios at LP were much higher than that at HP from seedling to 

bolting stages (Fig. 5D). The increase in R/S ratio under P starvation is due to the 

increase in partitioning of carbohydrates towards the roots (Fredeen et al., 1989; 
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Hermans et al., 2006; Hammond and White, 2008, 2011). Observations showed that 

both root and shoot growth are directly affected by Pi availability and that the 

increase in R/S ratio frequently observed under P deficiency is causally due to P 

rather than carbohydrate partitioning to roots (Wissuwa et al., 2005). However, in 

this study, the R/S ratios at LP were much lower than at HP from flowering to 

ripening stages (Fig. 5D). The reason could be attributed to reduction of RDW and 

relatively higher increase of SDW at LP as compared with that at HP (Fig. 5 A and 

B). This pattern suggested that root growth is tightly associated with shoot 

development during the early vegetative period and then the relationship weakens 

during the reproductive growth stage, which is consistent with previous studies 

(Snapp and Shennan, 1992; Wells and Eissenstat, 2003; Peng et al., 2010). Total root 

length (TRL), root tip number (RTN) and root length density (RLD) of oilseed rape 

were reduced under P deficiency across almost all growth stages (Figs. 2 and 5; 

Table 1), and decreased P uptake (Fig. 6) and root growth (Fig. 5), leading to 

reduced shoot growth (Fig. 5), PPUE of tissues (Fig. 7) and seed yield (Table 2). 

Large amounts of photosynthate are likely to be transferred preferentially to 

developing pods on the main inflorescence, rather than to maintain root growth 

under low P stress at pod-filling stage (Fig. 5; Table 2). 

 

Conclusions 

Our new large rhizotron system (~118 L) provides an effective and efficient 

method to study dynamic RSA of oilseed rape across an entire growth period, which 
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therefore helps to bridge the gap between lab and field study of roots. Total root 

length, root tip number, root and shoot DW of oilseed rape under P deficient 

condition were reduced throughout growth. Interestingly, P deficiency also showed 

that root senescence is likely to occur earlier under low P conditions, which is crucial 

for water and mineral nutrients uptake and the production of seed yield (Blum, 2005; 

Foulkes et al., 2009; White et al., 2015). 
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TABLE 1. Root length density of cv. Zhongshuang 11 (Brassica napus L.) at LP (low 

phosphorus) and at HP (high phosphorus) 

 

Growth Stage 

 Seedling Budding Bolting Flowering Silique Ripening 

HP 0.015±0.002 a 0.062±0.005 a 0.098±0.009 a 0.079±0.002 a 0.058±0.0006 a 0.070±0.0009 a

LP 0.012±0.0006 a 0.029±0.003 b 0.037±0.003 b 0.041±0.005 b 0.064±0.001 b 0.053±0.006 b

 

Note: Root length density (mm·mm-2) = total root length (mm) / total root area (mm2) . 

Values are mean±SE of 27 plants at the seedling stage and nine plants during the budding, 

bolting, flowering, silique and ripening stages. Different lower case letters denote significant 

difference (P< 0.05) among treatments.  
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TABLE 2. Seed yield and yield components of cv. Zhongshuang 11 (Brassica napus L.) at LP 

(low phosphorus) and at HP (high phosphorus) 

 

 LP HP 

SY 11.6±0.8 b 35.6±1.7 a 

BN 4.0±0.3 b 8.7±0.6 a 

PN 141.3±17.4 a 368.0±31.4 a 

PNM 62.0±3.9 a 66.2±4.6 a 

SW 3.4±0.1 b 4.0±0.1 a 

SN 21.1±0.9 b 23.6±0.3 a 

 

Note: Seed yield (g; SY), number of primary branches per plant (n; BN), pod number per 

plant (n; PN), pod number of main inflorescence (n; PNM), seed weight of 1,000 seeds (g per 

1000 seeds; SW), seed number per pod (n; SN). Values are mean ± SE of nine plants. 

Different lower case letters denote significant difference (P< 0.05) among treatments. 
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TABLE 3. P content of cv. Zhongshuang 11 (Brassica napus L.) at LP (low phosphorus) and 

at HP (high phosphorus).  

Growth stages 
Shoot Root Crown 

HP LP HP LP HP LP 

Seedling 3.26±0.09a 0.53±0.01b 0.19±0.04a 0.08±0.01b 0.17±0.01a 0.03±0.01b 

Budding 105.26±16.97a 12.51±2.89b 16.68±1.08a 3.01±0.33b 4.61±1.34a 0.03±0.08b 

Bolting 226.30±21.47a 29.14±2.86b 34.45±9.35a 3.53±0.01b 9.20±0.91a 1.30±0.28b 

 Flowering 246.29±19.52a 45.10±5.08b 18.80±2.79a 3.55±1.13b 9.50±0.48a 1.93±0.72b 

Silique 214.70±16.44a 64.94±2.21b 7.39±0.46a 3.65±0.98b 1.86±0.42a 0.45±0.06b 

Ripening 291.44±12.45a 165.81±33.57b 9.02±0.01a 1.95±0.82b 0.78±0.01a 0.29±0.05b 

 

Note: Values are mean±SE of 27 plants at the seedling stage and nine plants during the 

budding, bolting, flowering, silique and ripening stages. Different lower case letters denote 

significant difference (P< 0.05) among treatments.  
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FIG. 1. Rhizotron. (A) The container (up to a volume of ~118 L) (1) with dimensions 670 

mm wide×180 mm deep×1000 mm height has a piece of transparent polycarbonate attached 

(1b), a hollow steel tube￠50 mm×7 mm used to support the rhizotron (2) and two 

concrete-sustained walls (850 mm height) with grooves (3) 1a, a drain valve; 1d, screw; 1e, 

clamp. (B) An installation diagram of the rhizotron. 1b, transparent polycarbonate; 1c, a 

piece of black blow molding board; 1e, clamp. (C) Polycarbonate plate root system 

architecture (plate RSA) of Zhongshuang 11 (Brassica napus L.) at the budding stage at high 

phosphorus (HP), 134 d after sowing. Primary roots (ⅰ) and lateral (ⅱ) roots are indicated. 

(D) The BMP format image of plate RSA. 

 

FIG. 2. Dynamics of total root length (A, B) and root tip number (C, D) of cv. Zhongshuang 

11 (Brassica napus L.) grown in rhizotrons at low (LP) and high (HP) phosphorus treatments. 

A and C show the root traits excavated from soil. B and D show the root traits traced on the 

polycarbonate plate. Values are mean±SE of 27 plants at the seedling stage and nine plants 

during the budding, bolting, flowering, silique and ripening stages. The error bars indicate the 

standard error of the mean. 

 

FIG. 3. Number (A) and dry weight (B) of lateral roots of different diameter ranges of cv. 

Zhongshuang 11 (Brassica napus L.) at low (LP) and high (HP) phosphorus treatments, from 

flowering to ripening stages from excavated soils. Fig. 3 A does not include numbers of 

lateral roots with diameter <2 mm because they are too numerous to calculate. Values are 

mean±SE of 27 plants at the seedling stage and nine plants during the budding, bolting, 

flowering, silique and ripening stages. Different lower case letters on right side of the bar 

denote significant difference (P< 0.05; Fisher LSD) within a given diameter class. 

 



 

46 
 

FIG. 4. Root length density of cv. Zhongshuang 11 (Brassica napus L.) at different soil depths 

at low (LP) and high (HP) phosphorus treatments. Growth stages are separated as panels A, 

seedling; B, budding; C, bolting; D, flowering; E, silique; F, ripening. Root length density is 

calculated based on the polycarbonate plate root traits. Values are mean±SE of 27 plants at the 

seedling stage and nine plants during the budding, bolting, flowering, silique and ripening 

stages. The vertical bar in the figures indicate the size of the least significant differences 

(LSD) to allow comparison of any two means each growth stage. 

 

FIG. 5. Root dry weight (A), total plant dry weight (B), shoot dry weight (C) and root:shoot 

biomass ratio (D) of Zhongshuang 11 (Brassica napus L.) at different growth stages at low 

(LP) and high (HP) phosphorus treatments. Values are mean±SE of 27 plants at the seedling 

stage and nine plants during the budding, bolting, flowering, silique and ripening stages. The 

error bars indicate the standard error of the mean. 

 

FIG. 6. P concentration in root (A), (mature) hypocotyl (B) and shoot (C, D) of cv. 

Zhongshuang 11 (Brassica napus L.) during grown at low (LP) and high (HP) phosphorus 

treatments. Values are mean±SE of 27 plants at the seedling stage and nine plants during the 

budding, bolting, flowering, silique and ripening stages. The error bars indicate the standard 

error of the mean. 

 

FIG. 7. Physiological P use efficiency (PPUE) of root (A), (mature) hypocotyl (B) and shoot 

(C, D) of cv. Zhongshuang 11 (Brassica napus L.) grown at low (LP) and high (HP) 

phosphorus treatments. Values are mean±SE of 27 plants at the seedling stage and nine plants 

during the budding, bolting, flowering, silique and ripening stages. The error bars indicate the 

standard error of the mean. 



 

 

Equation 1.  

)(P LPat ion concentrat P Tissue
)(DW LPat  Dry weightor 

)(P HPat ion concentrat P Tissue
)(DW HPat  Dry weight  (PPUE) efficiency use P calPhysiologi

low

LP

high

HP=



FIG. 1 



Growth stages

Seedling Budding Bolting Flowering Silique Ripening

R
o

o
t 
ti
p

 n
u
m

b
e

r

0

100

200

300

400

500

600

HP 

LP 

Growth stages

Seedling Budding Bolting Flowering Silique Ripening

R
o

o
t 
ti
p

 n
u
m

b
e

r

0

5000

10000

15000

20000

25000

30000

35000

HP 

LP 

T
o

ta
l 
ro

o
t 
le

n
g

th
 (

 m
 )

0

4

8

12

16

20

HP 

LP 

T
o

ta
l 
ro

o
t 
le

n
g

th
 (

 m
 )

0

30

60

90

120

150

180

HP 

LP 

A B 

C D 

FIG. 2 



FIG. 3 

L
a
te

ra
l 
ro

o
t 
n
u
m

b
e

r 
( 

N
o

. 
)

0

5

10

15

20

25

30

>10 mm 

5-10 mm 

2-5 mm 

Growth stages

L
a
te

ra
l 
ro

o
t 
d

ry
 w

e
ig

h
t 
( 

g
 p

la
n
t 

-1
 )

0

5

10

15

20

10-15 mm 

5-10 mm 

2-5 mm 

< 2 mm 

HP         LP          HP         LP         HP         LP 

HP         LP          HP         LP         HP         LP 

 Flowering               Silique              Ripening 

A 

B 

a 

a 

a 

b 

b 

b 

a 
a 

a 

a 

b 
b 
b 
b 

a 

a 

a 
b 

a 

a 

a 

b 

a 

b 

a 

a 
b 

a 

b 

a 

a 
a 

a 

b 
b 
b 

a 

b 

a 

b a 
b 



0.00 0.02 0.04 0.06 0.08 0.10 0.12

0

20

40

60

80

100
0.00 0.02 0.04 0.06 0.08 0.10 0.12

0

20

40

60

80

100

0.00 0.02 0.04 0.06 0.08 0.10 0.12

0

20

40

60

80

100
0.00 0.02 0.04 0.06 0.08 0.10 0.12

0

20

40

60

80

100
0.00 0.02 0.04 0.06 0.08 0.10 0.12

0

20

40

60

80

100

0.00 0.02 0.04 0.06 0.08 0.10 0.12

0

20

40

60

80

100

HP 

LP  
LSD

Root length density (mm ·mm-2) 

S
o
il 

d
e
p
th

 p
ro

fi
le

s
 (

c
m

) 

A B C 

D E F 

FIG. 4 








	Cover Page
	16071 for editing
	16071 equations
	Fig.1
	Fig.2
	Fig.3
	Fig.4
	Fig.5
	Fig.6
	Fig.7



