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and complementarity of these two approaches. The interaction-picture approach in par-

ticular has the advantage that it may be used to analyze all forms of mass spectra from

quasi-degenerate through to hierarchical.

Keywords: Thermal Field Theory, Effective field theories

ArXiv ePrint: 1601.03086

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP06(2016)066

mailto:alexander.kartavtsev@mpp.mpg.de
mailto:p.millington@nottingham.ac.uk
mailto:hvogel@mpp.mpg.de
http://arxiv.org/abs/1601.03086
http://dx.doi.org/10.1007/JHEP06(2016)066


J
H
E
P
0
6
(
2
0
1
6
)
0
6
6

Contents

1 Introduction 1

2 Shell structure for two-particle mixing in the Heisenberg picture 4

3 Shell structure for two-particle mixing in the interaction picture 11

4 Comparison with the density matrix approximation 24

5 Comparison with the effective Yukawa approach 26

6 Phenomenological implications 29

7 Conclusions and outlook 35

A Non-equilibrium field theory 38

B Discrete symmetry transformations 45

C Rate equations in the radiation-dominated universe 48

1 Introduction

In the presence of CP violation, particle mixing and oscillations can provide two physically-

distinct sources of CP -asymmetry. In the quark sector, mixing arises due to the misalign-

ment of the weak and Yukawa eigenbases, which gives rise to the CKM matrix of the

Standard Model, whose complex entries provide the CP violation observed in the K, B

and Bs systems [1]. Oscillations, on the other hand, arise due to the formation of coher-

ences in populations of particles with the same quantum numbers. These coherences are

of particular interest in medium, leading for instance to oscillations via regeneration, as

occurs for the K0–K̄0 system in the presence of nuclear matter [2]. A similar distinction

between mixing and oscillations can be identified in the cascade decays of heavy parti-

cles [3–6]. In extensions of the Standard Model, the physical relevance of these two sources

of CP -asymmetry has also been identified in the context of leptogenesis (see e.g. refs. [7–

11]), where, in certain scenarios, it is acknowledged that both effects must be accounted

for in order to obtain quantitatively accurate predictions of the baryon asymmetry of the

universe.

Leptogenesis [12] (for an overview, see e.g. ref. [13]) provides a potential explanation for

the observed baryon asymmetry of the universe. It relies upon the existence of heavy right-

handed Majorana neutrinos, whose out-of-equilibrium decays in the early universe are able

to produce a net lepton number. This lepton asymmetry is subsequently converted to the
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observed baryon asymmetry through the sphaleron processes of the standard electroweak

theory [14]. Whereas it is widely accepted that the source of CP -asymmetry provided by

the mixing of different heavy-neutrino flavours is important for all mass spectra, the relative

importance of the source provided by coherent oscillations between populations of heavy-

neutrino flavours is still under debate. Even so, one would anticipate that oscillations

are most relevant when the mass spectrum of the heavy neutrinos is quasi-degenerate,

where it has long been recognized that flavour effects play a significant role both from

the heavy-neutrino [15–24] and charged-lepton sectors [25–33]. Thus, one would expect

flavour oscillations to provide a significant source of CP -asymmetry in scenarios of resonant

leptogenesis [15, 34, 35]. In such models, heavy-neutrino self-energy effects dominate [36–

39] and provide a resonant enhancement of the leptonic CP -asymmetry, when the mass

difference of at least two of the heavy neutrinos is comparable to their decay widths [15, 34].

In this context, it has recently been observed that the mixing and oscillation sources of

lepton asymmetry can be of equal magnitude and the same sign in the strong-washout

regime [9–11] (for a summary, see ref. [40]). This leads to a factor of two enhancement in

the final lepton asymmetry, when both sources, rather than only one, are included, thereby

expanding the viable parameter space for successful leptogenesis. However, it remains an

open question as to what extent these two distinct phenomena and the interplay between

them are captured by competing approaches.

In order to determine the asymmetry generated in scenarios of leptogenesis, it is neces-

sary to solve systems of transport equations, akin to the classical Boltzmann equations (see

e.g. refs. [41, 42]), that describe the time evolution of particle number densities. The im-

pact of flavour oscillations can be accounted for through the quantum improvement of the

classical Boltzmann equations by promoting the number densities of individual flavours to

a matrix of densities [43], thereby allowing for flavour coherences. This approach yields the

so-called density matrix formalism, which has been applied extensively to scenarios of lep-

togenesis [9, 10, 21, 24, 28, 44–49]. On the other hand, a semi-classical treatment of mixing

is possible through the inclusion of effective Yukawa couplings [15, 35], which can account

for the ε- and ε′-type CP violation, arising respectively from self-energy and vertex effects.

Recently, there has been much progress in the literature [7, 8, 11, 50–72, 72–74] aiming to

go beyond these semi-classical treatments and obtain ‘first-principles’ field-theoretic ana-

logues of the Boltzmann equation. Often, these quantum transport equations are derived by

means of the Kadanoff-Baym (KB) formalism [75, 76] (for reviews, see refs. [77, 78]), itself

embedded in the Schwinger-Keldysh [79, 80] closed-time path formalism (see also refs. [81–

83]) of non-equilibrium thermal field theory. These approaches have the advantage that all

quantum-mechanical effects are in principle accounted for consistently and systematically.

However, an outstanding difficulty of such approaches is in the approximations needed to

make the solution tractable and to extract physically-meaningful observables. As a result,

it is often not straightforward to compare directly the results of different analyses or to

ascertain to what extent relevant physical effects are accounted for.

In this article, we illustrate how the mixing and oscillation sources of lepton asymmetry

can be identified unambiguously in the Kadanoff-Baym formalism by means of the spectral

structure of the resummed heavy-neutrino propagators and independently of the definition
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of particle number densities. In the context of a toy two-flavour model, we will show

that this spectral structure contains three distinct shells: two of these shells correspond to

mixing and can be associated with the quasi-particle mass shells, whereas the third, which

can be identified with oscillations, lies at an intermediate energy. In addition, we identify

terms lying on the oscillation shell that can be interpreted as the interference between

oscillation and mixing. In so doing, we provide a further illustration of the interplay

of these two effects in the generation of lepton asymmetry. Most significantly, we find

that this interference is destructive. With respect to the “benchmark” of the Boltzmann

approximation (effective Yukawa couplings but flavour-diagonal number densities), this

destructive interference can be viewed as a suppression of the oscillation source. Conversely,

with respect to the “benchmark” of the density matrix approximation (tree-level Yukawa

couplings but flavour-off-diagonal number densities), this destructive interference can be

viewed as a suppression of the mixing source. This observation may in part account for

apparent discrepancies between competing approaches and is anticipated to be of relevance

to scenarios of resonant leptogenesis. Nevertheless, in spite of this destructive interference

and in the weak-washout regime, we find that the oscillation and mixing sources can be of

equal magnitude and contribute additively to the final asymmetry in agreement with the

conclusions of refs. [9–11].

Aside from illustrating the interplay of these sources of CP -asymmetry, we perform

the calculations in two very different approaches, namely the Heisenberg- and interaction-

picture realizations of non-equilibrium quantum field theory. In contrast to earlier ap-

proaches, the interaction-picture description introduced in ref. [84] (see ref. [85] for a sum-

mary) enables one to proceed in a perturbative loop-wise fashion without encountering

so-called pinch singularities [86–92] or secular terms [78] thought previously to spoil such

approaches to non-equilibrium field theory. Quite remarkably, we find exact agreement

between these two formulations, illustrating the self-consistency and complementarity of

these two approaches. Working in the interaction picture has the particular advantage that

all forms of mass spectra can be analyzed using a single method, from quasi-degenerate

through to hierarchical.

In order to reduce the technical complications to a minimum and yet to include all

qualitatively important effects for the generation of the asymmetry, we consider a simple

toy model studied previously in refs. [57, 58, 61, 72, 93, 94]. The model contains one

complex (b) and two real scalar fields (ψi):

L =
1

2
∂µψi ∂µψi −

1

2
ψiM

2
ijψj + ∂µb̄ ∂µb−m2 b̄b− λ

2!2!
(b̄b)2 − hi

2!
ψibb−

h∗i
2!
ψib̄b̄ , (1.1)

where b̄ denotes the Hermitian conjugate of b. Here and in the following, we assume

summation over repeated indices, unless otherwise specified. Despite its simplicity, the

model incorporates all features relevant for leptogenesis. The real scalar fields ψi imitate the

(two lightest) heavy right-handed neutrinos, whereas the complex scalar field b models the

leptons. The U(1) symmetry, which we use to define “lepton” number, is explicitly broken

by the presence of the last two terms, just as the B − L symmetry is explicitly broken by

Majorana mass terms in phenomenological models. Thus, the first Sakharov condition [95]
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is fulfilled. The couplings hi model the complex Yukawa couplings of the right-handed

neutrinos to the charged-leptons and the Higgs doublet. By rephasing the complex scalar

field, at least one of the couplings hi can be made real. If arg(h1) 6= arg(h2), the other one

remains complex and there is C -violation, as is required by the second Sakharov condition.

The remainder of this article is organized as follows. Using the Heisenberg-picture

realization of the Kadanoff-Baym formalism, we confirm in section 2 that the mixing and

oscillation between different flavours indeed provide two distinct sources of lepton asymme-

try. In section 3, we repeat the analysis in the interaction picture, finding identical results.

Subsequently, in section 4, we make comparison with the density matrix approach and, in

section 5, describe the inclusion of mixing effects via effective Yukawa couplings. Finally,

in section 6, we discuss the phenomenological implications of these two sources of lepton

asymmetry, as well as their interference, and present numerical results. Our conclusions

are presented in section 7. In appendix A, we provide a brief outline of the details of the

Kadanoff-Baym formalism pertinent to the analysis of this article. In addition, we summa-

rize our definitions and notational conventions, making comparison with those that appear

in the literature. In appendix B, we discuss the transformation properties of the model un-

der generalized discrete symmetries and emphasize the need to specify C -symmetric initial

conditions in the weak-washout regime. A derivation of the rate equations in an expanding

universe, relevant to the study of leptogenesis in the strong-washout regime, is presented

in appendix C.

2 Shell structure for two-particle mixing in the Heisenberg picture

In this section, we show that the mixing and oscillation between different flavours pro-

vide two distinct sources of lepton asymmetry, in agreement with arguments presented in

refs. [9–11]. Whereas the standard mixing contributions [34, 35] are associated with the

mass shells ωi (i = 1, 2) of the corresponding quasi-particles, the oscillation contribution

is associated with an intermediate shell at ω̄ = (ω1 + ω2)/2, which we will refer to as the

oscillation shell in the remainder of this paper. In order to identify this structure, we first

analyze the generation of the lepton asymmetry using the Kadanoff-Baym equations in the

Heisenberg picture, as were previously applied to the toy model from eq. (1.1) in ref. [72].

Asymmetry in the absence of washout. Following refs. [66, 72], we assume that

the complex scalar field forms a thermal bath with temperature T and neglect the back-

reaction. The system begins its evolution at t = −∞ in an equilibrium state. At t = 0, the

real scalars are brought out of equilibrium by an external source, thereby fulfilling the third

Sakharov condition. This leads to the production of an asymmetry between the number

densities of b and b̄. As time goes by, this asymmetry is erased by washout processes.

Finally, at t =∞, the system again reaches thermal equilibrium.

The expression for the produced asymmetry can be derived by considering the volume

integral of the conserved Noether current:

Jµ(x) = 〈 jµ(x)〉 = i lim
y→x

[
∂µxS<(x, y)− ∂µyS>(x, y)

]
, (2.1)
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where S>(x, y) ≡ 〈b(x)b̄(y)〉 and S<(x, y) ≡ 〈b̄(y)b(x)〉 are the Wightman propagators of

the complex scalar field. Using the Kadanoff-Baym equations for S≷, which are similar to

those that we will discuss below for the real scalar fields (see eq. (2.3)), and taking the

equal-time limit x0 = y0 = t, we obtain the kinetic equation for the produced asymmetry,

which takes into account quantum corrections to both the source and washout terms.

Details of the derivation, together with the discussion of the approximations used, can be

found in ref. [72].

Washout processes are physically very important and must be taken into account in a

phenomenological analysis. On the other hand, in the analysis limited to the source term

alone, one can neglect them, as was previously done in refs. [66, 72]. In this approximation,

the produced asymmetry is given by

η(t) ≡
∫

d3x 〈j0(t,x)〉 = − 2 ImH12

t∫
−∞

dx0

t∫
−∞

dy0

∫
q

× i
[
G12
< (x0, y0,q) Π>(y0, x0,q)−G12

> (x0, y0,q) Π<(y0, x0,q)
]
,

(2.2)

where Hij ≡ hih∗j , the functions G12
≷ are components of the Wightman propagators of the

real scalar fields ψi, and Π≷ are the self-energies with the couplings (hi) “amputated”.

We use the shorthand notation
∫
q ≡

∫ d3q
(2π)3

. A comprehensive summary of the various

propagators and self-energies, their definitions and useful identities, as well as the differing

nomenclature used throughout the literature is provided in appendix A. The expression for

the asymmetry in eq. (2.2) is entirely equivalent to the one obtained via the definition of

particle number densities used in the interaction-picture approach to the Kadanoff-Baym

formalism, developed in ref. [84]. In section 6, we present numerical solutions of eq. (2.2)

for C -symmetric initial conditions.

Solution of the Kadanoff-Baym equations. The Wightman propagators in eq. (2.2)

are solutions to the Kadanoff-Baym equations for the mixing fields ψi. In the absence of

external sources, these transport equations read [58]

[
�xδik +M2

ik

]
Gkj≷ (x, y) =

y0∫
−∞

d4zΠik
≷ (x, z)Gkjρ (z, y)−

x0∫
−∞

d4zΠik
ρ (x, z)Gkj≷ (z, y) , (2.3)

where Mij are the mass parameters of the renormalized Lagrangian, Gijρ is the spectral func-

tion, and Πij
≷ and Πij

ρ are the Wightman and spectral self-energies, respectively. Using the

definitions of the retarded and advanced propagators, and the self-energies in appendix A,

we can rewrite eq. (2.3) in a form more convenient for the analysis that follows:[
�xδik +M2

ik

]
Gkj≷ (x, y) = −

∫
z

[
Πik
R (x, z)Gkj≷ (z, y) + Πik

≷ (x, z)GkjA (z, y)
]
. (2.4)

We have also made use of the fact that∫ x0

−∞
dz0

∫
d3z =

∫ +∞

−∞
dz0

∫
d3z θ(x0 − z0) ≡

∫
z
θ(x0 − z0) . (2.5)
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The Kadanoff-Baym equations for the retarded and advanced propagators can be derived

from eq. (2.3):

[
�xδik +M2

ik

]
GkjR(A)(x, y) = −

∫
z

Πik
R(A)(x, z)GkjR(A)(z, y) + δ4(x− y)δij . (2.6)

For our purposes, it is sufficient to know that, at the one-loop level to which we limit

ourselves here, the self-energies of the real scalar fields are translationally invariant in the

thermal bath. This implies, in particular, that eq. (2.6) admits a translationally-invariant

solution. Using eq. (2.6), one can readily check that

Gij≷(x, y) = −
∫
u,v
GimR (x, u) Πmn

≷ (u, v)GnjA (v, y) (2.7)

is a solution to eq. (2.4). Since, as is discussed above, the self-energies, as well as the

retarded and advanced propagators on the r.h.s. of eq. (2.7) are translationally invariant,

the l.h.s. of eq. (2.7) is also translationally invariant. In other words, eq. (2.7) is an

equilibrium solution for the Wightman propagators.

In the setup considered here, the system is assumed to be brought out of equilibrium

instantaneously by an external source at t = 0. While it is hard to imagine a physically-

motivated scenario that would generate such an initial condition, this assumption will

allow us to solve the equations analytically and access qualitative features of the solution

important also for phenomenologically-viable initial conditions. The source can be consid-

ered as a bi-local contribution to the self-energy. Following refs. [66, 72], we consider an

external source that leaves the spectral function unperturbed. Thus, both of the Wight-

man self-energies are “perturbed” in the same way, Πmn
≷ (u, v) → Πmn

≷ (u, v) −Kmn(u, v),

with Kmn(u, v) = δ(u0)δ(v0)Kmn(u − v). The translational invariance of the one-loop

self-energies in the thermal bath renders the Kadanoff-Baym equations linear, i.e. a sum of

two solutions is also a solution. Using this linearity, we obtain the following equation for

the non-equilibrium part Gkjδ≷ ⊂ G
kj
≷ of the Wightman propagators induced by the external

source:

[
�xδik +M2

ik

]
Gkjδ≷(x, y) = −

∫
z

[
Πik
R (x, z)Gkjδ≷(z, y)−Kik(x, z)GkjA (z, y)

]
. (2.8)

Using eq. (2.6), one can readily check that [66, 72]

Gijδ≷(x, y) =

∫
u,v
GimR (x, u)Kmn(u, v)GnjA (v, y) (2.9)

is a solution to eq. (2.8). In the absence of spacetime expansion, we are only interested in

the non-equilibrium part of the resummed Wightman propagators, which are common to

both the positive- and negative-frequency components, Gijδ> = Gijδ< ≡ G
ij
δ . The sum of the

equilibrium and non-equilibrium parts (eqs. (2.7) and (2.9)) gives the full solution of the

Kadanoff-Baym equations in the thermal bath, as was studied in detail in ref. [72].
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Shell structure of the non-equilibrium solution. The equilibrium solution in

eq. (2.7) does not contribute to the asymmetry in agreement with the third Sakharov

condition (see ref. [72] for more details) and will not be considered further. In order to un-

ravel the shell structure of the non-equilibrium solution in eq. (2.9), we perform a Wigner

transform (see appendix A). Using the relation between the double-momentum and Wigner

representations (see eq. (A.9)) and neglecting sub-leading off-shell contributions (see e.g.

section 6 of ref. [72]), we obtain

Gijδ (t, q0 > 0) ≈
∞∫

0

dp0

2π

∞∫
0

dp′0
2π

2π δ

(
q0 −

1

2
(p0 + p′0)

)
e−i(p0−p

′
0)tGimR (p0)KmnGnjA (p′0) .

(2.10)

We will later analytically continue the real variable q0 to the complex plane in order to apply

Cauchy’s theorem. The notation q0 > 0 is therefore understood throughout this article to

mean Re q0 > 0. In addition, we omit all dependence on the common three-momentum q

when no ambiguity results. The explicit forms of the Wigner transforms of the retarded

and advanced propagators can be inferred from eq. (2.6) using translational-invariance of

the self-energies:

GijR(A)(q0) = −
adjDij

R(A)(q0)

detDR(A)(q0)
, (2.11)

where

Dij
R(A)(q0) ≡ q2δij −M2

ij −Πij
R(A)(q0) , (2.12)

and we use boldface for matrices in flavour space. Having not needed to employ the gradient

expansion (cf. refs. [92, 96]), the leading self-energy corrections to the spectral structure of

the non-equilibrium part of the propagator, specifically the shifts of the poles in the real

and imaginary directions, have been taken into account.

The imaginary parts of the retarded (advanced) self-energies are odd under q0 → − q0,

i.e. Im Πij
R(A)(q0) = − Im Πij

R(A)(− q0), such that all four poles of GijR(A)(q0) lie in the lower-

half complex plane. These four poles correspond to the zeros of detDR(q0) and lie at

q0 = Ωi and q0 = −Ω∗i , where

Ωi = ωi −
i

2
Γi . (2.13)

The real and imaginary parts of Ωi correspond to the in-medium frequency ωi and width

Γi, respectively. In the neighbourhood of the poles with q0 > 0, we can approximate [72]

detDR(q0 > 0) ≈ (q2
0 − Ω2

1)(q2
0 − Ω2

2) , (2.14)

where it is assumed that the self-energies are slowly varying functions of q0 for q0 ∼ Ωi.

We would like to emphasize that eq. (2.14) is not only applicable, but actually becomes

exact in the degenerate limit. The implications of this pole approximation for the effective

regulator of the lepton asymmetry will be discussed later in the context of degeneracy

symmetry limits (see e.g. ref. [9]). Instead, if we were interested in the poles with q0 < 0,

we could approximate

detDR(q0 < 0) ≈ (q2
0 − Ω∗21 )(q2

0 − Ω∗22 ) . (2.15)
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Using Cauchy’s theorem to evaluate the integral in eq. (2.10) approximately, we arrive

at the advertised three-shell structure

Gijδ (t, q0 > 0) ≈ 1

|∆Ω2|2

[ 2∑
k= 1

2π δ(q0 − ωk)e−Γkt
adjDim

R (ωk)

2ωk
Kmn

adjDnj
A (ωk)

2ωk

− 2π δ(q0 − ω̄)e−i(ω1−ω2)te−Γ̄t adjDim
R (ω1)

2ω1
Kmn

adjDnj
A (ω2)

2ω2

− 2π δ(q0 − ω̄)e−i(ω2−ω1)te−Γ̄t adjDim
R (ω2)

2ω2
Kmn

adjDnj
A (ω1)

2ω1

]
,

(2.16)

where we have defined the average in-medium decay width

Γ̄ =
1

2
(Γ1 + Γ2) , (2.17)

and introduced

∆Ω2 ≡ Ω2
2 − Ω2

1 . (2.18)

In eq. (2.16), the three distinct shells are identified by the frequencies q0 = ωi (i = 1, 2)

and q0 = ω̄ ≡ 1
2(ω1 + ω2). The shells with frequencies q0 = ωi lie at the two poles of

the retarded propagator, which can be associated with quasi-particle degrees of freedom.

As such, these terms correspond to the contribution from mixing. On the other hand,

the additional intermediate shell with frequency q0 = ω̄ corresponds to the contribution

from oscillations and, as we will see, the interference between mixing and oscillations.

This three-shell structure matches that obtained in ref. [96], which makes use of a gradient

expansion of the KB equations. Therein, the authors also find an additional fourth shell

with frequency q0 = ω1 − ω2 corresponding to particle-anti-particle coherences, which are

not considered in the present analysis.

In order to gain a better understanding of the shell structure and to make comparisons

with the existing literature, we will now consider the non-equilibrium part of the propagator

(eq. (2.16)) to leading order in powers of the self-energies. Specifically, we will neglect

terms higher than first-order in the self-energies in the products of adjugate matrices in

eq. (2.16). With regards to the lepton asymmetry, we are only interested in the off-diagonal

components of this non-equilibrium part of the propagator. In the mass eigenbasis, in which

the remainder of this article is understood, these components read

Gi
/i
δ (t, q0 > 0) ≈ 2π δ(q0 − ωi)

1

2ωi
e−Γit δnii(0) Πi/i

A (ωi)Ri/i

− 2π δ(q0 − ω/i)
1

2ω/i
e−Γ/i t δn/i/i(0) Πi/i

R(ω/i)Ri/i

+ 2π δ(q0 − ω̄)
1

(2ωi)
1
2 (2ω/i)

1
2

e−i(ωi−ω/i )te−Γ̄t
[
δni/i(0) ∆M2

i/i

− δnii(0)Πi/i
A (ω/i) + δn/i/i(0)Πi/i

R(ωi)
]
Ri/i . (2.19)
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In eq. (2.19), ∆M2
i/i
≡M2

i −M2
/i

is the mass splitting, and we have employed the notation

used in ref. [11]:

/i ≡

{
2 , i = 1

1 , i = 2 .
(2.20)

In addition, for later convenience, we have introduced the following notation for the initial

deviation of “particle number densities” from equilibrium:

δnij(0) ≡ Kij

(2ωi)
1
2 (2ωj)

1
2

. (2.21)

Note, however, that the identification of the mixing and oscillation shells in eq. (2.16) is

independent of this definition. Finally,

Ri/i ≡
∆M2

i/i

(∆M2
i/i

)2 + (ωiΓi − ω/iΓ/i)2
(2.22)

is the effective regulator.

The first and second lines of eq. (2.19) live on the mass shells and describe the stan-

dard mixing contributions to the asymmetry. On the other hand, the third and fourth

lines describe the contribution from oscillations and the interference between mixing and

oscillations. In section 3, we will make use of the interaction-picture approach in order to

isolate the interference terms from the pure oscillation terms. We note that the regulator in

eq. (2.22) cannot be applied naively in the doubly-degenerate limit M2 →M1 and Γ2 → Γ1

(for a comparison of various regulators in degeneracy symmetry limits, see e.g. refs. [9, 66]).

Nevertheless, the last two terms of eq. (2.19) have structure similar to those of the i-th and

/i-th mass shell terms, respectively, but with opposite signs. Therefore, there is a partial

cancellation of these contributions, an effect that becomes important in the maximally-

resonant regime, where the interference between mixing and oscillations is anticipated to

be of most relevance. This cancellation has been analyzed in detail in refs. [66, 72], where

it was demonstrated that, in the degenerate limit ω2 → ω1 and Γ2 → Γ1, back-reaction of

mixing on the oscillation ensures exact cancellation in agreement with the physical expec-

tations.

Mixing and oscillation sources of CP asymmetry. It remains for us to study how

each term in the non-equilibrium propagator (eq. (2.19)) contributes to the asymmetry

by substituting it into the source term (eq. (2.2)). As identified earlier, in the absence of

cosmological expansion, we are only interested in the non-equilibrium part of the resummed

Wightman propagators for which Gijδ> = Gijδ< = Gijδ . In this case, the expression for the

produced asymmetry (eq. (2.2)) simplifies to

η(t) = − 2 ImH12

t∫
0

dx0

t∫
0

dy0

∫
q
G12
δ (x0, y0,q) Πρ(y

0, x0,q) , (2.23)

where we have taken into account that the system is brought out of equilibrium at t = 0

in the lower limits of the time integration. Next, we trade x0 and y0 for the central and

– 9 –



J
H
E
P
0
6
(
2
0
1
6
)
0
6
6

relative coordinates t ≡ 1
2(x0 + y0) and R0 ≡ x0 − y0. In addition, we use the Markovian

approximation

2t∫
−2t

dR0 sin(R0q0) cos(R0p0) = 0 ,

2t∫
−2t

dR0 sin(R0q0) sin(R0p0) ≈ π δ(q0 − p0) . (2.24)

In this way, we may rewrite eq. (2.23) in the differential form

dη

dt
= 4 ImH12

∫
q0,q

θ(q0) ImG12
δ (t, q0,q) Π̃ρ(q0,q) , (2.25)

where we have restored the common momentum q,

Π̃ρ(q0,q) ≡ − iΠρ(q0,q) =
1

8π
Lρ(q0,q) , (2.26)

(see eq. (A.22) and appendix A) and, in the MS scheme,

Lρ(q0,q) = 1 +
2T

|q|
ln

(
1− e−(q0+|q|)/2T

1− e−(q0−|q|)/2T

)
(2.27)

(see ref. [72] for more details). Substituting the expression for G12
δ from eq. (2.19) into

eq. (2.25), we obtain the following expression for the time-derivative of the asymmetry:

dη

dt
≈ 2

∑
i

∫
q

Mi

ωi
e−Γit δnii(0,q) Γmed

i (ωi,q) εmed
i (ωi,q)

+ 2 ImH12 Im

∫
q

1

(ω1ω2)
1
2

e−i(ω1−ω2)te−Γ̄t Π̃ρ(ω̄,q)
[
δn12(0,q) ∆M2

12

− δn11(0,q) Π12
A (ω2,q) + δn22(0,q) Π12

R (ω1,q)
]
R12 . (2.28)

The first line of eq. (2.28) originates from the mass shell terms of eq. (2.19) and describes the

mixing source of lepton asymmetry. The second and third lines stem from the oscillation-

shell terms of eq. (2.19) and contain the oscillation source and the interference between

mixing and oscillations, which will be isolated in section 3.

Before concluding this section, we comment in more detail on the physical content of

eq. (2.28). Firstly, the overall factor of two arises because, in the toy model (eq. (1.1)), each

decay of the heavy real scalar violates “lepton” number by two units. Secondly, we note

that the mixing contribution has the standard structure [34, 35]. The asymmetry produced

per unit time and unit volume is proportional to the departure from equilibrium δnii, the

in-medium decay probability Γmed
i (ωi,q) = Γi Lρ(ωi,q) and the in-medium asymmetry

produced in each decay

εmed
i = Im

(
Hi/i

H∗
i/i

) (M2
i −M2

/i
)M/iΓ/i

(M2
i −M2

/i
)2 + (ωiΓi − ω/iΓ/i)2

Lρ(ωi,q) , (2.29)

where the function Lρ(ωi,q) takes into account quantum-statistical corrections to the decay

width and C -violating parameter, respectively (see eq. (2.26) and refs. [57, 58]). Thirdly,

the leading contribution to the oscillation term is proportional to the off-diagonal element of

the matrix of densities δn12, as one might expect, sourcing asymmetry only in the presence

of flavour coherences.
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3 Shell structure for two-particle mixing in the interaction picture

In this section, we show how the shell structure identified above in the Heisenberg picture

is reproduced in the interaction picture.

Tree-level Wightman propagator. In the interaction-picture approach, the tree-level

Wightman propagator can be obtained straightforwardly by evaluating the ensemble ex-

pectation value (EEV) of field operators directly (see appendix A and ref. [84]). In the

double-momentum representation and assuming spatial homogeneity, it takes the form

G0, ij
< (p, p′, t̃) = 2π

(
2 sign(p0)p0

)1/2
δ(p2 −M2

i ) ei(p0−p
′
0)t̃

×
[
θ(p0)θ(p′0)nij(t,p) + θ(−p0)θ(−p′0)

(
δij + nij∗(t,−p)

)]
(2π)3δ3(p− p′)

× 2π
(
2 sign(p′0)p′0

)1/2
δ(p′2 −M2

j ) . (3.1)

Since the system of interest is spatially isotropic, the number densities nij(t,p) are functions

only of |p|, such that nij∗(t,−p) = nij∗(t,p). Note that, in eq. (3.1), we have distinguished

between a macroscopic time t and a microscopic time t̃, as is necessary in the interaction

picture (see appendix A). In the end, the physical limit will be obtained at equal times

X0 = t̃ (for more details, see ref. [84]).

Dressed Wightman propagator. In order to find an explicit form for the dressed

Wightman propagator, we restrict ourselves to the inclusion of one-loop self-energies and

make use of the Markovian approximation. The latter has the effect of restoring exact

energy-momentum conservation (see eq. (2.24)). Using in addition that the self-energies,

and retarded and advanced propagators are translationally invariant (see section 2), the

Schwinger-Dyson equation of the Wightman propagator reduces to

Gij<(p, p′, t̃) = G0, ij
< (p, p′, t̃)−G0, ik

R (p) Πkl
<(p)(2π)4δ4(p− p′)GljA(p′)

−G0, ik
R (p) Πkl

R (p)Glj<(p, p′, t̃)−G0, ik
< (p, p′, t̃) Πkl

A (p′)GljA(p′) , (3.2)

and that of the retarded (advanced) propagator to

GijR(A)(p) = G0, ij
R(A)(p)−G

0, ik
R(A)(p) Πkl

R(A)(p)G
lj
R(A)(p) . (3.3)

The result of the approximations described above is the elimination of convolution integrals

over intermediate momenta in the Schwinger-Dyson equations. As was shown in ref. [11],

this system may then be solved analytically for the resummed Wightman propagator, and

we find

Gij<(p, p′, t̃) = F ikR (p)G0, kl
< (p, p′, t̃)F ljA (p′)−GikR (p) Πkl

<(p)(2π)4δ4(p− p′)GljA(p′) , (3.4)

where we have defined

F ijR ≡
∞∑
n= 0

[
(−G0

R ·ΠR)n
]ij

= −GikR D
0, kj
R = δij −GikR Πkj

R , (3.5a)

F ijA ≡
∞∑
n= 0

[
(−ΠA ·G0

A)n
]ij

= −D0, ik
A GkjA = δij −Πik

A G
kj
A . (3.5b)
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The second term on the r.h.s. of eq. (3.4) describes equilibrium ∆L = 0 and ∆L = 2

scatterings. Instead, the part of interest to us is contained within the first term on the

r.h.s. of eq. (3.4). In particular, we wish to study the part proportional to the deviation

from equilibrium δnij(t,p). Inserting the tree-level Wightman propagator from eq. (3.1)

into eq. (3.4), this part is given by

Gijδ (p, p′, t̃)
∣∣
p0,p′0> 0

= F ikR (p) 2π(2p0)1/2δ+(p2 −M2
k )ei(p0−p

′
0)t̃δnkl(t,p)(2π)3δ3(p− p′)

× 2π(2p′0)1/2δ+(p′2 −M2
l )F ljA (p′) , (3.6)

where

2π δ+(p2 −M2
i ) ≡ 2π θ(p0)δ(p2 −M2

i ) =
1

2Ei

[
i

p0 − Ei + iε
− i

p0 − Ei − iε

]
, (3.7)

and Ei = (p2 +M2
i )

1
2 .

On-shell approximation. We will first illustrate that there is no contribution to the

resummed non-equilibrium propagator in eq. (3.6) from the tree-level on-shell modes

p2 = M2
i . In so doing, we will also illustrate explicitly that eq. (3.6) is free of pinch

singularities, which would potentially arise from ill-defined products of Dirac delta func-

tions with identical arguments.

For this purpose, it is convenient to work with the Wigner transform (see appendix A)

of the non-equilibrium part of the dressed Wightman propagator:

Gijδ (q0 > 0, X, t̃) =

∫
Q0

e−iQ0(X0−t̃)F ikR (q0 +Q0/2)2π(2Ek)
1/2δ+

(
(q0 +Q0/2)2 − E2

k

)
× δnkl(t,q) 2π(2El)

1/2δ+

(
(q0 −Q0/2)2 − E2

l

)
F ljA (q0 −Q0/2) , (3.8)

where the trivial Q integral has been performed. Hereafter, we omit three-momentum

arguments for notational brevity. In order to perform the Q0 integral, we will now assume

erroneously that the only poles are those provided by the Dirac delta functions appearing

explicitly in eq. (3.8). We emphasize that we should not anticipate that we will obtain the

correct result, since G0
R(A) also contains poles.

By virtue of the properties of the Dirac delta function, we may show that

(2Ei)
1/2δ

(
(q0 ±Q0/2)2 − E2

i

)
= 2(2Ei)

−1/2
∑
s=±1

δ(Q0 ± 2q0 ∓ 2sEi) . (3.9)

Performing the integral over Q0, we then find

Gijδ (q0 > 0, X, t̃) = e−i∆Ekl(X0−t̃) 2π δ(q0 − Ekl)F ikR (Ek)
δnkl(t,q)

(2Ek)1/2(2El)1/2
F ljA (El) ,

(3.10)

where Ekl ≡ (Ek + El)/2. Equation (3.10) is well defined in a distributional sense and, in

evaluating the tree-level poles, we have not encountered any singular behaviour, illustrating

explicitly that the expression for the resummed propagator in eq. (3.6) is free of pinch

singularities.
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One might be tempted to consider the terms in eq. (3.5) proportional to GimR Πmk
R and

Πln
A GnjA as subleading. Were we to drop these contributions, we would find the following

for the off-diagonal elements of eq. (3.10):

Gi
/i
δ (q0 > 0, X, t̃) = e−i∆Ei/i (X0−t̃) 2π δ(q0 − Ē)

δni/i(t,q)

(2Ei)1/2(2E/i)
1/2

. (3.11)

Such an approximation for the resummed would-be heavy-neutrino propagator, when used

in the equation for the asymmetry, discards the phenomenon of mixing, accounting only

for oscillations between the two flavours, as identified in ref. [11]. In fact, as we will now

show, the terms omitted in eq. (3.11) are of order unity, and Gijδ (q,X, t̃) is identically zero

due to the erroneous treatment of the pole structure in this on-shell approximation.

Considering the explicit form of the dressed retarded propagator in eq. (3.8), we may

show that the factor

F ikR (Ek) = δik −GimR (Ek) Πmk
R (Ek) = δik −

∆M2
/ik
δim + [adj ΠR(Ek)]

im

detDR(Ek)
Πmk
R (Ek) .

(3.12)

The determinant in the denominator of eq. (3.12) can be written as

detDR(Ek) = ∆M2
/kk Πkk

R (Ek) + det ΠR(Ek) . (3.13)

Thus, we have

GimR (Ek) Πmk
R (Ek) =

∆M2
/ik

Πik
R (Ek) + δik det ΠR(Ek)

∆M2
/kk

Πkk
R (Ek) + det ΠR(Ek)

, (3.14)

where we have also used the fact that

[adj ΠR(Ek)]
im Πmk

R (Ek) = δik det ΠR(Ek) , (3.15)

by definition of the adjugate matrix. We may then show that

GimR (Ek) Πmk
R (Ek) = δik, Πln

A (El)G
nj
A (El) = δlj . (3.16)

Substituting eq. (3.16) into the expression for the resummed propagator in eq. (3.10), it

immediately follows that it is identically zero. Clearly, this result is incorrect. As we will

now show, this is a consequence of having neglected the poles in G0
R(A), whose contributions

are in fact pivotal in determining the correct form of the resummed propagator.

Pole structure. The tree-level retarded (advanced) propagator has the form

G0, ij
R(A)(p) = − δij

p2 −M2
i ± iε sign(p0)

= −P δij

p2 −M2
i

± iπδij sign(p0)δ(p2 −M2
i ) , (3.17)

where we have used the identity

1

x± iε
= P 1

x
∓ iπδ(x) , (3.18)
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in which P denotes the Cauchy principal value. Equation (3.18) may readily be confirmed

by using the limit representations

δ(x) = lim
ε→ 0+

1

π

ε

x2 + ε2
, P 1

x
= lim

ε→ 0+

x

x2 + ε2
. (3.19)

Substituting eq. (3.17) into the non-equilibrium part of the resummed propagator

(eq. (3.6)), it would appear that we have products of Dirac delta functions of identical

arguments. However, we have seen already that eq. (3.6) is free of pinch singularities. The

reason for this is that these pinch singularities are resummed, and it is by performing this

resummation that we will obtain the correct form for the Wigner representation of the

resummed Wightman propagator. In particular, both the equilibrium and non-equilibrium

parts of the propagator acquire finite widths (cf. ref. [92]).

In order to understand the structure of this resummation, it is helpful to begin with

the single-flavour case. Therein, we wish to evaluate the following structure:

IR ≡
∞∑
n= 0

(−G0
R ·ΠR)n2π sign(p0) δ(p2 −M2)

=
∞∑
n= 0

(
ΠR

p2 −M2 + iε sign(p0)

)n
2π sign(p0) δ(p2 −M2) . (3.20)

Note that we are free to insert the product sign(p0) sign(p′0) into the tree-level propagator

eq. (3.1), since the signs of p0 and p′0 are equal in the absence of particle-antiparticle

correlations. We proceed by performing the following partial-fractioning, using the limit

representation of the Dirac delta function in eq. (3.19):

2π sign(p0) δ(p2 −M2) =
i

p2 −M2 + iε sign(p0)
− i

p2 −M2 − iε sign(p0)
. (3.21)

We then decompose

IR ≡ I+
R − I

−
R , (3.22)

where

I±R = i
∞∑
n= 0

(
ΠR

p2 −M2 + iε sign(p0)

)n 1

p2 −M2 ± iε sign(p0)
. (3.23)

By employing the distributional identity (see e.g. ref. [97])(
1

x± iε

)n
= P 1

xn
∓ (−1)n−1

(n− 1)!
iπδ(n−1)(x) , (3.24)

where δ(n)(x) is the n-th derivative of the Dirac delta function, we find

I+
R = i

∞∑
n= 0

P
(

1

p2 −M2

)n+1

(ΠR)n +
∞∑
n= 0

(−ΠR)n

n!
π sign(p0)δ(n)(p2 −M2) . (3.25)

Transposing the identity in eq. (3.24), we may also show that

P 1

xn
=

(−1)n−1

(n− 1)!
P(n−1) 1

x
, (3.26)
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where P(n)(x) is the n-th derivative of the Cauchy principal value. Hence, we obtain

I+
R = i

∞∑
n= 0

(−ΠR)n

n!
P(n) 1

p2 −M2
+

∞∑
n= 0

(−ΠR)n

n!
π sign(p0)δ(n)(p2 −M2) . (3.27)

As we might expect from comparing I+
R to the usual Feynman-Dyson series, this result is

proportional to the resummed retarded propagator:

I+
R = i

∞∑
n= 0

(−ΠR)n

n!

∂n

∂(p2)n
(
−G0

R(p)
)

= − iGR(p) . (3.28)

In the case of I−R , we instead have

I−R = i
∞∑
n= 0

(
ΠR

p2 −M2 + iε sign(p0)

)n 1

p2 −M2 − iε sign(p0)
. (3.29)

This term would appear to suffer from pinch singularities, arising from the product of

poles at p2 = M2 + iε sign(p0) and p2 = M2− iε sign(p0). However, such pinch singularities

arise here only at a finite order in perturbation theory. This is a consequence of having

artificially restored energy-momentum conservation through the Markovian approximation.

It can be shown [84] that the perturbation series is in fact well defined so long as one

takes into account finite-time effects and the microscopic violation of energy-momentum

conservation. Performing the summation over n in eq. (3.29) first, we can make use of the

fact that

∞∑
n= 0

(
ΠR

p2 −M2 + iε sign(p0)

)n
≡
∞∑
n= 0

(
ΠR

p2 −M2 − iε sign(p0)

)n
=

p2 −M2

p2 −M2 −ΠR

(3.30)

does not depend on the pole prescription when | Im ΠR| > ε. We may therefore write

I−R ≡ i
∞∑
n= 0

(
ΠR

p2 −M2 − iε sign(p0)

)n 1

p2 −M2 − iε sign(p0)

= i
∞∑
n= 0

(−ΠR)n

n!
P(n) 1

p2 −M2
−
∞∑
n= 0

(−ΠR)n

n!
π sign(p0)δ(n)(p2 −M2) . (3.31)

We see that I−R differs from I+
R in eq. (3.27) by the sign of the second term. Hence, we

arrive at the result

IR =

∞∑
n= 0

(−ΠR)n

n!
2π sign(p0) δ(n)(p2 −M2) . (3.32)

In order to understand the meaning of eq. (3.32) and why this contribution has not

cancelled between I+
R and I−R , we first write

2π sign(p0)δ(p2 −M2) ≡ i

(p2 −M2)+
− i

(p2 −M2)−
, (3.33)
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replacing the explicit ε by the following equivalent (but more general) prescription for

deforming the contour in the complex plane. The + and − indicate that we are to deform

the contour of integration in p0 away from the real axis such that we pass always above

(+) or below (−) the poles at p2 −M2 = 0. Returning to the generalized Taylor series

expansion in eq. (3.32), we see that it effects a shift p2 −M2 → p2 −M2 −ΠR. Since this

includes a shift of the poles in the imaginary direction, we must simultaneously deform the

contour of integration such that no poles cross the contour during this shift. In this way,

we have

IR =
i

(p2 −M2 −ΠR)+
− i

(p2 −M2 −ΠR)−
. (3.34)

The r.h.s. of eq. (3.34) is the complex delta function (see e.g. refs. [98, 99]):

IR = 2πδ(p2 −M2 −ΠR) , (3.35)

which corresponds to the contribution from the poles of i/(p2 − M2 − ΠR). Since the

imaginary part of the retarded self-energy is odd under p0 → − p0, all of these poles lie in

the lower-half complex plane. We can therefore write IR as

IR =
if(p0)

p2 −M2 −ΠR
, (3.36)

where f(p0) is a single-valued and analytic function chosen such that we must close

the contour of integration in the lower-half complex plane. Specifically, we require [98]:

(i) f(p0) ≈ 1 in the vicinity of the poles, (ii) f(p0) ≈ 0, effectively, on the real axis far away

from the poles, (iii) f(p0) regular near the real axis, and (iv) f(p0) vanishing far away in

the lower-half complex plane.

We may proceed analogously in the case of two flavours:

IiR = IiiR + Ii
/i
R ≡

∞∑
n= 0

[
(−G0

R ·ΠR)n
]ij

2π sign(p0) δ(p2 −M2
j ) . (3.37)

We can make sense of the resummation in IiiR by considering the series for the resummed

propagator (no summation over i implied):

−GiiR =
∞∑
n= 0

[
(−G0

R ·ΠR)n
]ii

(−G0, ii
R ) =

[
p2 −M2

i −Πii
R −

Πi/i
RΠ

/ii
R

p2 −M2
/i
−Π

/i/i
R

]−1

, (3.38)

which differs from IiiR by the replacement

2π sign(p0) δ(p2 −M2
i ) −→ −G0, ii

R (p) . (3.39)

In the case of IiiR, we can resum all but insertions of 1/
(
p2 −M2

i + iε sign(p0)
)

straightfor-

wardly and obtain

IiiR =

∞∑
n= 0

[
1

p2 −M2
i + iε sign(p0)

(
Πii
R +

Πi/i
RΠ

/ii
R

p2 −M2
/i
−Π

/i/i
R

)]n
2π sign(p0) δ(p2 −M2

i ) ,

(3.40)
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which gives eq. (3.38) on making the replacement in eq. (3.39). The potential pinch singu-

larities in eq. (3.40) are resummed in the same way as for the single-flavour case, yielding

IiiR =
∞∑
n= 0

1

n!

(
−Πii

R −
Πi/i
RΠ

/ii
R

p2 −M2
/i
−Π

/i/i
R

)n
2π sign(p0) δ(n)(p2 −M2

i )

= 2π δ
(
− [G−1

R ]ii
)
, (3.41)

where δ is understood to be the complex delta function, giving the contribution from the

poles of

i

[
p2 −M2

i −Πii
R −

Πi/i
RΠ

/ii
R

p2 −M2
/i
−Π

/i/i
R

]−1

. (3.42)

This is equal to the contribution from the poles of

i[adjDR]ii/ detDR , (3.43)

which occur at detDR = 0. Hence, we have

IiiR = 2π[adjDR]iiδ(detDR) . (3.44)

For the series Ii
/i
R , we are able to resum all but insertions of i/

(
p2 −M2

/i
+ iε sign(p0)

)
straightforwardly and obtain

Ii
/i
R =

Πi/i
R

p2 −M2
i −Πii

R

×
∞∑
n= 0

[
1

p2 −M2
/i

+ iε sign(p0)

(
Π
/i/i
R +

Π
/ii
RΠi/i

R

p2 −M2
i −Πii

R

)]n
2π sign(p0) δ(p2 −M2

/i )

=
Πi/i
R

p2 −M2
i −Πii

R

∞∑
n= 0

1

n!

(
−Π

/i/i
R −

Π
/ii
RΠi/i

R

p2 −M2
i −Πii

R

)n
2π sign(p0) δ(n)(p2 −M2

/i )

=
Πi/i
R

p2 −M2
i −Πii

R

2π δ(− [G−1
R ]/i/i) . (3.45)

We may readily verify that this gives the resummed propagator Gi
/i
R(p) on making the

replacement

2π sign(p0) δ(p2 −M2
/i ) −→ −G0, /i/i

R (p) . (3.46)

Equation (3.45) corresponds to the contribution from the poles of

− iGi/iR =
iΠi/i

R

(p2 −M2
i −Πii

R)(p2 −M2
/i
−Π

/i/i
R )−Πi/i

RΠ
/ii
R

= i[adjDR]i/i/ detDR , (3.47)

which again occur at detDR = 0. Hence, we have

Ii
/i

R = 2π[adjDR]i/iδ(detDR) . (3.48)
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Continuing similarly for the remaining components and the corresponding advanced

series (IA ≡ I∗R), we obtain the complete expression for the non-equilibrium part of the

resummed propagator:

Gijδ (p, p′, t̃) = 2π
(
2 sign(p0)p0

)1/2
[adjDR(p)]ikδ

(
detDR(p)

)
ei(p0−p

′
0)t̃

×
[
θ(p0)θ(p′0) δnkl(t,p) + θ(−p0)θ(−p′0) δnkl∗(t,−p)

]
(2π)3δ3(p− p′)

× 2π
(
2 sign(p′0)p′0

)1/2
δ
(

detDA(p′)
)
[adjDA(p′)]lj . (3.49)

In order to compare this result directly with the Heisenberg picture, we make use of the

pole approximation in eqs. (2.14) and (2.15). For p0 > 0, the complex delta function

2πδ(detDR) corresponds to the contribution from the poles at p0 = Ωi. Instead, for

p0 < 0, the complex delta function 2πδ(detDR) corresponds to the contribution from the

poles at p0 = −Ω∗i . Hence, we can write

2πδ
(

detDR(p)
)
≈ i

∆Ω2

[
1

2Ω1

f1(p0)

p0 − Ω1
− 1

2Ω2

f2(p0)

p0 − Ω2

]
− i

∆Ω∗2

[
1

2Ω∗1

f∗1 (−p0)

p0 + Ω∗1
− 1

2Ω∗2

f∗2 (−p0)

p0 + Ω∗2

]
, (3.50)

where the fi(p0) satisfy the properties highlighted above (see eq. (3.36)). An appropriate

choice for these functions (see ref. [98]) is fi(p0) = [λ2
i /(p

2
0 + λ2

i )] e
−i(p0−Re Ωi)/κi , where

κi � Γi/2 and λi � Re Ωi > Γi. The relative sign between the poles at Ω1 and Ω2 arises

from the partial-fractioning of 1/[(q2
0 − Ω2

1)(q2
0 − Ω2

2)], and the relative sign between the

positive- and negative-frequency poles results from the partial-fractioning of 1/(q2
0 − Ω2

i ).

In order to ensure that this partial-fractioning is consistent with the analytic structure of

the retarded propagator, we first let Ωi ≡ Ωi(q0) = −Ω∗i (−q0), before approximating Ωi

in the vicinity of the poles by eq. (2.13). In the limit ΠR → 0, κi → 0 and λi → ∞, we

recover the standard Dirac delta function:

ifi(p0)

p0 − Ωi
−→ 2πδ(p0 − Ei) , (3.51a)

if∗i (− p0)

p0 + Ω∗i
−→ 2πδ(p0 + Ei) . (3.51b)

In the same limit, we therefore find

2πδ
(

detDR(p)
)
−→ 2π

|∆M2|

[
δ(p0 − E1)

2E1
− δ(p0 − E2)

2E2
− δ(p0 + E1)

2E1
+
δ(p0 + E2)

2E2

]
=

2π

∆M2
sign(p0)

[
δ(p2 −M2

1 )− δ(p2 −M2
2 )
]
, (3.52)

and

Gijδ (p, p′, t̃) −→ 2π
(
2 sign(p0)p0

)1/2
δ(p2 −M2

i )ei(p0−p
′
0)t̃

×
[
θ(p0)θ(p′0) δnij(t,p) + θ(−p0)θ(−p′0)δnij∗(t,−p)

]
(2π)3δ(3)(p− p′)

× 2π
(
2 sign(p′0)p′0

)1/2
δ(p′2 −M2

j )

= G0, ij
δ (p, p′, t̃) , (3.53)
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recovering the non-equilibrium part of the tree-level propagator (cf. eq. (3.1)), as we would

expect.

By extracting the positive-frequency part of eq. (3.50), we can define a generalization

of eq. (3.7):

2πδ+

(
detDR(p)

)
≡ i

∆Ω2

[
1

2Ω1

f1(p0)

p0 − Ω1
− 1

2Ω2

f2(p0)

p0 − Ω2

]
≡ 2π

∆Ω2

[
1

2Ω1
δ(p0 − Ω1)− 1

2Ω2
δ(p0 − Ω2)

]
. (3.54)

We may then write the positive-frequency, non-equilibrium part of the full propagator as

Gijδ (p, p′, t̃)
∣∣
p0,p′0> 0

= 2π(2p0)1/2[adjDR(p)]ikδ+

(
detDR(p)

)
ei(p0−p

′
0)t̃

× δnkl(t,p)(2π)3δ3(p− p′)2π(2p′0)1/2δ+

(
detDA(p′)

)
[adjDA(p′)]lj ,

(3.55)

where

δ+

(
detDA(p)

)
=
[
δ+

(
detDR(p)

)]∗
. (3.56)

We note that eqs. (3.50) and (3.54) cannot be applied naively in the doubly-degenerate

case, where the limit Ω2 → Ω1 must be taken before the integral over p0. It is in the

use of the pole approximation in eq. (2.14) that the present analysis differs from that of

ref. [11], where instead an alternative procedure was employed based upon the resummation

techniques developed in ref. [35]. We note however that the approximation used there (see

appendix A.1 of ref. [11]) cannot be used in the weak-washout regime, where one cannot

guarantee that the off-diagonal number densities are of O(h2), as is the case for the strong-

washout regime considered in ref. [11].

In the equal-time limit X0 = t̃, and using eq. (3.54), the Wigner transform of

eq. (3.55) is

Gijδ (t, q0 > 0) = 2πδ(q0 − Ωab)[adjDR(Ωa)]
ik εab δn

kl(t,q)

(2Ωa)1/2(2Ω∗b)
1/2|∆Ω2|2

[adjDA(Ω∗b)]
lj .

(3.57)

Here, the sum over a, b = 1, 2 has been left implicit, Ωab ≡ (Ωa + Ω∗b)/2, and εab = 1 if

a = b and εab = −1 if a 6= b. Finally, performing the summations over a and b, we find

Gijδ (t, q0 > 0) = 2πδ(q0 − ω1)[adjDR(Ω1)]ik
δnkl(t,q)

|2Ω1||∆Ω2|2
[adjDA(Ω∗1)]lj

+ 2πδ(q0 − ω2)[adjDR(Ω2)]ik
δnkl(t,q)

|2Ω2||∆Ω2|2
[adjDA(Ω∗2)]lj

− 2πδ(q0 − Ω̄)[adjDR(Ω1)]ik
δnkl(t,q)

(2Ω1)1/2(2Ω∗2)1/2|∆Ω2|2
[adjDA(Ω∗2)]lj

− 2πδ(q0 − Ω̄∗)[adjDR(Ω2)]ik
δnkl(t,q)

(2Ω∗1)1/2(2Ω2)1/2|∆Ω2|2
[adjDA(Ω∗1)]lj ,

(3.58)
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where Ω̄ = (Ω1 + Ω∗2)/2. It is essential to emphasize that the deviations from equilibrium

δnij are the non-equilibrium parts of the physical dynamical number densities, which ap-

pear as unknowns in the interaction-picture propagators. Moreover, these are the spectrally-

free number densities, which count excitations with energy Ei.

In order to compare with the Heisenberg-picture result in eq. (2.19), we now expand

the interaction-picture result in eq. (3.58) above to first order in ΠR(A). This gives the

following result for the off-diagonal components:

Gi
/i
δ (t, q0 > 0) ≈ 2π δ(q0 − ωi)

1

2ωi
δnii(t) Πi/i

A (ωi)Ri/i

− 2π δ(q0 − ω/i)
1

2ω/i
δn/i/i(t) Πi/i

R(ω/i)Ri/i

+ 2π δ(q0 − ω̄)
1

(2ωi)1/2(2ω/i)
1/2

[
δni/i(t) ∆M2

i/i

− δnii(t) Πi/i
A (ω/i) + δn/i/i(t) Πi/i

R(ωi)
]
Ri/i . (3.59)

Thus, we find for the time-derivative of the asymmetry

dη

dt
≈ 2

∑
i

∫
q

Mi

ωi
δnii(t,q) Γmed

i (ωi,q) εmed
i (ωi,q)

+ 2 ImH12 Im

∫
q

Π̃ρ(ω̄,q)

(ω1ω2)
1
2

[
δn12(t,q) ∆M2

12

− δn11(t,q)Π12
A (ω2,q) + δn22(t,q)Π12

R (ω1,q)
]
R12 . (3.60)

This closely resembles the Heisenberg-picture result in eq. (2.28) with the exception of

the time-dependent phases; the Heisenberg-picture result is written in terms of the initial

conditions for the non-equilibrium parts of the number densites. Hence, in order to show

that the expressions for Gijδ in eqs. (2.19) and (3.59) are in fact identical to first order in the

self-energies, and by extension the expressions for the asymmetry in eqs. (3.60) and (2.28),

we must now find the functional form of δnij(t) by solving the transport equations directly.

This will allow us to write the interaction-picture result directly in terms of the initial

conditions.

Before proceeding to do this, however, it is important to remark upon the role played

by the interference terms. These interference terms may now be distinguished from the

pure oscillation contribution. The former appear in the final line of eq. (3.60) and originate

in the final line of eq. (3.59), lying on the oscillation shell but being proportional to the

diagonal components of the time-dependent number densities. On the other hand, the

oscillation contribution appears in the second line of eq. (3.60) and originates in third line

of eq. (3.59), and is proportional to the off-diagonal components of the time-dependent

number densities. This identification of the pure oscillation contribution is in accord with

the conventions of refs. [9–11] and, as we will see below, it is subtly different to identifying

the pure oscillation and interference contributions in terms of the components of the initial

deviations from equilibrium, as appear in eq. (2.19), which makes sense only in the weak-

washout regime. Note that, although it is possible to identify the mixing and oscillation
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shells unambiguously by means of the spectral structure of the resummed propagators, it

is possible to identify the pure oscillation and interference terms only through a physically-

meaningful definition of the particle number densities.

We proceed by expanding all but the regulator structure in eq. (3.59) around ∆ωi/i =

ωi − ω/i = 0. At zeroth order, we find

Gi
/i
δ (t, q0 > 0) ⊃ 2πδ(q0 − ω̄)

1

2ω̄
δni/i(t)∆M2

i/iRi/i , (3.61)

in which the mixing contributions have canceled and from which we see that the interfer-

ence between mixing and oscillations is destructive. At this point, one might be tempted

to conclude that using the on-shell approximation for the heavy-neutrino propagator, cf.

eq. (3.11), in the equation for the asymmetry is valid, and therefore that the approach

of refs. [9–11], by including contributions from both mixing and oscillation, double-counts

the final asymmetry. However, this is not the case. Continuing to the next order in the

expansion, we find

Gi
/i
δ (t, q) ≈ 2πδ(q0 − ω̄)

1

2ω̄
δni/i(t)∆M2

i/iRi/i

− 2πδ(q0 − ω̄)
1

2ω̄

[
δnii(t)

Πi/i
A (ω̄)

4ω̄2
+ δn/i/i(t)

Πi/i
R(ω̄)

4ω̄2

]
∆M2

i/iRi/i , (3.62)

where the mixing terms are present but are now suppressed by an additional factor of

∆M2
12. Here, we have neglected terms proportional to the derivative of the delta function

δ′(q0 − ω̄) and the derivative of the self-energy Πi/i ′(ω̄), which contribute sub-dominantly

to the asymmetry under the assumption that the self-energies are slowly varying functions

of q0 for q0 ∼ ω̄. This same assumption underlies the pole approximations in eqs. (2.14)

and (2.15), which can be verified numerically (see ref. [72]). The asymmetry now takes

the form

dη

dt
≈ 2

∑
i

∫
q

Mi

ω̄
δnii(t,q) Γmed

i (ω̄,q) ε̃med
i (ω̄,q)

+ 2 ImH12

∫
q

Π̃ρ(ω̄,q)

ω̄
Im δn12(t,q) ∆M2

12R12 , (3.63)

where the usual CP -violating parameter has been modified:

ε̃med
i (ω̄,q) =

ω/i − ωi
ω/i + ωi

εmed
i (ω̄,q) , (3.64)

cf. eq. (2.29). Although both mixing and oscillation contributions persist in the middle-shell

approximation and are clearly identifiable, in agreement with the results of refs. [9–11], we

see that the structure of the mixing contribution has been modified. In addition to the

suppression by an additional factor of ∆M2
12, a relative sign has emerged between the

i = 1 and i = 2 contributions. As a result, the modified mixing contribution is strongly

suppressed when the deviations of the number densities of the two flavours from equilibrium

are similar. However, this is not always the case, for instance in scenarios of resonant `-

genesis [19, 20] (see also refs. [9–11]), where the lepton asymmetry is dominantly produced
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in a single flavour through the decays of heavy neutrinos of a particular family type. In

such cases, both mixing and oscillation contributions will be present. Most significantly, we

observe from eqs. (3.62) and (3.63) that the pre-factors of these two distinct contributions

to the lepton asymmetry carry exactly the same parametric dependence on the Yukawa

couplings and mass splittings: ∼ ∆M2
12R12, which is of order unity in the weakly-resonant

or overlapping regime Γi � ∆M � M̄ . Finally, we remark that it remains to be seen how

the mixing source is modified by interference in the case of more than two flavours.

Explicit solution. We now return to eq. (3.58) with the aim of finding the explicit

solution for the deviations from equilibrium δnij(t). The relevant transport equations for

determining the functional form of the spectrally-dressed number densities δnijdr(t) can be

written in the general form [11]

d δnijdr(t)

dt
=

∫
dp0

2π

∫
dp′0
2π

e−i(p0−p
′
0)t̃θ(p0)θ(p′0)

×
(
− i
[
M2 + Re ΠR,Gδ

]ij
?
− 1

2

{
Π<,Gδ

}ij
?

+
1

2

{
Π>,Gδ

}ij
?

)
. (3.65)

In the Markovian approximation, the commutators and anti-commutators appearing in

eq. (3.65) are defined as follows [11]:

[A,B]? ≡
∫
k

(
A(p, k) ·B(k, p′)−B(p, k) ·A(k, p′)

)
, (3.66a)

{A,B}? ≡
∫
k

(
A(p, k) ·B(k, p′) + B(p, k) ·A(k, p′)

)
, (3.66b)

in which we emphasize the order of the four-momenta.

In order to find the asymmetry at first order in ΠR(A), we require the solution for the

diagonals only at zeroth order. Thus, for the diagonals, we may work in terms of the tree-

level G0
δ , as obtained from eq. (3.1), yielding the following equation for the spectrally-free

number densities
dδnii

dt
= −Γi δn

ii, (3.67)

with solution

δnii(t) = e−Γit δnii(0) . (3.68)

For the off-diagonals, we may work in terms of the tree-level G0
δ in the time-derivative on

the l.h.s. and in all terms already at leading order in ΠR(A) on the r.h.s., i.e.

d δni/i(t)

dt
⊃
∫

dp0

2π

∫
dp′0
2π

e−i(p0−p
′
0)t̃θ(p0)θ(p′0)

×
(
− i
[

Re ΠR,G
0
δ

]i/i
?
− 1

2

{
Π<,G

0
δ

}i/i
?

+
1

2

{
Π>,G

0
δ

}i/i
?

)
. (3.69)

On the other hand, in the term

d δni/i(t)

dt
⊃ − i

∫
dp0

2π

∫
dp′0
2π

e−i(p0−p
′
0)t̃θ(p0)θ(p′0)

[
M2,Gδ

]i/i
?
, (3.70)
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we must use the resummed Gδ, since this will also contribute a term at first order in ΠR(A).

Proceeding in this manner, we find the equation for the off-diagonals

dδni/i

dt
= − i(ωi − ω/i) δni

/i − Γ̄ δni/i − i

2ω̄

(
Πi/i
R(ωi) δn

/i/i −Πi/i
A (ω/i) δn

ii
)
, (3.71)

in which we have used the approximation ωiω/i ≈ ω̄2.

It is interesting to remark upon the origin of the order ΠR(A) terms in eq. (3.71). The

terms originating from the diagonal elements of the tree-level G0
δ in eq. (3.69) are

dδni/i

dt
⊃ − i

2ω̄
δn/i/i Πi/i

R(ω/i) +
i

2ω̄
δnii Πi/i

A (ωi) . (3.72)

Instead, the off-diagonal element of the resummed Gδ used in the commutator in eq. (3.70)

yields the following terms:

dδni/i

dt
⊃ − i

2ω̄
δnii

(
Πi/i
A (ωi)−Πi/i

A (ω/i)
)

+
i

2ω̄
δn/i/i

(
Πi/i
R(ω/i)−Πi/i

R(ωi)
)
. (3.73)

We see that the contribution from the resummed Gδ in eq. (3.70), which amounts to the

interference of mixing and oscillation effects, swaps the arguments of the terms at first

order in ΠR(A).

The leading-order solutions to the off-diagonal equations in eq. (3.71) have the form

δni/i(t) = e−i(ωi−ω/i )te−Γ̄tδni
/i

0 (0) +
Πi/i
A (ω/i)

∆M2
i/i

e−Γit δnii(0)−
Πi/i
R(ωi)

∆M2
i/i

e−Γ/i t δn/i/i(0) , (3.74)

where δni
/i

0 is the initial condition at zeroth order in ΠR(A). Next, we re-express this result

in terms of the full initial condition for the off-diagonals δni/i(0):

δni/i(0) = δni
/i

0 (0) +
Πi/i
A (ω/i)

∆M2
i/i

δnii(0)−
Πi/i
R(ωi)

∆M2
i/i

δn/i/i(0) . (3.75)

We then obtain the final form of the solution:

δni/i(t) = e−i(ωi−ω/i )te−Γ̄tδni/i(0)

+
Πi/i
A (ω/i)

∆M2
i/i

(
e−Γit − e−i(ωi−ω/i )te−Γ̄t

)
δnii(0)

−
Πi/i
R(ωi)

∆M2
i/i

(
e−Γ/i t − e−i(ωi−ω/i )te−Γ̄t

)
δn/i/i(0) . (3.76)

Substituting eq. (3.76) into eq. (3.59) for the off-diagonal components of Gδ, we obtain

precisely eq. (2.19), as derived in the Heisenberg picture. This remarkable agreement

provides a significant illustration of both the self-consistency and complementarity of the

Heisenberg- and interaction-picture approaches described in this article.

Finally, we see from eq. (3.76) the reason for defining the pure oscillation and interfer-

ence terms with respect to the time-dependent number densities in eqs. (3.59) and (3.60)
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and not with respect to their initial conditions, as appear in eqs. (2.19) and (2.28). In

the weak-washout regime treated here, the explicit solution for the off-diagonals δni/i(t) in

eq. (3.76) contains terms proportional to the initial deviation of the diagonal components

δnii(0) and δn/i/i(0), which appear comparable to the terms in the final line of eqs. (3.59)

and (3.60). On the other hand, in the strong-washout regime, whilst the solution for the

off-diagonals δni/i(t) would no longer depend on the initial conditions, the final line in

eq. (3.60) would still be present.

4 Comparison with the density matrix approximation

In the two previous sections, we have paid particular attention to the shell structure of

the would-be heavy-neutrino propagators and emphasized the need to keep track of this

complete structure in the equation for the asymmetry. However, in phenomenological

studies and in order to obtain the final lepton asymmetry, we need first to solve the evolution

equations for the number densities of the heavy neutrinos. In contrast to the equation for

the asymmetry, for an almost degenerate mass spectrum, there is no need to keep track of

the different shells in the evolution of the heavy-neutrino number densities. Such a single

shell approximation applied to the heavy-neutrino transport equations will be referred to

as the density matrix approximation in what follows. In the Kadanoff-Baym formalism,

this apparent disparity between the treatment of the equation for the asymmetry and the

evolution equations of the heavy-neutrino number densities is actually a result of making

a self-consistent loop-wise perturbative truncation of the leptonic and heavy-neutrino KB

equations (see refs. [11] and [84]).

Performing a Wigner-transform of the Kadanoff-Baym equations (eq. (2.3)) and ne-

glecting the gradient terms, one arrives at the following equation for the Wigner transform

of the Wightman propagators [7]:

2q0∂tG< + i
[
M2,G<

]
=

1

2

{
Π>,G<

}
− 1

2

{
Π<,G>

}
, (4.1)

where the term Re ΠR (see eq. (3.65)) is understood to have been absorbed into the mass

matrix M2. In the density matrix approximation [7, 59],

G<(t, q) = n(t,q) 2π δ(q2 − M̄2) , (4.2)

where M̄2 = (M2
1 + M2

2 )/2 and the density matrix (or, to be more precise, the matrix of

densities) n(t,q) can be viewed as a dressed distribution function. Substituting eq. (4.2)

into eq. (4.1), we arrive at

2q0∂tn + i
[
M2,n

]
=

1

2

{
Π>,n

}
− 1

2

{
Π<,1 + n

}
. (4.3)

Finally, integrating over q0 and using the single-shell approximation in eq. (4.2), we obtain

the kinetic equation for the matrix of densities

∂tn +
i

2ω̄

[
M2,n

]
=

1

4ω̄

{
Π>,n

}
− 1

4ω̄

{
Π<,1 + n

}
. (4.4)
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In equilibrium, n is time independent and, as follows from eq. (4.4), satisfies

2i
[
M2,neq

]
=
{
Π>,neq

}
−
{
Π<,1 + neq

}
. (4.5)

The Kubo-Martin-Schwinger relation (see e.g. ref. [100]) implies that Π< = Π̃ρnBE in

equilibrium, where nBE is the Bose-Einstein distribution function. Further, taking into

account that Π̃ρ = Π> − Π<, we conclude that neq = 1 · nBE in the density matrix

approximation, i.e. that the equilibrium distribution function is diagonal and, as expected,

given by the Bose-Einstein distribution.

Writing n = neq + δn and using eqs. (4.4) and (4.5), we obtain the kinetic equation

for the deviation of the matrix of densities from its equilibrium value

∂tδn +
i

2ω̄

[
M2, δn

]
=

1

4ω̄

{
Π̃ρ, δn

}
. (4.6)

Finally, introducing the matrix of effective decay widths

Γ ≡ − Π̃ρ

2ω̄
=
iΠρ

2ω̄
, (4.7)

and using the standard trick M2 → 2ω̄ω, we arrive at the equation

∂tδn + i
[
ω, δn

]
= − 1

2

{
Γ, δn

}
, (4.8)

as obtained in ref. [7].

It can readily be checked by substitution that the solution to eq. (4.8) is

δn(t) = e−i(ω−
i
2
Γ)t δn(0) ei(ω+ i

2
Γ)t. (4.9)

Choosing, as in ref. [7], initial conditions of the form

δn(0) =

(
δn11(0) 0

0 0

)
, (4.10)

we obtain, to leading order in Γ,

δni/i(t) ≈ i

2

Γi/i

(ωi − ω/i) + i
2(Γi − Γ/i)

δn11(0)
(
e−Γit − e−i(ωi−ω/i )te−Γ̄t

)
, (4.11)

which is in exact agreement with the result of ref. [7]. For general initial conditions,

eq. (4.11) takes the form

δni/i(t) ≈ δni/i(0) e−i(ωi−ω/i )t e−Γ̄t

+
i

2

Γi/i

(ωi − ω/i) + i
2(Γi − Γ/i)

δnii(0)
(
e−Γit − e−i(ωi−ω/i )te−Γ̄t

)
+
i

2

Γi/i

(ωi − ω/i) + i
2(Γ/i − Γi)

δn/i/i(0)
(
e−Γ/i t − e−i(ωi−ω/i )te−Γ̄t

)
. (4.12)
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Multiplying this expression by 2ω̄ and using again eq. (4.7), we find

δni/i(t) ≈ δni/i(0) e−i(ωi−ω/i )t e−Γ̄t

− i

2

Π̃i/i
ρ

∆M2
i/i

δnii(0)
(
e−Γit − e−i(ωi−ω/i )te−Γ̄t

)
− i

2

Π̃i/i
ρ

∆M2
i/i

δn/i/i(0)
(
e−Γ/i t − e−i(ωi−ω/i )te−Γ̄t

)
, (4.13)

which, in the density matrix approximation, is identical to eq. (3.76). In other words, for

an almost degenerate mass spectrum, one can safely use the density matrix equations to

compute the number density of the heavy neutrinos.

5 Comparison with the effective Yukawa approach

As was emphasized in the preceding sections, it is necessary to account for the shell struc-

ture at the level of the equation for the asymmetry for all mass spectra. This is necessary

in order to capture the effect of mixing. In this section, we will compare the result from the

present analysis with that of the semi-classical analysis of refs. [9, 10] and the KB analysis

of ref. [11]. Therein, the effect of oscillations is captured by accounting for the dynamics of

flavour coherences, encoded in the off-diagonal elements of the number density. The effect

of mixing is accounted for by means of effective Yukawa couplings, following the work of

refs. [15, 35]. We briefly review the derivation of these effective Yukawa couplings for the

present toy model below, as were treated in ref. [58]. We reiterate that this approach was

not followed in the preceding sections.

The heavy mixing scalars are unstable, and as such they cannot appear as asymptotic

in- or out-states of S -matrix elements. Instead, their properties are defined by S -matrix

elements for scattering of stable particles, b and b̄, mediated by the unstable ones [101].

Resumming the propagator of the intermediate heavy states, we can represent two-body

scattering processes as a sum of resonant and non-resonant contributions. The CP -violating

part of the resonant contribution can then be interpreted as a characteristic of the on-shell

intermediate particle [15, 102].

The amplitude of the s-channel two-body scattering process bb → b̄b̄ can be ex-

pressed as

Mbb→b̄b̄ =
∑
i,j

ΓAi G
ij(s)ΓBj , (5.1)

where ΓAi and ΓBj represent the vertices ψibb and ψj b̄b̄, including the wave functions of the

initial and final states, and Gij are the full vacuum propagators obtained by resumming

an infinite series of self-energy graphs [15]. The resummation can be performed using the

Schwinger-Dyson equation in vacuum:

[G−1]ij(p2) =
[
p2 −M2

i

]
δij −Πij(p2) . (5.2)
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At one-loop level and in the on-shell scheme, the renormalized self-energy Πij is given

by [58]

Πii
ren =

Hii

16π2

[
ln
|p2|
M2
i

− p2 −M2
i

M2
i

− iπθ(p2)

]
, (5.3a)

Πi/i
ren =

ReHi/i

16π2

[
p2 −M2

i

M2
/i
−M2

i

ln
|p2|
M2
/i

+
p2 −M2

/i

M2
i −M2

/i

ln
|p2|
M2
i

− iπθ(p2)

]
. (5.3b)

Inverting eq. (5.2), we obtain the following result for the components of the renormalized

resummed propagator:

Gii(p2) = + [G−1]jj(p2)/ det[G−1(p2)] , (5.4a)

Gi/i(p2) = − [G−1]i/i(p2)/ det[G−1(p2)] . (5.4b)

Because of the presence of absorptive terms in eq. (5.3), the determinant of the inverse

propagator in eq. (5.4) has two poles in the complex plane at

si 'M2
i − iMiΓi , (5.5)

where Γi = Hii/16πMi is the tree-level decay width of ψi. Expanding eq. (5.4) around the

poles and substituting the leading expansion terms into eq. (5.1), we find [35]

Mbb→b̄b̄ '
∑
i

V A
i (s)

1

s− si
V B
i (s) , (5.6)

where

V
A(B)
i (s) ≡ Γ

A(B)
i − [G−1]i/i(s)

[G−1]/i/i(s)
Γ
A(B)
/i

= Γ
A(B)
i +

Πi/i(s)

s−M2
/i
−Π/i/i(s)

Γ
A(B)
/i

. (5.7)

Equation (5.7) can be used to define effective one-loop Yukawa couplings h
(c)
i . Taking into

account that the couplings in the vertices ψibb and ψib̄b̄ differ by complex conjugation, we

obtain

hi ≡ hi +
Πi/i(s)

s−M2
/i
−Π/i/i(s)

h/i , (5.8a)

hc∗i ≡ h∗i +
Πi/i(s)

s−M2
/i
−Π/i/i(s)

h∗/i , (5.8b)

which, as follows from eq. (5.6), are to be evaluated on the mass shell of the i-th quasi-

particle [35]. Using eqs. (5.3) and the tree-level relation Hii = 16πMiΓi, we obtain

Πi/i(M
2
i ) = − i

ReHi/i

16π
, (5.9a)

Π/i/i(M
2
i ) = M/iΓ/i

[
1

π

(
ln

(
M2
i

M2
/i

)
−
M2
i −M2

/i

M2
/i

)
− i

]
. (5.9b)
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Note that, for Mi ≈M/i , each term in the round brackets in eq. (5.9b) vanishes and therefore

this contribution can be neglected. On the other hand, for Mi �M/i , the difference in the

round brackets of eq. (5.9b) only increases slowly with growing M/i/Mi and is negligibly

small compared to the M2
i − M2

/i
term in the denominator of eq. (5.8). Therefore, for

practical purposes, it is sufficient to keep only the imaginary part of eq. (5.9b), i.e. use

Π/i/i(M
2
i ) ≈ −iM/iΓ/i . In this way, we arrive at the effective Yukawa couplings

h
(c)
i = hi

[
1− (+)i

H/i/i

32π

(
1 +

H∗
i/i

Hi/i

)
1

∆M2
i/i

+ (−)iM/iΓ/i

]
. (5.10)

The self-energy contribution to the CP -violating parameter in vacuum takes the form

εvac
i ≡

Γψi→bb − Γψi→b̄b̄
Γψi→bb + Γψi→b̄b̄

, (5.11)

and we find

εvac
i = Im

(
Hi/i

H∗
i/i

) (M2
i −M2

/i
)M/iΓ/i

(M2
i −M2

/i
)2 + (M/iΓ/i)

2
, (5.12)

cf. eq. (2.29).

Following ref. [11] (see appendix A for a comparison of conventions), the time-derivative

of the asymmetry can be written in terms of the effective Yukawa couplings as

dη

dt
≈
∫
q
θ(q0)

[
hih

∗
jG

0, ij
δ (t, q)− hc∗i hcjG

0, ij
δ (t, q)

]
Π̃ρ(q) , (5.13)

where G0, ij
δ (t, q) is the non-equilibrium part of the tree-level propagator. As discussed in

section 4, the tree-level heavy-neutrino propagator may be written in the on-shell approx-

imation (see ref. [11])

G0, ij
δ (t, q0 > 0) = 2πδ(q0 − ω̄)

1

2ω̄
δnij(t,q) . (5.14)

The time-derivative of the asymmetry is then found to be

dη

dt
≈ 2

∑
i

∫
q

Mi

ω̄
δnii(t,q) Γi(ω̄,q) εvac

i (ω̄,q)

+ 2 ImH12

∫
q

Π̃ρ(ω̄,q)

ω̄
Im δn12(t,q) . (5.15)

With the exception of the additional factor of ∆M2
12R12, which is of order unity in the

weakly-resonant regime, the oscillation contribution resembles that appearing in eq. (3.60).

On the other hand, the mixing contribution does not see the modifications that resulted

in eq. (3.60) from the interference terms in the final line of eq. (3.59). This conclusion

is suggestive that the approach of refs. [9–11], although accounting successfully for both

mixing and oscillation, may not fully capture the interference of these two effects. However,

as identified earlier in section 3, the approximation used in (appendix A.1 of) ref. [11] does

not hold in the weak-washout regime studied here, and it would be of interest to study the

impact of these interference effects quantitatively in the strong-washout regime.
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6 Phenomenological implications

In order to get a feeling for the relative size of the mixing, oscillation and interference con-

tributions, we now compute the asymmetry for various values of the degeneracy parameter

R ≡ M2
2 −M2

1

M1Γ1 +M2Γ2
. (6.1)

In the weak-washout regime, to which we limit ourselves in this work, the impact of the

initial conditions on the final asymmetry is non-negligible. Therefore, in order to ensure

that the produced asymmetry is of dynamical origin, we need to choose C -symmetric initial

conditions in our numerical analysis. As is shown in refs. [72, 94], for a non-degenerate mass

spectrum, the Lagrangian in eq. (1.1) is C -symmetric if either Im H12 = 0 or ReH12 = 0.

It is also automatically C -symmetric for a degenerate mass spectrum. This can be sum-

marized conveniently by forming the familiar basis-independent measure of both C- and

CP -violation, the Jarlskog invariant

J = Im TrHM3HTM , (6.2)

which vanishes when any of the C-conserving conditions are satisfied (see appendix B and

ref. [72] for more details).

Whereas the r.h.s. of eq. (2.28) vanishes in the limit ImH12 = 0, it does not automat-

ically vanish when ReH12 = 0 except in the absence of initial flavour coherences, i.e. for

δn12(0) = 0. This implies that there are two ways to specify the initial conditions such

that the asymmetry automatically vanishes if the Lagrangian is C -conserving. The first

possibility, studied in ref. [72], is to choose K12 = 0, i.e. to set the leading oscillation term

to zero. The second possibility is to require that the initial conditions be C -symmetric,

which, in the Heisenberg picture, corresponds to choosing Gijδ (0, 0) diagonal in the mass

eigenbasis (see appendix B for more details). It can be shown by virtue of the constraints

provided on the two-point functions by causality, unitarity, CTP invariance and Hermitic-

ity (see ref. [84]) that the source Kmn has the same properties as the statistical one-loop

self-energy in the thermal bath. Thus, it follows that Kmn = Knm. Using this symmetry

and requiring G12
δ (0, 0) to vanish, we obtain

K12 = K21 = −
K11G11

R (0)G12
A (0) +K22G12

R (0)G22
A (0)

G11
R (0)G22

A (0) +G12
R (0)G12

A (0)
, (6.3)

where 0 = 0+ for the retarded and 0 = 0− for the advanced propagator. The properties

of the propagators also imply GijA(0) = GjiR(0), and therefore it is sufficient to consider for

example only the retarded one. Expressed in terms of its Wigner transform, the retarded

propagator takes the form

GijR(0) = 2

∫ ∞
0

dq0

2π
ReGijR(q0) ≈ − 2 Im

1

∆Ω2

2∑
k= 1

(−1)k

2ωk
[adjDR(ωk)]

ij , (6.4)

where we have used eq. (2.14) and Cauchy’s theorem to evaluate the integral approximately.

It follows from this expression that G12
R ∝ Π12

R ∝ ReH12 and similarly G12
A ∝ Π12

A ∝ ReH12.
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Thus, we find K12 = K21 ∝ ReH12, such that, for a C -symmetric choice of the initial

conditions, the produced asymmetry automatically vanishes when either ImH12 = 0 or

ReH12 = 0. In other words, although this is not immediately obvious because the ψi are

not necessarily on shell, for a C -symmetric choice of the initial conditions, the mixing and

oscillation sources of the asymmetry are proportional to the Jarlskog invariant in eq. (6.2)

(see ref. [72] for a detailed discussion). As has been shown in refs. [9–11], in the strong-

washout regime, in which the final asymmetry is known to be independent of the initial

conditions, the solution of the kinetic equations automatically possesses this property. For

the toy model under consideration, we demonstrate this in appendix C.

For the numerical analysis, it is more convenient to evaluate eq. (2.2) directly. Sub-

stituting the Wigner transform of eq. (2.9) into eq. (2.2) and neglecting the sub-leading

off-shell contributions, the time-derivative of the asymmetry takes the form

dη

dt
= 4 ImH12

∫
q

εab
|∆Ω2|2

Π̃ρ

(
(ωa + ωb)/2,q

)
× Im

[
[adjDR(ωa,q)]1m

2Ωa
Kmn(q)

[adjDA(ωb,q)]n2

2Ω∗b
e−i(Ωa−Ω∗b )t

]
, (6.5)

where we have restored the common momentum q and used the same notational conven-

tions as in eq. (3.57). We emphasize that the numerical analysis of the present section is

performed for the full solution, without an expansion to a given order in Π/∆M2. Were

we to expand eq. (6.5) in powers of ΠR(A), we would recover eq. (2.28). We would also

like to emphasize that the leading order expansion (eq. (2.28)) provides a very accurate

approximation to eq. (6.5), as has already been pointed out in ref. [72]. At the initial time

surface t = 0, the Heisenberg- (eq. (2.19)) and interaction-picture (eq. (3.59)) propagators

coincide. This can be used to extract from eq. (6.5) the mixing, oscillation, and interference

sources, as identified in eq. (3.59).

For the numerical examples, following ref. [72], we choose T = µ andM1 = µ, where µ is

the MS renormalization scale. The second mass parameter M2 can be expressed in terms of

the degeneracy parameter R in eq. (6.1). In figure 1, we plot the three contributions to the

final asymmetry, as well as the total asymmetry itself, for four choices of initial conditions

and with would-be Yukawa couplings h1 = 0.5µ exp(−i) and h2 = − 0.8µ exp(−2i/3).

The same is plotted in figure 2 for larger “Yukawa” couplings h1 = µ exp(−i) and h2 =

− 1.6µ exp(−2i/3). The red, dashed line indicates the contribution from the mixing source;

the green, dotted line the contribution from the oscillation source; the blue, dash-dotted line

the contribution from the interference terms; and the solid, black line the total asymmetry.

By comparing figures 1 and 2, we see that the relative size of the various contributions is

unaffected by the change in the “Yukawa” couplings. This can be understood in terms of

their common parametric dependence on the couplings and mass splittings, as identified in

section 3. A more significant effect is seen only for R > 1 in the case of K12 6= 0 due to the

additional dependence on the “Yukawa” couplings introduced via eq. (6.3), as is necessary

in order to specify C-symmetric initial conditions in the weak-washout regime.
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Figure 1. Contributions of the mixing (ηmix), oscillation (ηosc) and interference (ηint) sources to

the asymptotic value of the asymmetry as functions of the degeneracy parameter R for various

(C -conserving) choices of the initial conditions and with “Yukawa” couplings h1 = 0.5µ exp(−i)
and h2 = − 0.8µ exp(−2i/3).

The numerical results can be interpreted in two ways:

(i) On the one hand, taking the Boltzmann approximation (effective “Yukawa” couplings

but diagonal number densities) as the “benchmark”, one would think of the sum of

the oscillation (green, dotted lines) and interference contributions (blue, dash-dotted

lines) as the correction to the original approximation. With this interpretation in

mind, we plot in figure 3 the total asymmetry (solid, black line) versus the mixing

contribution (red, dashed line) and the sum of the oscillation and interference terms

(orange, dash-dotted line). In agreement with expectations, the correction from the

oscillation and interference terms is large for R ∼ 1 and is very small for hierarchical
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Figure 2. Contributions of the mixing (ηmix), oscillation (ηosc) and interference (ηint) sources to

the asymptotic value of the asymmetry as functions of the degeneracy parameter R for various

(C -conserving) choices of the initial conditions and with “Yukawa” couplings h1 = µ exp(−i) and

h2 = − 1.6µ exp(−2i/3). Note that the deviation between the black and coloured curves at R ∼ 100

is not related to the deviations in figure 5.

mass spectra. Interestingly, it is also small for quasi-degenerate mass spectra. All

in all, we find that the Boltzmann approximation, which is equivalent to the mix-

ing contribution (red, dashed line), agrees well with the total asymmetry, with the

exception of the region R ∼ 1.

(ii) Instead, taking the density matrix approximation (tree-level “Yukawa” couplings but

off-diagonal number densities) as the “benchmark”, one would think of the sum of

the mixing (red, dashed lines) and the interference terms (blue, dash-dotted lines) as

the correction to the original approximation. With this interpretation in mind, we
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Figure 3. Numerical results interpreted in terms of the Boltzmann “benchmark” (ηmix) plus cor-

rections (ηosc+int) as functions of the degeneracy parameter R for various (C -conserving) choices of

the initial conditions and with “Yukawa” couplings h1 = 0.5µ exp(−i) and h2 = − 0.8µ exp(−2i/3).

plot in figure 4 the total asymmetry (solid, black line) versus the oscillation contri-

bution (green, dotted line) and the sum of the mixing and interference terms (brown,

dash-dotted line). In this case, we see that the density matrix approximation, which

is equivalent to the oscillation contribution (green, dotted line), agrees well with the

total asymmetry when the number densities of the two flavours are of similar magni-

tudes (upper two panels of figure 4). On the other hand, when the number densities

of the two flavours are not similar (lower two panels of figure 4), as is enforced in

the weak-washout regime by choosing differing initial conditions for the two flavours,

we see that the density matrix approximation underestimates the total asymmetry

for smaller R. This observation can be understood from the analytic results given
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Figure 4. Numerical results interpreted in terms of the density matrix “benchmark” (ηosc) plus cor-

rections (ηmix+int) as functions of the degeneracy parameter R for various (C -conserving) choices of

the initial conditions and with “Yukawa” couplings h1 = 0.5µ exp(−i) and h2 = − 0.8µ exp(−2i/3).

in eqs. (3.63) and (3.64) for the effective CP -violating parameter. Specifically, with

the density matrix approximation as the benchmark, the interference terms can be

seen as a modification to the mixing source. This modification introduces a rela-

tive sign between the contribution to the asymmetry from the two flavours. Hence,

when the deviations from equilibrium of the two flavours are similar, the mixing con-

tribution is strongly suppressed. On the other hand, when this is not the case, the

cancellation is no longer exact and both the oscillation and mixing sources contribute

additively to the asymmetry, leading to an underestimate if one were to neglect one

or other of these sources. In spite of the possibility that the interference terms may

not be captured fully in the analysis of refs. [9–11], we nevertheless see as marked
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an enhancement in the present analysis up to a maximal factor of two for certain

values of the parameters. It remains to be seen the extent to which the interference

terms modify the final asymmetry for more-realistic phenomenological models in the

strong-washout regime and for an expanding background. However, since the mixing,

oscillation and interference terms all share common parametric dependence upon the

“Yukawa” couplings and mass splittings, one can reasonably anticipate that all three

effects may be of relevance for such models in the weakly-resonant (or overlapping)

regime Γi � ∆M � M̄ . We would like to emphasize that, for large R, the oscil-

lation source in figure 4 cannot be directly associated with the results of section 4,

because the latter are only applicable for ω2 ' ω1, which is only fulfilled for quasi-

degenerate mass spectra. This point is illustrated in figure 5, where we compare the

total asymmetry computed taking into account the full shell structure to the total

asymmetry and the oscillation contribution computed using the middle-shell approx-

imation ω1 = ω2 = ω in eq. (6.5). As expected, for hierarchical mass spectra the

results differ by orders of magnitude.

For completeness, we also plot in figure 6 the same comparisons for the larger choice of

“Yukawa” couplings and for the initial condition K12 6= 0. We draw attention to the bottom

right panel of this figure, where the underestimate of the lepton asymmetry provided by

the oscillation source alone is very apparent. The maximum factor of two enhancement

in the asymmetry can also be seen clearly when both rather than only one (oscillation or

mixing) source are accounted for.

7 Conclusions and outlook

For a hierarchical mass spectrum of heavy Majorana neutrinos, baryogenesis via leptogen-

esis can be studied in detail using conventional flavour-diagonal Boltzmann equations. On

the other hand, for a mildly quasi-degenerate mass spectrum, the Boltzmann approxima-

tion is insufficient, and there is ongoing work on the first-principles derivation of kinetic-

and systematically-improved Boltzmann equations capable of fully accounting for all rel-

evant effects, in particular the resonant enhancement of CP -violating parameters and the

oscillation between different flavours. In practice, it is necessary to find consistent approxi-

mation schemes in order to render the solution of these equations tractable for the purpose

of performing numerical scans of the available parameter space.

The mixing of particle flavours and the oscillations between them are two physically dis-

tinct and identifiable phenomena, as is known from the neutral K, D, B and Bs systems [1].

In this work, using Kadanoff-Baym equations, we confirm (in the weak-washout regime)

that mixing and oscillations indeed provide two distinct sources of lepton asymmetry, which

can be readily identified by means of the shell structure of the resummed heavy-neutrino

propagators. The mixing contributions correspond to the usual CP -violation in decay and

live on the mass shell of the corresponding quasi-particles with energy ωi. Instead, flavour

oscillations between the heavy neutrinos and interference between mixing and oscillation

can be identified with an “oscillation shell” of energy ω̄ = (ω1 + ω2)/2.
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Figure 5. Numerical results for the total asymmetry computed from eq. (6.5) using the complete

shell structure (solid black line), and the total asymmetry and the oscillation contribution (dotted

black green lines respectively) for the middle-shell approximation ω1 = ω2 = ω̄ as functions of the

degeneracy parameter R.

Historically, leptogenesis was first studied in the Boltzmann approximation, i.e. using

diagonal number densities with the transition amplitudes computed in vacuum. From

the perspective of this approximation, one would think of the sum of the oscillation and

interference contributions as the correction. In agreement with expectations, this correction

is large when the difference of the masses is comparable to the decay widths and is very

small for hierarchical mass spectra. Interestingly, it is also small for quasi-degenerate mass

spectra. Within the past decade, a lot of work has been devoted to the re-analysis of

resonant leptogenesis within the density matrix formalism, i.e. taking into account off-

diagonals of the matrix of number densities. From this perspective, one would instead
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Figure 6. Numerical results interpreted in terms of the Boltzmann (ηmix) and density matrix (ηosc)

“benchmarks” as functions of the degeneracy parameter R for various (C -conserving) choices of the

initial conditions and with “Yukawa” couplings h1 = µ exp(−i) and h2 = − 1.6µ exp(−2i/3). The

oscillation contribution (dotted green line) is in excess of the total asymmetry (solid black line) for

large R due to a change of sign in the mixing plus interference terms, which is not visible on the

plot.

think of the sum of the mixing and interference terms as the correction. When the number

densities of the two flavours are of similar size, this correction is small. On the other hand,

when the number densities of the two flavours are not similar, the correction becomes sizable

even for quasi-degenerate mass spectra, i.e. in the parameter range where it originally was

thought to be small. We find that the mixing and oscillation sources are of the same sign,

contributing additively to the final asymmetry up to a factor of two, in agreement with the

conclusions of refs. [9–11]. However, we also find that the interference terms may lead to

a suppression of the contribution from mixing. Hence, it would be of interest to perform
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an equivalent analysis for a realistic phenomenological model in the strong-washout regime

and for an expanding background.

By comparing the Heisenberg- and interaction-picture Kadanoff-Baym equations, we

have found identical results, illustrating the self-consistency and complementarity of these

two significantly different approaches. We note that this exact agreement relied upon the

interference between the mixing and oscillation contributions in the transport equations for

the number densities. Whereas the Heisenberg-picture Kadanoff-Baym equations are very

useful for studying features of the regimes that cannot be addressed by either Boltzmann

(not applicable for quasi-degenerate mass spectra) or density matrix (not applicable for

hierarchical mass spectra) approaches, their use in phenomenological studies is severely

limited by the difficulty of solving them. The fact that the interaction-picture Kadanoff-

Baym equations, which are much easier to solve, are identical to the Heisenberg-picture

ones means that we now have a convenient tool that allows us to treat hierarchical and

quasi-degenerate mass spectra on an equal footing, thereby performing parameter scans

over a large range.
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A Non-equilibrium field theory

The purpose of this appendix is two fold: firstly, it is intended to provide a brief outline

of the background to the Heisenberg- and interaction-picture realizations of the Kadanoff-

Baym approach to transport phenomena; secondly, it serves as a collection of the definitions

and notational conventions of the various two-point functions and self-energies that appear

in the body of this manuscript. In addition and in order to aid the comparison of this work

with the existing literature, we identify the correspondence of the conventions employed

herein with those appearing elsewhere.

In the study of transport phenomena, we are interested in the statistical or ensemble

expectation values (EEVs) of operators evaluated at a given time. Specifically, in the

Schrödinger picture, these EEVs take the generic form

〈•〉(t) ≡ Z−1 tr ρ(t) • , (A.1)
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where ρ(t) is the quantum-statistical density operator and Z = tr ρ is the partition function.

This is in stark contrast to scattering-matrix theory, where we are instead interested in the

overlap of states evaluated at different times: specifically, in and out asymptotic states.

This in-out formalism naturally lends itself to a path-integral description, leading to a time

integral that runs from the infinitely-distant past to the infinitely-distant future. On the

other hand, EEVs contain the overlap of states evaluated at the same time, i.e. two in (or

two out) states.

Closed-time path. In order to define a path-integral representation of EEVs, we must

deform a contour in the complex-time plane that takes us from the in state to the out

state and back again. This construction gives rise to the so-called in-in or closed-time

path (CTP) formalism due to Schwinger and Keldysh [79, 80].

The CTP contour comprises two branches: one running forwards in time, which we

refer to as the time-ordered branch, and one running backwards in time, which we refer

to as the anti-time-ordered branch. On this contour, we may introduce a path-ordering

operator TC . Given two field operators with times x0 and y0 both lying on the time-

ordered branch, the path ordering reduces to the usual time ordering. When both times

lie instead on the anti-time-ordered branch, the path ordering corresponds to anti-time

ordering. Finally, times lying on the time-ordered branch are, for the purposes of path

ordering, always ‘earlier’ than those on the anti-time-ordered branch. As a consequence of

our ability to place field operators on either of the two branches, the CTP formalism leads

to a doubling of degrees of freedom. The need for the latter can be understood as follows:

we need sufficient degrees of freedom to build both the statistical ensemble and excitations

within it.

In the same way that expectation values of operators can be written in any one of the

three equivalent pictures of quantum mechanics, viz. the Schrödinger, interaction (Dirac)

and Heisenberg pictures, so too can the corresponding operator-level representation of the

CTP formalism. These three pictures are coincident at a boundary time t̃i, i.e.

ρH(; t̃i) = ρI(t̃i; t̃i) = ρS(t̃i; t̃i) , (A.2)

where we have indicated Heisenberg-, interaction- (Dirac-) and Schrödinger-picture opera-

tors by subscripts H, I and S, respectively. In the Heisenberg-picture, field operators are

time-dependent, evolving with the full Hamiltonian HH(t̃; t̃i), whereas the density operator

is time-independent, encoding the initial conditions at the time t̃i. Here, following ref. [84],

we have indicated the implicit dependence on the boundary time t̃i by means of a semi-

colon. On the other hand, in the interaction picture, both the field and density operators

are time-dependent, evolving respectively under the influence of the free and interaction

parts of the Hamiltonian H0
I (; t̃i) and H int

I (t̃; t̃i).

Pinch singularities. It is well-known that perturbation theory breaks down in the

Heisenberg-picture realization of non-equilibrium field theory as a result of so-called pinch

singularities or secular terms. At the level of the perturbation series, this pathological be-

haviour arises from ill-defined products of Dirac delta functions with identical arguments.
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Their origin can be understood in terms of the Fermi golden rule: for systems in which

time-translational invariance is broken, the relevant expansion parameter is the product of

the coupling, g say, and the time t over which the interactions have been permitted to take

place. Thus, for t > 1/g, the perturbation series will not converge. As an example, we

may consider the exponential approach to equilibrium governed by a decay rate Γ ∝ g: an

expansion of e−Γt in powers of the coupling exists only for t < 1/g. In the CTP formalism,

the time over which the interactions have been permitted to take place corresponds to the

length of the CTP contour. In the Heisenberg-picture realization, this contour is extended

to infinity, thereby leading to the emergence of pinch singularities out of equilibrium. On

the other hand, it has been shown in ref. [84] that the CTP contour is necessarily of finite

length in the interaction picture and, as a result, a well-defined perturbation theory does

indeed exist. The contour is bounded from the left by the initial (boundary) time t̃i and

from the right by the final time t̃, at which the EEV is calculated. One is then led to

introduce the concept of a macroscopic time t = t̃− t̃i, where the tilde notation, which we

have hitherto not qualified, is reserved for the microscopic times of the operators.

Ensemble expectation value. In the Heisenberg picture, the ensemble expectation

value (EEV) is written in bra-ket notation as:

〈•〉0 = tr ρH(; t̃i) • , (A.3)

where the Heisenberg-picture density operator ρH(; t̃i) is evaluated at the macroscopic time

t = t̃i − t̃i = 0. In the interaction picture, the EEV is written as

〈•〉t = tr ρI(t̃; t̃i) • , (A.4)

where the interaction-picture density operator ρI(t̃; t̃i) is instead evaluated at the macro-

scopic time t = t̃− t̃i 6= 0. Hereafter, we suppress the dependence of both Heisenberg- and

interaction-picture operators, as well as all two-point functions and self-energies, on the

boundary time t̃i.

Coordinate conventions. The coordinate-, Wigner- and double-momentum-space rep-

resentations of the various two-point functions are, following ref. [84], distinguished only

by the form of their arguments. Interaction-picture two-point functions are distinguished

from their Heisenberg-picture counterparts by a superscript 0, in the case of the tree-level

two-point functions, and explicit dependence on the microscopic time t̃, in the case of self-

energies and the resummed two-point functions. Wherever possible, coordinate-space vari-

ables are denoted by the lower-case Roman characters x, y, . . . ; and their Fourier-conjugates

by the four-momenta p, p′, . . . . The central and relative coordinates are denoted by the

upper-case Roman characters X and R, respectively, where

Rµ = xµ − yµ, Xµ = (xµ + yµ)/2 . (A.5)

Finally, the characters q and Q are reserved for the central and relative momenta

qµ = (pµ + pµ′)/2 , Qµ = pµ − pµ′. (A.6)

These conventions are summarized in table 1.
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Heisenberg picture Interaction picture

Coordinate space (x, y) (x, y, t̃)

Wigner space (q,X) (q,X, t̃)

Double-momentum space (p, p′) (p, p′, t̃)

Table 1. The form of the arguments of the various resummed two-point functions and self-energies,

indicating whether they belong to the Heisenberg or interaction picture and if they are expressed

in the coordinate-, Wigner- or double-momentum-space representation. The interaction picture is

consistently identified by the appearance of an explicit dependence on the microscopic time t̃.

Double Fourier and Wigner transforms. The double Fourier transform f(p, p′) of a

function f(x, y) is defined as follows:

f(p, p′) ≡ Fy
[
Fx[f(x, y)](p)

]
(−p′) ≡ Fx

[
Fy[f(x, y)](−p′)

]
(p)

≡
∫ +∞

−∞
d4x

∫ +∞

−∞
d4y e−ip·x eip

′·y f(x, y) . (A.7)

We emphasize the relative sign in the exponent of the right-most y-dependent kernel.

This is chosen such that translational invariance f(x, y) = f(x − y) corresponds to the

conservation of four-momentum p = p′.
The Wigner transform f(q,X) of a function f(x, y) is defined as follows:

f(q,X) ≡ FR[f(x, y)](q) ≡
∫ +∞

−∞
d4Reiq·R f(x, y) . (A.8)

It may also be written in terms of an inverse transform of the double-momentum represen-

tation f(p, p′):

f(q,X) ≡ F−1
Q [f(p, p′)](X) ≡

∫ +∞

−∞

d4Q

(2π)4
e−iQ·X f(p, p′) . (A.9)

CTP propagators. In the present discussion of the relevant two-point functions, we

denote by the upper-case Roman character G the conventions of ref. [72] and those used

throughout the body of this article. Those denoted by the upper-case Greek character ∆

follow the conventions of refs. [11, 84]. Parenthesized names correspond to the nomencla-

ture of refs. [11, 84] and are placed in the text immediately following the corresponding

nomenclature of ref. [72]. Table 2 provides a summary of the relation between these con-

ventions.

The CTP propagator of the would-be heavy neutrinos of the model in eq. (1.1) is

defined as

G
[0,]ij
C (x, y[, t̃]) ≡ 〈TC

[
ψiH[I](x)ψjH[I](y)

]
〉
0[t]

. (A.10)

Objects appearing in brackets ([ ]) correspond to the interaction-picture definitions. For

times x0 and y0 on the time-ordered branch, G
[0,]ij
C (x, y[, t̃]) is equal to the time-ordered

(Feynman) propagator G
[0]ij
T (x, y[, t̃]). For times x0 and y0 on the anti-time-ordered branch,

G
[0,]ij
C (x, y[, t̃]) is equal to the anti-time-ordered (Dyson) propagator G

[0,]ij

T
(x, y[, t̃]). When
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Statistical/Hadamard GijF ≡
1
2 i∆

ij
1

Spectral/Pauli-Jordan Gijρ ≡ −∆ij

Retarded (Advanced) GijR(A) ≡ −∆ij
R(A)

Wightman Gij≷ ≡ i∆
ij
≷

Hermitian (Principal-part) Gijh ≡ −∆ij
P

Self-energies

Πij
≷ ←→ iΠij

≷

Πij
F ←→

1
2 iΠ

ij
1

Πij
R(A) ←→ −Πij

R(A)

Table 2. Comparison of the notations for the various two-point functions and self-energies used in

ref. [72] (l.h.s.) versus refs. [11, 84] (r.h.s.).

x0 is on the time-ordered branch and y0 is on the anti-time-ordered branch, G
[0,]ij
C (x, y[, t̃])

is equal to the negative-frequency Wightman propagator G
[0,]ij
< (x, y[, t̃]). On the other

hand, when x0 is on the anti-time-ordered branch and y0 is on the time-ordered branch,

G
[0,]ij
C (x, y[, t̃]) is equal to the positive-frequency Wightman propagator G

[0,]ij
> (x, y[, t̃]). Of

the four aforementioned propagators, only two are independent.

Rather than working in terms of path ordering, we may also represent the doubling

of degrees of freedom by means of a covariant SO(1, 1) notation [81–83], with the CTP

propagator transforming as a rank-2 tensor. However, in order to avoid proliferation of

sub- and superscripts, we do not employ this notation in this article.

(Anti)commutator functions. The spectral (Pauli-Jordan) function and the statistical

(Hadamard) propagator are defined as follows:

G[0,]ij
ρ (x, y[, t̃]) = i 〈

[
ψiH[I](x), ψjH[I](y)

]
〉
0[t]
≡ −∆[0,]ij(x, y) , (A.11a)

G
[0,]ij
F (x, y[, t̃]) =

1

2
〈{ψiH[I](x), ψjH[I](y)}〉

0[t]
≡ 1

2
i∆

[0,]ij
1 (x, y[, t̃]) . (A.11b)

The subscript F , indicating the statistical (Hadamard) propagator, should not be confused

with the same subscript used in [11, 84] to indicate the time-ordered (Feynman) propagator.

We draw attention to the fact that the Wigner transform of the spectral (Pauli-Jordan)

function Gρ(p,X) differs from the object G̃(p,X) appearing in ref. [103] by an overall factor

of i. It is for this reason that we have chosen to identify the Wigner representation only

by the form of the arguments. Specifically, we have

Gijρ (q,X[, t̃]) = FR
[
Gijρ (x, y[, t̃])

]
(q) ≡ i G̃ijρ (q,X[, t̃]) . (A.12)

Causal functions. The retarded and advanced propagators are defined in terms of the

spectral (Pauli-Jordan) function as follows:

GijR(x, y[, t̃]) = θ(x0 − y0)Gijρ (x, y[, t̃]) ≡ −∆ij
R(x, y[, t̃]) , (A.13a)

GijA(x, y[, t̃]) = − θ(y0 − x0)Gijρ (x, y[, t̃]) ≡ −∆ij
A(x, y[, t̃]) , (A.13b)
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from which we may obtain the identity

Gijρ (x, y[, t̃]) = GijR(x, y[, t̃])−GijA(x, y[, t̃]) . (A.14)

In addition, the Hermitian (principal-part) propagator is defined via

Gijh (x, y[, t̃]) =
1

2

(
GijR(x, y[, t̃]) +GijA(x, y[, t̃])

)
=

1

2
sign(x0 − y0)Gijρ (x, y[, t̃]) ≡ −∆ij

P (x, y[, t̃]) . (A.15)

Note that the superscript 0 does not appear in the interaction-picture cases, since the above

identities hold at any order in perturbation theory.

Wightman propagators. The absolutely-ordered Wightman propagators are defined

as follows:

G
[0,]ij
> (x, y[, t̃]) = 〈ψiH[I](x)ψjH[I](y)〉 ≡ i∆[0,]ij

> (x, y[, t̃]) , (A.16a)

G
[0,]ij
< (x, y[, t̃]) = 〈ψjH[I](y)ψiH[I](x)〉 ≡ i∆[0,]ij

< (x, y[, t̃]) . (A.16b)

These may also be written in terms of the spectral (Pauli-Jordan) function and statistical

(Hadamard) propagator:

Gij≷(x, y[, t̃]) = GijF (x, y[, t̃])∓ i

2
Gijρ (x, y[, t̃]) , (A.17)

yielding the identities

Gijρ (x, y[, t̃]) = iGij>(x, y[, t̃])− iGij<(x, y[, t̃]) , (A.18a)

GijF (x, y[, t̃]) =
1

2

(
Gij>(x, y[, t̃]) +Gij<(x, y[, t̃])

)
. (A.18b)

Time-ordered propagators. The time-ordered (Feynman) and anti-time-ordered

(Dyson) propagators do not feature in the body of this article. However for complete-

ness, they are defined as

Gij
T(T)

(x, y[, t̃]) = θ(x0 − y0)Gij>(<)(x, y[, t̃]) + θ(y0 − x0)Gij<(>)(x, y[, t̃]) . (A.19)

Self-energies. We follow the sign convention of ref. [72] for the definition of the self-

energies, such that a positive dispersive self-energy correction corresponds to a positive

shift in the mass-squared. For example, in the Markovian approximation, we denote the

inverse of the momentum-space resummed retarded (advanced) propagator by

Dij
R(A)(p) ≡ p

2δij − [M2]ij −Πij
R(A)(p) , (A.20)

where we have adopted the notation Dij
R(A)(p) from ref. [11]. This inverse appears in ref. [72]

as Ωij
R(A)(p) and in refs. [11, 84] as ∆−1

R(A)(p).

The various self-energies satisfy identities analogous to those identified above for the

two-point functions. In the case of the analogue of the spectral function,

Πij
ρ (x, y[, t̃]) = iΠij

>(x, y[, t̃])− iΠij
<(x, y[, t̃]) , (A.21)

we have introduced the real-valued distribution

Π̃ρ(p, p
′[, t̃]) ≡ − iΠρ(p, p

′[, t̃]) = − iFy
[
Fx
[
Πρ(x, y[, t̃])

]
(p)
]
(−p′) . (A.22)
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CTP Schwinger-Dyson equation. The Schwinger-Dyson equation of the CTP for-

malism may be derived systematically from the 2PI CJT effective action [104] (see also

refs. [81–83, 105]), which is defined via the Legendre transform (~ = 1)

Γ[φ,G] = − i lnZ[J,K]−
∫
C[t],x

J(x)φ(x)− 1

2

∫
C[t],x,y

K(x, y[, t̃])
(
φ(x)φ(y) +GC(x, y[, t̃])

)
,

(A.23)

where, for simplicity, we consider here the case of single real scalar field φ. The contour

integral has the explicit form∫
C[t],x

≡
∫

d3x

[ ∫ +∞[t̃]+iε

−∞[t̃i]+iε
dx0 −

∫ +∞[t̃]−iε

−∞[t̃i]−iε
dx0

]
, (A.24)

where ε = 0+ and the two terms correspond to the two branches of the CTP contour.

In order to build the generating functional Z[J,K], we start from the partition function

Z = tr ρ, which is picture- and, in the absence of external sources, time-independent. A

path-integral representation of the partition function can be derived by perturbing the

system with the introduction of an external test source J . Note that the presence of this

external source means that the density operator depends explicitly on time in all pictures.

Proceeding in the Heisenberg picture, we insert into the partition function complete sets

of eigenstates of the Heisenberg picture field operator |φ(x), x0〉 and construct the path

integral in the standard text-book fashion (see e.g. ref. [84]). The density operator gives

rise to a term

〈φ(x), x0 − iε|ρH(t̃)|φ(x), x0 + iε〉J , (A.25)

which we expand in terms of the field eigenvalues and a series of poly-local sources [82, 83]:

〈φ(x), x0 − iε|ρH(t̃)|φ(x), x0 + iε〉J = exp
(
iK[φ[, t̃]]

)
= exp

[
i

∫
C[t̃],x,y

φ(x)K(x, y, t̃)φ(y)

]
,

(A.26)

where, assuming a Gaussian density operator, we have kept only the bi-local source

K(x, y, [, t̃]), as appeared in the 2PI effective action (eq. (A.23)). We note that the path

integral is a c-number and, as such, we are free to interpret it in any picture.

By varying the 2PI effective action with respect to the resummed CTP propagator GC ,
we obtain the Schwinger-Dyson equation

G−1
C (x, y[, t̃]) = D0

C(x, y) +K(x, y[, t̃])−ΠC(x, y[, t̃]) , (A.27)

where

D0
C(x, y) = δ4

C(x, y)(−�x −M2) (A.28)

is the Klein-Gordon operator and ΠC(x, y[, t̃]) is the CTP self-energy, whose structure

is analogous to that of the CTP propagator. For instance, when x0 (y0) is on the

time-ordered branch and y0 (x0) is on the anti-time-ordered branch, ΠC(x, y[, t̃]) is equal

to iΠ<(>)(x, y[, t̃]) (with the i conventions detailed above). The contour delta function

δ4
C(x− y) coincides with the usual Dirac delta function if x0 and y0 lie on the same branch

of the CTP contour and is zero otherwise.
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The unique inverse of the Klein-Gordon operator is constrained by the Hermiticity

properties and CPT invariance of the action, as well as unitarity and causality (see ref. [84]).

In addition, one must provide a boundary condition, which corresponds to the EEV of the

normal-ordered product of fields. In the path-integral representation, the latter is encoded

in the bi-local source. In this way, the tree-level propagators of the Heisenberg picture

encode the initial conditions, whereas those of the interaction picture encode the current

state of the system. In each case, the bi-local source K(x, y, t̃i[t̃]) must be proportional to

Dirac delta functions that lie respectively on the initial and final time surfaces, i.e.

K(x, y, t̃i[t̃]) ∝ δ(x0 − t̃i[t̃]) δ(y0 − t̃i[t̃]) . (A.29)

It is the differing physical content of the tree-level propagators, which marks the main

distinction between the Heisenberg- and interaction-picture realizations of non-equilibrium

field theory.

B Discrete symmetry transformations

In this appendix, we revisit the properties of the theory in eq. (1.1) under the discrete

symmetry transformations of parity P , time-reversal T and charge-conjugation C. In

particular, as identified in ref. [72], we emphasize the relevance of these properties to the

specification of C-symmetric initial conditions both in the Heisenberg- and interaction-

picture realizations. The provision of C-symmetric initial conditions for the two-point

functions (in the case of the Heisenberg picture) or the number densities (in the case of the

interaction picture) ensures that any non-zero asymmetry generated in the weak-washout

regime arises dynamically and vanishes in the C-conserving limit of the theory, as it should.

The latter considerations are, of course, irrelevant in the strong-washout regime, since the

final asymmetry is independent of the initial conditions.

CPT transformations. In the presence of flavour mixing, it is necessary to consider

generalized discrete symmetry transformations, which, in an arbitrary flavour basis, contain

additional transformations in flavour space (see e.g. ref. [9]). For the model in eq. (1.1), we

have the following transformation properties under the generalized parity P , time-reversal

T and charge-conjugation C transformations:

a) Parity. Under the linear transformation P , the scalar fields transform as [94]

b(x0,x)P = βP b(x
0,−x) , (B.1a)

b̄(x0,x)P = β∗P b̄(x
0,−x) , (B.1b)

ψi(x
0,x)P = ±ψi(x0,−x) , (B.1c)

where the complex phase βP satisfies |βP |2 = 1.

b) Time-reversal. Under the anti-linear transformation T , the scalar fields transform

as [94]

b(x0,x)T = βT b(−x0,x) , (B.2a)

b̄(x0,x)T = β∗T b̄(−x0,x) , (B.2b)

ψi(x
0,x)T = Uji ψi(−x0,x) , (B.2c)
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where the complex phase βT satisfies |βT |2 = 1 and U is an orthogonal transformation

in flavour space, i.e. UikUjk = UkiUkj = δij .

c) Charge-conjugation. Under the linear transformation C, the scalar fields transform

as [94]

b(x)C = βC b̄(x) , (B.3a)

b̄(x)C = β∗C b(x) , (B.3b)

ψi(x)C = Uij ψj(x) , (B.3c)

where the complex phase βC satisfies |βC |2 = 1. In order for the Lagrangian to be

invariant under CPT , the same orthogonal transformation U must appear in both the

generalized T transformation in eq. (B.2c) and the generalized C transformation in

eq. (B.3c). This orthogonal transformation U may be either a rotation or a reflection

in flavour space, having the general form

U =

(
cos(α) − sin(α)

sin(α) cos(α)

)
or U =

(
cos(α) sin(α)

sin(α) − cos(α)

)
, (B.4)

or an arbitrary product of the rotations and reflections (a product of a rotation and

a reflection is still a reflection).

The Lagrangian in eq. (1.1) is invariant under C so long as we can find a phase βC and

transformation U such that the mass matrix M2 and Yukawa couplings h satisfy

UmiM
2
mnUnj = M2

ij , (B.5a)

β2
C Uki hk = h∗i . (B.5b)

In order to analyze the constraint on the Yukawa couplings provided by eq. (B.5b), it is

convenient to introduce the dyadic product Hij ≡ hih
∗
j . The second condition eq. (B.5b)

may then be recast in the more convenient form

UmiHmn Unj = H∗ij , (B.6)

in which the phase βC of the complex scalar field has been eliminated.

In the mass eigenbasis, where M2 is diagonal, the first condition in eq. (B.5a) can be

satisfied for M2
1 6= M2

2 only for rotations and reflections through angles of α = 0 or π. If

U is a rotation, C-invariance follows if H12 = H∗12, i.e. ImH12 = 0. On the other hand, if

U is a reflection, C-invariance follows if H12 = −H∗12, i.e. ReH12 = 0.

Under a general flavour rotation O through an angle θ, ImH12 is unchanged, since O

is orthogonal. Instead, ReH12 transforms as

ReH12 −→ ReH ′12 = cos(2θ) ReH12 +
1

2
sin(2θ) (H11 −H22) . (B.7)

Therefore, in the degenerate limit M2
1 = M2

2 , the resulting O(2) invariance of the free

theory (see e.g. ref. [9]) means that we may always rotate through an angle

θ =
1

2
arctan

H12 +H21

H22 −H11
(B.8)

to a basis in which ReH12 = 0. Thus, the Lagrangian is also C -conserving in this case.
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The above observations may be conveniently summarized by forming the Jarlskog

invariant

J = 2 ImH12 ReH12M1M2 ∆M2, (B.9)

which vanishes when any of the C-conserving conditions are satisfied, viz. ReH12 = 0,

ImH12 = 0 or M1 = M2. Rotating to a general flavour basis, the Jarlskog invariant may

be written in the form

J = Im TrHM3HTM , (B.10)

providing the familiar basis-independent measure of both C- and CP -violation.

As identified above, in the case that ReH12 = 0, the Lagrangian is invariant under C

transformations that include a reflection in flavour space. In the mass eigenbasis, the or-

thogonal transformation U is necessarily diagonal. The permitted reflections are therefore

about angles of 0 and π, and we see that the two flavours must transform with opposite

phases under C, i.e.

ψ1(x)C = ±ψ1(x) , ψ2(x)C = ∓ψ2(x) , (B.11)

and, correspondingly, opposite phases under T . On the other hand, in the case that

ImH12 = 0, the Lagrangian is invariant under C transformations that include a rota-

tion in flavour space. In the mass eigenbasis, the orthogonal transformation U is now

necessarily isotropic. The permitted rotations are about angles of 0 and π, and we see that

the two flavours must transform with equal phases under C, i.e.

ψ1(x)C = ±ψ1(x) , ψ2(x)C = ±ψ2(x) , (B.12)

and, correspondingly, equal phases under T . As identified in ref. [72], the import of this

observation is significant for the specification of C-symmetric initial conditions.

Heisenberg picture. In order to derive properties of the Wightman propagators under

C -conjugation, we use their definition in the form

Gij>(x, y) = Tr[ρψi(x)ψj(y)] , (B.13a)

Gij<(x, y) = Tr[ρψj(y)ψi(x)] , (B.13b)

where ρ is the density matrix. We define charge-conjugated propagators as propagators

with only the fields, but not the density matrix, conjugated. This definition corresponds

to the intuitive definition that replaces particles with antiparticles. The Wightman prop-

agators then transform under generalized C-conjugation as

Gij≷(x, y)
C−→ UimG

mn
≷ (x, y)Ujn . (B.14)

For the case of flavour rotations with α = 0 or π, we may readily verify that the propagators

are automatically C-symmetric. This is consistent with the fact that if ImH12 = 0 then

no asymmetry can be produced irrespective of the value of the propagators at the initial

time surface. On the other hand, for the case of flavour reflections with α = 0 or π, the

propagators are C -symmetric only if their off-diagonals vanish at the initial time surface.

– 47 –



J
H
E
P
0
6
(
2
0
1
6
)
0
6
6

As we demonstrate in section 6, the requirement of vanishing off-diagonals makes the

produced asymmetry proportional to ReH12. In other words, once we impose C -symmetric

initial conditions on the propagators, the produced asymmetry automatically vanishes if

the Lagrangian is C -symmetric, as one would expect.

Interaction picture. In the interaction picture, we may begin by fixing the transforma-

tion properties of the free field operators under generalized discrete symmetry transforma-

tions in Fock space directly [9]. The matrix of number densities is defined by

nij = 〈a†jai〉 = Tr(ρa†jai) . (B.15)

Similarly to the Heisenberg picture, we define C -transformation such that it transforms

the creation and annihilation operators but not the density matrix.

As follows from eq. (B.12), under rotations a1
C−→ ±a1 and a2

C−→ ±a2. The additional

phase cancels in eq. (B.15) and therefore the matrix of number densities is automatically C -

symmetric. This is in agreement with the observation that once ImH12 = 0 no asymmetry

can be generated irrespective of the choice of the initial conditions. On the other hand, for

reflections a1
C−→ ±a1 and a2

C−→ ∓a2, such that off-diagonals of nij acquire a relative sign.

The condition of C -invariance therefore implies that the matrix of number densities must

be diagonal at the initial time surface.

C Rate equations in the radiation-dominated universe

Full treatment of leptogenesis would require solving the kinetic equations for all momentum

modes. However, such an analysis is technically demanding and has been performed only

in a handful of works (see e.g. ref. [106]). Instead, one usually assumes kinetic equilibration

of the mixing fields and approximates kinetic equations for the distribution functions by

so-called rate equations for the corresponding number densities. In this appendix, we derive

the rate equations in the radiation-dominated universe and re-derive the strong-washout

approximation formulas presented in ref. [8].

Source and washout terms. Decays ψi → bb as well as inverse decays b̄b̄→ ψi increase

the asymmetry by two units, wheres decays ψi → b̄b̄ and inverse decays bb → ψi decrease

the asymmetry by two units. Using the results of appendix E in ref. [58], we obtain, in

agreement with this physical picture, the time-derivative of the asymmetry

dη

dt
=

∫
dΠ3

q dΠ3
p dΠ3

k (2π)4δ4(k − p− q)

×
{
Hij

(
[1 + nij(k)]nb̄(p)nb̄(q)− nij(k)[1 + nb̄(p)][1 + nb̄(q)]

)
− H∗ij

(
[1 + nij(k)]nb(p)nb(q)− nij(k)[1 + nb(p)][1 + nb(q)]

)}
, (C.1)

where dΠ3
q ≡

d3q
(2π)3

1
2E is the Lorentz-invariant phase-space element. One can easily recog-

nize the usual structure of the gain and loss terms in eq. (C.1).

It is common to approximate the r.h.s. of eq. (C.1) by the difference of the source and

washout terms. The source term is defined as the r.h.s. with distribution functions of the
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complex field set to equilibrium, nb = nb̄ = neq. By detailed balance, the contribution of

the equilibrium part of nij vanishes, and we are left with the source term

S = 4 ImH12

∫
dΠ3

k Π̃ρ(k) Im δn12(k) , (C.2)

where the function Π̃ρ is defined in eq. (2.26). The assumption of kinetic equilibrium

amounts to

δn12(k) ≈ δN12

Neq
neq(k) , (C.3)

where N denotes the total particle number density. It is furthermore common to ap-

proximate neq by the Boltzmann distribution. Substituting eq. (C.3) into eq. (2.2) and

approximating Π̃ρ by its low-temperature limit, we then find

S =
ImH12

4πM̄

K1(M̄/T )

K2(M̄/T )
Im δN12, (C.4)

where K1 and K2 are modified Bessel functions of the second kind.

The washout term is defined by setting the density matrix of the mixing fields to its

equilibrium form, n = 1 · neq. After some straightforward algebra we find

W =
∑
i

Hii

∫
dΠ3

q dΠ3
p dΠ3

k (2π)4δ4(k − p− q)

× [nb(p)− nb̄(p)][nb(p) + nb̄(p)− neq(k)] . (C.5)

Here, we again use Boltzmann statistics for the distribution functions, nb ≈ exp
(
−(E −

µ)/T
)

and nb̄ ≈ exp
(
−(E + µ)/T

)
, where µ is the chemical potential. Neglecting further

the (quantum-statistical) term neq(k) and expanding to the first order in µ, we obtain

W ≈ − 2η Γ̄
M̄2

T 2
K1(M̄/T ) . (C.6)

Generalization to radiation-dominated universe. In the expanding universe, one

can recast the kinetic equation for the asymmetry in the form similar to eq. (C.1) by using

the co-moving number densities [107]:

1

a

dη

dt
=

ImH12

4πM̄

K1(M̄/T )

K2(M̄/T )
Im δN12 − 2η Γ̄

M̄2

T 2
K1(M̄/T ) , (C.7)

where t is now the conformal time, a is the scale factor, and η and δN12 are the comoving

number densities. In the radiation-dominated universe a(t) = aRt , where aR is constant.

Following ref. [7], we choose aR = MPl (45/4π3g∗)
1
2 with MPl being the Planck mass, and

g∗ the effective number of massless degrees of freedom. For this choice, z ≡ M̄/T = M̄t.

The resulting rate equation for the asymmetry reads

dη

dz
=
aRz

M̄2

[
ImH12

4πM̄

K1(z)

K2(z)
Im δN12 − 2η Γ̄ z2K1(z)

]
. (C.8)
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Strong-washout approximation. It follows from eq. (C.8) that the larger the washout

parameter

κ ≡ aRΓ̄

M̄2
, (C.9)

the more asymmetry is washed out by the inverse decay processes. If κ � 1, then one

speaks of the strong-washout regime. In the strong-washout regime, the final asymmetry

does not depend on the initial conditions and most of the asymmetry is produced after the

temperature drops below the mass of the heavy decaying particle (see e.g. ref. [108]). For

T < M̄ , the density matrix n is suppressed at momenta |q| > M̄ , such that, in eq. (4.4),

we can approximate ω̄ by M̄ . Integrating eq. (4.4) over the phase space and switching to

the co-moving number densities, we obtain in this approximation

dδN

dz
+ 1

dNeq

dz
+ i

aRz

M̄3
[M2, δN ] =

aRz

M̄3
{Π̃ρ, δN} (C.10)

(see refs. [7, 8] for the details of the derivation). In ref. [74], it was proposed that, in a

strong-washout regime, one can obtain an approximate solution for δN at late times by

neglecting the derivative of δN . This solution reads

δN12 ≈ ReH12 TrH(2M̄ Γ̄− i∆M2
12) M̄2

H11H22(∆M2
12)2 + 16M̄2Γ̄2 det ReH

M̄

aRz

dNeq

dz
≈ −i

8π

ReH12

∆M2
12

Γ̄2

Γ1Γ2

1

κz

dNeq

dz
,

(C.11)

where the second approximate equality is valid for |∆M2
12| � M̄ Γ̄. It is interesting to note

that the solution is proportional to ReH12. This implies that the resulting source term

automatically vanishes if either of the C -symmetry conditions, ImH12 = 0 or ReH12 = 0,

is fulfilled.
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[39] W. Buchmüller and M. Plümacher, CP asymmetry in Majorana neutrino decays,

Phys. Lett. B 431 (1998) 354 [hep-ph/9710460] [INSPIRE].

[40] P.S. Bhupal Dev, P. Millington, A. Pilaftsis and D. Teresi, Flavour effects in resonant

leptogenesis from semi-classical and Kadanoff-Baym approaches,

J. Phys. Conf. Ser. 631 (2015) 012087 [arXiv:1502.07987] [INSPIRE].

[41] E.W. Kolb and S. Wolfram, Baryon number generation in the early universe,

Nucl. Phys. B 172 (1980) 224 [Erratum ibid. B 195 (1982) 542] [INSPIRE].

[42] M.A. Luty, Baryogenesis via leptogenesis, Phys. Rev. D 45 (1992) 455 [INSPIRE].

[43] G. Sigl and G. Raffelt, General kinetic description of relativistic mixed neutrinos,

Nucl. Phys. B 406 (1993) 423 [INSPIRE].

– 52 –

http://dx.doi.org/10.1016/S0550-3213(00)00011-0
http://arxiv.org/abs/hep-ph/9911315
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9911315
http://dx.doi.org/10.1088/1475-7516/2006/04/004
http://arxiv.org/abs/hep-ph/0601083
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0601083
http://dx.doi.org/10.1088/1126-6708/2006/01/164
http://arxiv.org/abs/hep-ph/0601084
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0601084
http://dx.doi.org/10.1088/1126-6708/2006/09/010
http://arxiv.org/abs/hep-ph/0605281
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0605281
http://dx.doi.org/10.1088/1475-7516/2007/03/018
http://arxiv.org/abs/hep-ph/0607330
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0607330
http://dx.doi.org/10.1088/1475-7516/2007/03/012
http://arxiv.org/abs/hep-ph/0611337
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0611337
http://dx.doi.org/10.1016/j.nuclphysb.2007.02.019
http://arxiv.org/abs/hep-ph/0611338
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0611338
http://dx.doi.org/10.1088/1126-6708/2007/09/004
http://arxiv.org/abs/hep-ph/0609067
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0609067
http://dx.doi.org/10.1088/1475-7516/2007/02/005
http://arxiv.org/abs/hep-ph/0611357
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0611357
http://dx.doi.org/10.1016/S0550-3213(97)00469-0
http://arxiv.org/abs/hep-ph/9702393
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9702393
http://dx.doi.org/10.1016/j.nuclphysb.2004.05.029
http://arxiv.org/abs/hep-ph/0309342
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0309342
http://dx.doi.org/10.1016/0370-2693(94)01555-Q
http://arxiv.org/abs/hep-ph/9411366
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9411366
http://dx.doi.org/10.1016/S0370-2693(97)00287-6
http://arxiv.org/abs/hep-ph/9611425
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9611425
http://dx.doi.org/10.1016/0370-2693(96)00817-9
http://arxiv.org/abs/hep-ph/9605319
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9605319
http://dx.doi.org/10.1016/S0370-2693(97)01548-7
http://arxiv.org/abs/hep-ph/9710460
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9710460
http://dx.doi.org/10.1088/1742-6596/631/1/012087
http://arxiv.org/abs/1502.07987
http://inspirehep.net/search?p=find+EPRINT+arXiv:1502.07987
http://dx.doi.org/10.1016/0550-3213(80)90167-4
http://inspirehep.net/search?p=find+J+"Nucl.Phys.,B172,224"
http://dx.doi.org/10.1103/PhysRevD.45.455
http://inspirehep.net/search?p=find+J+"Phys.Rev.,D45,455"
http://dx.doi.org/10.1016/0550-3213(93)90175-O
http://inspirehep.net/search?p=find+J+"Nucl.Phys.,B406,423"


J
H
E
P
0
6
(
2
0
1
6
)
0
6
6

[44] E.K. Akhmedov, V.A. Rubakov and A.Y. Smirnov, Baryogenesis via neutrino oscillations,

Phys. Rev. Lett. 81 (1998) 1359 [hep-ph/9803255] [INSPIRE].

[45] M. Shaposhnikov, The νMSM, leptonic asymmetries and properties of singlet fermions,

JHEP 08 (2008) 008 [arXiv:0804.4542] [INSPIRE].

[46] J.-S. Gagnon and M. Shaposhnikov, Baryon asymmetry of the universe without Boltzmann

or Kadanoff-Baym equations, Phys. Rev. D 83 (2011) 065021 [arXiv:1012.1126] [INSPIRE].

[47] T. Asaka, S. Eijima and H. Ishida, Kinetic equations for baryogenesis via sterile neutrino

oscillation, JCAP 02 (2012) 021 [arXiv:1112.5565] [INSPIRE].

[48] L. Canetti, M. Drewes, T. Frossard and M. Shaposhnikov, Dark matter, baryogenesis and

neutrino oscillations from right-handed neutrinos, Phys. Rev. D 87 (2013) 093006

[arXiv:1208.4607] [INSPIRE].

[49] B. Shuve and I. Yavin, Baryogenesis through neutrino oscillations: a unified perspective,

Phys. Rev. D 89 (2014) 075014 [arXiv:1401.2459] [INSPIRE].

[50] W. Buchmüller and S. Fredenhagen, Quantum mechanics of baryogenesis,

Phys. Lett. B 483 (2000) 217 [hep-ph/0004145] [INSPIRE].

[51] T. Prokopec, M.G. Schmidt and S. Weinstock, Transport equations for chiral fermions to

order ~ and electroweak baryogenesis: part I, Annals Phys. 314 (2004) 208

[hep-ph/0312110] [INSPIRE].

[52] T. Prokopec, M.G. Schmidt and S. Weinstock, Transport equations for chiral fermions to

order ~ and electroweak baryogenesis: part II, Annals Phys. 314 (2004) 267

[hep-ph/0406140] [INSPIRE].

[53] A. De Simone and A. Riotto, Quantum Boltzmann equations and leptogenesis,

JCAP 08 (2007) 002 [hep-ph/0703175] [INSPIRE].

[54] A. De Simone and A. Riotto, On resonant leptogenesis, JCAP 08 (2007) 013

[arXiv:0705.2183] [INSPIRE].

[55] V. Cirigliano, A. De Simone, G. Isidori, I. Masina and A. Riotto, Quantum resonant

leptogenesis and minimal lepton flavour violation, JCAP 01 (2008) 004 [arXiv:0711.0778]

[INSPIRE].

[56] A. Anisimov, W. Buchmüller, M. Drewes and S. Mendizabal, Nonequilibrium dynamics of

scalar fields in a thermal bath, Annals Phys. 324 (2009) 1234 [arXiv:0812.1934] [INSPIRE].

[57] M. Garny, A. Hohenegger, A. Kartavtsev and M. Lindner, Systematic approach to

leptogenesis in nonequilibrium QFT: vertex contribution to the CP-violating parameter,

Phys. Rev. D 80 (2009) 125027 [arXiv:0909.1559] [INSPIRE].

[58] M. Garny, A. Hohenegger, A. Kartavtsev and M. Lindner, Systematic approach to

leptogenesis in nonequilibrium QFT: self-energy contribution to the CP-violating parameter,

Phys. Rev. D 81 (2010) 085027 [arXiv:0911.4122] [INSPIRE].

[59] V. Cirigliano, C. Lee, M.J. Ramsey-Musolf and S. Tulin, Flavored quantum Boltzmann

equations, Phys. Rev. D 81 (2010) 103503 [arXiv:0912.3523] [INSPIRE].

[60] A. Anisimov, W. Buchmüller, M. Drewes and S. Mendizabal, Leptogenesis from quantum

interference in a thermal bath, Phys. Rev. Lett. 104 (2010) 121102 [arXiv:1001.3856]

[INSPIRE].

– 53 –

http://dx.doi.org/10.1103/PhysRevLett.81.1359
http://arxiv.org/abs/hep-ph/9803255
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9803255
http://dx.doi.org/10.1088/1126-6708/2008/08/008
http://arxiv.org/abs/0804.4542
http://inspirehep.net/search?p=find+EPRINT+arXiv:0804.4542
http://dx.doi.org/10.1103/PhysRevD.83.065021
http://arxiv.org/abs/1012.1126
http://inspirehep.net/search?p=find+EPRINT+arXiv:1012.1126
http://dx.doi.org/10.1088/1475-7516/2012/02/021
http://arxiv.org/abs/1112.5565
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.5565
http://dx.doi.org/10.1103/PhysRevD.87.093006
http://arxiv.org/abs/1208.4607
http://inspirehep.net/search?p=find+EPRINT+arXiv:1208.4607
http://dx.doi.org/10.1103/PhysRevD.89.075014
http://arxiv.org/abs/1401.2459
http://inspirehep.net/search?p=find+EPRINT+arXiv:1401.2459
http://dx.doi.org/10.1016/S0370-2693(00)00573-6
http://arxiv.org/abs/hep-ph/0004145
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0004145
http://dx.doi.org/10.1016/j.aop.2004.06.002
http://arxiv.org/abs/hep-ph/0312110
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0312110
http://dx.doi.org/10.1016/j.aop.2004.06.001
http://arxiv.org/abs/hep-ph/0406140
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0406140
http://dx.doi.org/10.1088/1475-7516/2007/08/002
http://arxiv.org/abs/hep-ph/0703175
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0703175
http://dx.doi.org/10.1088/1475-7516/2007/08/013
http://arxiv.org/abs/0705.2183
http://inspirehep.net/search?p=find+EPRINT+arXiv:0705.2183
http://dx.doi.org/10.1088/1475-7516/2008/01/004
http://arxiv.org/abs/0711.0778
http://inspirehep.net/search?p=find+EPRINT+arXiv:0711.0778
http://dx.doi.org/10.1016/j.aop.2009.01.001
http://arxiv.org/abs/0812.1934
http://inspirehep.net/search?p=find+EPRINT+arXiv:0812.1934
http://dx.doi.org/10.1103/PhysRevD.80.125027
http://arxiv.org/abs/0909.1559
http://inspirehep.net/search?p=find+EPRINT+arXiv:0909.1559
http://dx.doi.org/10.1103/PhysRevD.81.085027
http://arxiv.org/abs/0911.4122
http://inspirehep.net/search?p=find+EPRINT+arXiv:0911.4122
http://dx.doi.org/10.1103/PhysRevD.81.103503
http://arxiv.org/abs/0912.3523
http://inspirehep.net/search?p=find+EPRINT+arXiv:0912.3523
http://dx.doi.org/10.1103/PhysRevLett.104.121102
http://arxiv.org/abs/1001.3856
http://inspirehep.net/search?p=find+EPRINT+arXiv:1001.3856


J
H
E
P
0
6
(
2
0
1
6
)
0
6
6

[61] M. Garny, A. Hohenegger and A. Kartavtsev, Medium corrections to the CP-violating

parameter in leptogenesis, Phys. Rev. D 81 (2010) 085028 [arXiv:1002.0331] [INSPIRE].

[62] M. Beneke, B. Garbrecht, M. Herranen and P. Schwaller, Finite number density corrections

to leptogenesis, Nucl. Phys. B 838 (2010) 1 [arXiv:1002.1326] [INSPIRE].

[63] M. Beneke, B. Garbrecht, C. Fidler, M. Herranen and P. Schwaller, Flavoured leptogenesis

in the CTP formalism, Nucl. Phys. B 843 (2011) 177 [arXiv:1007.4783] [INSPIRE].

[64] B. Garbrecht, Leptogenesis: the other cuts, Nucl. Phys. B 847 (2011) 350

[arXiv:1011.3122] [INSPIRE].

[65] A. Anisimov, W. Buchmüller, M. Drewes and S. Mendizabal, Quantum leptogenesis I,

Annals Phys. 326 (2011) 1998 [Erratum ibid. 338 (2011) 376] [arXiv:1012.5821] [INSPIRE].

[66] M. Garny, A. Kartavtsev and A. Hohenegger, Leptogenesis from first principles in the

resonant regime, Annals Phys. 328 (2013) 26 [arXiv:1112.6428] [INSPIRE].

[67] M. Drewes and B. Garbrecht, Leptogenesis from a GeV seesaw without mass degeneracy,

JHEP 03 (2013) 096 [arXiv:1206.5537] [INSPIRE].

[68] B. Garbrecht, Baryogenesis from mixing of lepton doublets, Nucl. Phys. B 868 (2013) 557

[arXiv:1210.0553] [INSPIRE].

[69] T. Frossard, M. Garny, A. Hohenegger, A. Kartavtsev and D. Mitrouskas, Systematic

approach to thermal leptogenesis, Phys. Rev. D 87 (2013) 085009 [arXiv:1211.2140]

[INSPIRE].

[70] M. Drewes, The phenomenology of right handed neutrinos,

Int. J. Mod. Phys. E 22 (2013) 1330019 [arXiv:1303.6912] [INSPIRE].

[71] B. Garbrecht and M.J. Ramsey-Musolf, Cuts, cancellations and the closed time path: the

soft leptogenesis example, Nucl. Phys. B 882 (2014) 145 [arXiv:1307.0524] [INSPIRE].

[72] A. Hohenegger and A. Kartavtsev, Leptogenesis in crossing and runaway regimes,

JHEP 07 (2014) 130 [arXiv:1404.5309] [INSPIRE].

[73] S. Iso, K. Shimada and M. Yamanaka, Kadanoff-Baym approach to the thermal resonant

leptogenesis, JHEP 04 (2014) 062 [arXiv:1312.7680] [INSPIRE].

[74] S. Iso and K. Shimada, Coherent flavour oscillation and CP-violating parameter in thermal

resonant leptogenesis, JHEP 08 (2014) 043 [arXiv:1404.4816] [INSPIRE].

[75] G. Baym and L.P. Kadanoff, Conservation laws and correlation functions,

Phys. Rev. 124 (1961) 287 [INSPIRE].

[76] L.P. Kadanoff and G. Baym, Quantum statistical mechanics, Benjamin, New York U.S.A.

(1962).

[77] J.-P. Blaizot and E. Iancu, The quark gluon plasma: collective dynamics and hard thermal

loops, Phys. Rept. 359 (2002) 355 [hep-ph/0101103] [INSPIRE].

[78] J. Berges, Introduction to nonequilibrium quantum field theory,

AIP Conf. Proc. 739 (2004) 3 [hep-ph/0409233] [INSPIRE].

[79] J.S. Schwinger, Brownian motion of a quantum oscillator, J. Math. Phys. 2 (1961) 407

[INSPIRE].

[80] L.V. Keldysh, Diagram technique for nonequilibrium processes,

Zh. Eksp. Teor. Fiz. 47 (1964) 1515 [INSPIRE].

– 54 –

http://dx.doi.org/10.1103/PhysRevD.81.085028
http://arxiv.org/abs/1002.0331
http://inspirehep.net/search?p=find+EPRINT+arXiv:1002.0331
http://dx.doi.org/10.1016/j.nuclphysb.2010.05.003
http://arxiv.org/abs/1002.1326
http://inspirehep.net/search?p=find+EPRINT+arXiv:1002.1326
http://dx.doi.org/10.1016/j.nuclphysb.2010.10.001
http://arxiv.org/abs/1007.4783
http://inspirehep.net/search?p=find+EPRINT+arXiv:1007.4783
http://dx.doi.org/10.1016/j.nuclphysb.2011.01.033
http://arxiv.org/abs/1011.3122
http://inspirehep.net/search?p=find+EPRINT+arXiv:1011.3122
http://dx.doi.org/10.1016/j.aop.2011.02.002
http://arxiv.org/abs/1012.5821
http://inspirehep.net/search?p=find+EPRINT+arXiv:1012.5821
http://dx.doi.org/10.1016/j.aop.2012.10.007
http://arxiv.org/abs/1112.6428
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.6428
http://dx.doi.org/10.1007/JHEP03(2013)096
http://arxiv.org/abs/1206.5537
http://inspirehep.net/search?p=find+EPRINT+arXiv:1206.5537
http://dx.doi.org/10.1016/j.nuclphysb.2012.11.021
http://arxiv.org/abs/1210.0553
http://inspirehep.net/search?p=find+EPRINT+arXiv:1210.0553
http://dx.doi.org/10.1103/PhysRevD.87.085009
http://arxiv.org/abs/1211.2140
http://inspirehep.net/search?p=find+EPRINT+arXiv:1211.2140
http://dx.doi.org/10.1142/S0218301313300191
http://arxiv.org/abs/1303.6912
http://inspirehep.net/search?p=find+EPRINT+arXiv:1303.6912
http://dx.doi.org/10.1016/j.nuclphysb.2014.02.012
http://arxiv.org/abs/1307.0524
http://inspirehep.net/search?p=find+EPRINT+arXiv:1307.0524
http://dx.doi.org/10.1007/JHEP07(2014)130
http://arxiv.org/abs/1404.5309
http://inspirehep.net/search?p=find+EPRINT+arXiv:1404.5309
http://dx.doi.org/10.1007/JHEP04(2014)062
http://arxiv.org/abs/1312.7680
http://inspirehep.net/search?p=find+EPRINT+arXiv:1312.7680
http://dx.doi.org/10.1007/JHEP08(2014)043
http://arxiv.org/abs/1404.4816
http://inspirehep.net/search?p=find+EPRINT+arXiv:1404.4816
http://dx.doi.org/10.1103/PhysRev.124.287
http://inspirehep.net/search?p=find+J+"Phys.Rev.,124,287"
http://dx.doi.org/10.1016/S0370-1573(01)00061-8
http://arxiv.org/abs/hep-ph/0101103
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0101103
http://dx.doi.org/10.1063/1.1843591
http://arxiv.org/abs/hep-ph/0409233
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0409233
http://dx.doi.org/10.1063/1.1703727
http://inspirehep.net/search?p=find+J+"J.Math.Phys.,2,407"
http://inspirehep.net/search?p=find+J+"Zh.Eksp.Teor.Fiz.,47,1515"


J
H
E
P
0
6
(
2
0
1
6
)
0
6
6

[81] R.D. Jordan, Effective field equations for expectation values, Phys. Rev. D 33 (1986) 444

[INSPIRE].

[82] E. Calzetta and B.L. Hu, Nonequilibrium quantum fields: closed time path effective action,

Wigner function and Boltzmann equation, Phys. Rev. D 37 (1988) 2878 [INSPIRE].

[83] E. Calzetta and B.L. Hu, Closed time path functional formalism in curved space-time:

application to cosmological back reaction problems, Phys. Rev. D 35 (1987) 495 [INSPIRE].

[84] P. Millington and A. Pilaftsis, Perturbative nonequilibrium thermal field theory,

Phys. Rev. D 88 (2013) 085009 [arXiv:1211.3152] [INSPIRE].

[85] P. Millington and A. Pilaftsis, Perturbative non-equilibrium thermal field theory to all

orders in gradient expansion, Phys. Lett. B 724 (2013) 56 [arXiv:1304.7249] [INSPIRE].

[86] H.A. Weldon, Thermalization of boson propagators in finite-temperature field theory,

Phys. Rev. D 45 (1992) 352 [INSPIRE].

[87] T. Altherr and D. Seibert, Problems of perturbation series in nonequilibrium quantum field

theories, Phys. Lett. B 333 (1994) 149 [hep-ph/9405396] [INSPIRE].

[88] T. Altherr, Resummation of perturbation series in nonequilibrium scalar field theory,

Phys. Lett. B 341 (1995) 325 [hep-ph/9407249] [INSPIRE].

[89] P.F. Bedaque, Thermalization and pinch singularities in non-equilibrium quantum field

theory, Phys. Lett. B 344 (1995) 23 [hep-ph/9410415] [INSPIRE].
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[106] F. Hahn-Woernle, M. Plümacher and Y.Y.Y. Wong, Full Boltzmann equations for

leptogenesis including scattering, JCAP 08 (2009) 028 [arXiv:0907.0205] [INSPIRE].

[107] A. Kartavtsev and D. Besak, Baryogenesis via leptogenesis in an inhomogeneous universe,

Phys. Rev. D 78 (2008) 083001 [arXiv:0803.2729] [INSPIRE].

[108] W. Buchmüller, P. Di Bari and M. Plümacher, Leptogenesis for pedestrians,
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