
1 
 

A Study on the Evolution of the Contact Angle of Small Punch Creep Test 

of Ductile Materials 

B. Cacciapuoti
*
, W. Sun, D. G. McCartney 

Department of Mechanical, Materials and Manufacturing Engineering 

University of Nottingham, Nottingham NG7 2RD UK 

ABSTRACT 

The work discussed in the present paper reports a novel investigation of the applicability of 

Chakrabarty’s theory, for membrane stretching of a circular blank over a rigid punch, to small 

punch creep test (SPCT). The Chakrabarty solution was compared with corresponding results 

obtained by numerical finite element (FE) analyses and experimental tests. The Liu and 

Murakami creep damage model was used in the FE analyses. The aim of the work is also to 

improve the understanding of the mechanism governing the deformation and the failure of the 

specimen and to verify the range of applicability of the CEN Code of Practice CWA 15627, 

which is based on Chakrabarty’s theory. The effects of various parameters, such as the initial 

thickness of the specimen, the radius of the punch, the load magnitude, the friction coefficient 

and different plasticity constitutive models, on the variation of the contact angle, θ0, and the 

central displacement of the punch, Δ, were identified and correlated by fitting equations. The 

variation of θ0 with Δ, obtained from Chakrabarty’s solution was compared with that 

obtained by FE analyses of the SPCT. When the initial thickness of the specimen increased 

and the radius of the punch decreased, the FE results, in terms of the variation of θ0 versus Δ, 

showed to differ from Chakrabarty’s solution, therefore new ranges of applicability of the 

CEN Code of Practice CWA 15627 were determined. 

Keywords: small punch creep test; contact angle; Chakrabarty membrane theory; finite 

element analysis 
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NOMENCLATURE 

ap  Receiving hole radius 

A  Material constant in Liu and Murakami’s model 

A’, A0  Undamaged and the initial area of the specimen 

B  Material constant in Liu and Murakami’s model 

E  Young’s Modulus of the damaged material 

E’  Tangential modulus 

E0  Young’s Modulus of the undamaged material 

f(y)  Depth of 2D profiles of the deformed specimen  

n  Material constant in Liu and Murakami’s model 

p  Punch pressure 

P  Punch load Magnitude 

q2  Material constant in Liu and Murakami’s model 

rcontact  Contact radius 

Rs  Punch radius 

Sij  Deviatoric stress tensor  

t, tf  Time and time to rupture 

tc, t0  Current and initial thicknesses 

t*  Thickness at the contact boundary 

T  Temperature 

w  Angular frequency  

y  Radial distance from the specimen axis of symmetry  

α  Material constant in Liu and Murakami’s model 
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Δ, Δf  Punch displacement and punch displacement at failure 

ε, 𝜀̇  Strain and strain rate 

𝜀�̇�𝑗
𝑐        Creep strain rate components 

θ0, θ0f  Contact angle and contact angle at failure 

μ  Friction coefficient 

ν  Poisson’s ratio 

ρc, ρr  Circumferential and meridian radii of curvature 

σ1  Maximum principal stress 

σc, σm  Circumferential and meridian components of stress 

σEQ  von Mises equivalent stress 

σRUP  Rupture stress 

σy  Yielding stress 

σ*  Meridian stress at the contact boundary 

χ  Material constant in Liu and Murakami’s model 

ω, �̇�  Damage variable and damage rate 

ωMAX  Upper bound of damage variable 

1 INTRODUCTION 

It is increasingly needed to evaluate creep properties for materials which components 

operating at high temperature in various industrial fields are made of, e.g. in power 

generation, aero-engines and petro-chemical plants, in order to estimate their remaining life 

and avoid premature failures [1, 2]. For these applications, established and well-standardised 

mechanical test techniques, such as the standard size uniaxial creep test, cannot always be 

used as they require a large volume of material to be sampled from the component. A way 

forward to overcome the difficulties related to those situations where there is shortage of 
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material to be tested, or sampling of large specimens would however be too expensive, 

consists of developing miniature specimen testing methods. Several innovative testing 

techniques, requiring a small amount of material to be sampled, have been developed in the 

last two decades in the USA, the UK, Europe and Japan [3] and, among these one of the non-

traditional test techniques, the Small Punch Creep Test (SPCT) [1, 4] has been extensively 

investigated by many authors. Unlike other miniaturised specimen techniques, such as the 

impression creep test [5] and the small ring creep test [6], the SPCT potentially allows to 

entirely characterise the behaviour of materials up to failure, because the specimen is taken to 

rupture [7, 8]. The SPCT can also be used to perform focused analyses on critical locations of 

operating components, e.g. the heat-affected zone of welds, pipe bends or joint sections of 

steam headers [8]. Despite of these advantages, some concerns about the applicability of 

SPCT are still open [2, 4]. Indeed, the interaction of several non-linearities, such as large 

deformations, large strains, non-linear material behaviour and non-linear contact interactions 

between the specimen and the punch, induces a very complex multi-axial stress field in the 

specimen which also evolves in time. This affects the SPCT fracture mechanism [2, 7] and 

introduces several challenges into the identification of a robust correlation to convert SPCT 

data into respective standard uniaxial creep test data [7, 9-11]. Another major concern is the 

non-repeatability of the testing method, since the experimental results depend on the set up 

geometry [1, 4, 12, 13]. One of the major developments in this matter has been achieved by 

the Code of Practice proposed in 2006 by the European Committee for Standardisation 

(CEN), where an experimental procedure and a range for the specimen and the test ring 

components geometry was recommended [1, 11]. Another achievement of the CEN Code of 

Practice consists of a correlation proposed between the load level to be applied to the small 

disc specimen and the stress induced in a conventional uniaxial creep test which exhibits the 

same time to rupture. Various equations have been proposed in the open literature to correlate 
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the quantities involved in the SPCT, i.e. the load-stress ratio [1, 14-16], but a common 

problem is faced in determining the angle between the axis of symmetry and the normal to 

the specimen’s surface at the contact edge, θ0  [1], as it is an implicit variable in the 

mentioned relationships. 

In order to develop a robust procedure to interpret the experimental output of SPCTs and a 

reliable correlation technique with conventional uniaxial creep test data, the understanding of 

the complex behaviour of the specimen during testing is still to be improved.  

The research presented in this paper is aimed to investigate the applicability of the 

Chakrabarty solution, which forms the basis for small punch creep data interpretation in the 

CEN code of practice [1], to the SPCT behaviour, by use of numerical finite elements (FE) 

calculations and by comparing experimental, numerical and analytical solutions. An 

improved understanding of the SPCT specimen deformation and failure behaviour is 

necessary, in order to carry out a step forward for the realization of the improved code of 

practice based on the existing CWA 15627 [1]. 

2 CHAKRABARTY’S MEMBRANE STRETCHING THEORY 

Chakrabarty’s membrane stretching theory [15] is used by the CEN Code of Practice as it 

provides a complete set of relations for establishing the correlation between the load level to 

be applied to the SPCT specimen and the stress induced in a conventional uniaxial creep test 

which exhibits the same time to rupture [1]. As well as the other equations suggested by the 

Code of Practice and reported by Liu and Šturm [17] in 2005, and others [14, 16, 18], 

Chakrabarty’s relation between load and stress is derived from equilibrium between load and 

membrane stresses with bending stresses neglected [15]. As a matter of fact, large 

deformations (larger than 20% of the maximum structural dimension, according to an 
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engineering judgment) are involved in the SPCT, allowing the bending stresses to be 

neglected [15]. 

2.1 Problem description 

A representative analytical model of SPCT would be significantly complicated, as it should 

account for the effects of moving contact edges, nonlinear friction conditions between the test 

rig components and the tested specimen, and highly localised initial plastic deformation [7, 

10, 15, 19]. However, Chakrabarty’s theory of membrane stretch forming over a rigid 

hemispherical punch head, reported in ref. [15], is able to provide an analytical tool for the 

interpretation of small punch creep test data [10, 11, 15]. In Chakrabarty’s study large plastic 

deformations are taken into account and the geometry and the loading conditions partly 

reflect those encountered in the SPCT [20]. Furthermore, the model hypotheses can be very 

restrictive in comparison with the true material behaviour: an isotropic material is adopted; 

the punch head is taken to be covered by a film of lubricant, therefore friction between the 

blank and the punch can be neglected; since large strains are considered, the material is 

assumed to be rigid-plastic; the thickness of the blank is at least one order of magnitude 

smaller than the radius of the punch, therefore, the bending rigidity of the  blank can be 

neglected, and, as a consequence, the deformation mode can be assumed to be governed by 

membrane stretching [15]. Figure 1 is a schematic diagram showing the components 

Chakrabarty’s model comprises of. 

2.2 Membrane Stress Solutions  

Chakrabarty’s model consists of a thin membrane of isotropic material stretched over a static 

hemispherical punch (Figure 1). 
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Figure 1. Schematic diagram of the Chakrabarty model of membrane stretching of a circular blank over a rigid punch, 

adapted from ref. [15]. 

If p and tc denote the punch pressure and the current thickness of the specimen, respectively, 

the normal equilibrium in the contact region is expressed by equation (1) 

𝑡𝑐( 𝜎𝑐 + 𝜎𝑚) = 𝑝𝑅𝑠 (1)  

 

where 𝜎𝑐 and 𝜎𝑚 are the circumferential and meridian stresses, respectively, and Rs is the 

punch radius [15]. In the unsupported region the corresponding relationship is given by 

equation (2) 

 

𝜎𝑐

𝜌𝑐
+

𝜎𝑚

𝜌𝑟
= 0 (2)  

 

where 𝜌𝑐 and 𝜌𝑟 are the circumferential and meridian radii of curvature, respectively,  which 

have opposite signs in the unsupported region, while they are both positive and equal to Rs in 

the contact region [15]. The central displacement of the punch, Δ, is related to the angle 

between the surface normal and the axis of rotation, θ, and the normal angle at the contact 

boundary, θ0, by equation (3), which can be solved through equation (4), where ap is the 

receiving hole radius, by setting θ0 to vary in the range from 0 to 90
o
 degrees [1, 15] 

 

Δ

𝑅𝑠
= (1 − 𝑐𝑜𝑠𝜃0) + 𝑠𝑖𝑛2𝜃0𝑙𝑛

tan (𝜃0/2)

tan (𝜃/2)
 

(3)  

𝑠𝑖𝑛𝜃 =
𝑅𝑠

𝑎𝑝
𝑠𝑖𝑛2𝜃0 

(4)  
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By assuming an empirical strain-hardening law, as in equation (5), where C and m are 

material constants, Chakrabarty also found a correlation between the punch load at any given 

stage and the stress at the contact boundary, which is expressed by equation (6) 

𝜎 = 𝐶𝜀𝑚 (5)  

𝑃 = 2𝜋𝑅𝑠𝜎
∗𝑡∗𝑠𝑖𝑛2𝜃0 (6)  

 

where  𝜎∗ and 𝑡∗ are the membrane stress and the thickness, respectively, at the contact 

boundary and are given by equations (7) and (8), where t0 is the initial thickness of the 

specimen [15]. 

𝜎∗ = 𝐶 [2𝑙𝑛 (
1 + 𝑐𝑜𝑠𝜃

1 + 𝑐𝑜𝑠𝜃0
)]

𝑚

 (7)  

𝑡∗ = 𝑡0 (
1 + 𝑐𝑜𝑠𝜃0

1 + 𝑐𝑜𝑠𝜃
)
2

 (8)  

 

2.3 Strain Solution and Correlation of the Contact Boundary Angle 

A relationship between the central deflection of the punch, Δ, and the central equivalent 

strain, ε, was proposed by Yang and Wang by using Chakrabarty’s membrane stress solutions 

combined with a FE investigation [18]. Li and Šturm identified a correlation between the 

strain at the contact boundary and the central displacement [11, 17, 21, 22]. Li and Šturm’s  

third order polynomial relation, equation (9), is based on a fitting to Chakrabarty’s membrane 

stretching solution and it is valid for Rs=1.25 mm and ap=2 mm. The punch radius and the 

receiving hole radius are consistent with those recommended in the CEN Code of Practice 

[1]. 

𝜀 = 0.17959Δ + 0.09357Δ2 + 0.0044Δ3 (9)  

 

Chakrabarty [15] and, most recently, more researchers [23, 24]  reported that the necking of 

the specimen and the strain distribution are influenced by friction, which causes the 

maximum thinning of the specimen to occur at a certain distance from the centre of the 

specimen and near the contact boundary. 
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2.4 Applicability of the Membrane Stretching Theory to the SPCT Specimen 

Behaviour 

Although Chakrabarty’s theory was developed for a rigid-plastic membrane (not involving 

creep deformation) it was used by CEN Code of Practice for SPCT data interpretation [1]. 

The membrane stretching model is rigorously valid for an exponential hardening law, but it is 

also applicable to different hardening laws. Furthermore, the specimen is assumed to 

uniquely experience a membrane stretching deformation, while the strain variation in the 

through-thickness direction is neglected [11, 15]. During small punch creep test, the 

specimen deformation is caused by bending prior to membrane stretching, therefore, the work 

presented in this paper is also aimed to investigate the applicability of Chakrabarty’s theory 

to SPCT data interpretation [7, 8, 11, 25]. The study was carried out by investigating the 

evolution of the contact angle, θ0, throughout the test. 

3 FINITE ELEMENT CREEP DAMAGE ANALYSES 

3.1 Model Definition  

In order to study the evolution of the contact angle, θ0, with the load magnitude, P, and to 

find a correlation between the contact angle and the dimensions of the punch and the 

specimen, a number of finite element analyses were performed. Five punch load levels have 

been used for the analyses: 90, 110, 130, 150 and 200 N. The receiving hole radius, ap, has 

been kept constant and equal to 2 mm. Three different punch radii, Rs, have been adopted: 

1.04, 1.25 and 1.50 mm. The initial specimen thickness, t0, varies among 0.5, 0.4, 0.3 and 0.2 

mm. All the geometry parameters are in the respectively ranges suggested by the CEN Code 

of Practice [1]. The recommended “standard” dimensions in the CEN Code of Practice are 

t0=0.5 mm, Rs=1.25 mm and ap=2 mm. 
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In the open literature, the punch is generally modelled as a rigid body, while displacement 

boundary conditions, i.e. simply supported constrains, are adopted instead of modelling the 

holder and the support [26-28]. In particular Dymáček et al. show that if the punch load is 

less than 400 N and the upper and lower dies are not allowed to deform during the test, the 

time to rupture obtained by the FE analyses is closer to the experimental time to failure [26]. 

Ma et al. also model the holder and the support as rigid bodies [25]. Therefore, in this 

research, the upper and lower dies and the punch ball were modelled as rigid bodies. The 

horizontal translation and the rotational degrees of freedom of the punch and the holder were 

constrained, as well as all the rigid body degrees of freedom of the support. The specimen is 

clamped by a load of 500 N applied to the holder reference point. Since the specimen exhibits 

large deformations and since its shape significantly changes during the creep analysis, the 

non-linear geometry formulation has been adopted [8, 11, 29, 30]. Figure 2 shows the FE 

model implemented for the calculations. The FE analyses were performed by ABAQUS and a 

User Subroutine was used for the implementation of Liu and Murakami’s model. 

 

Figure 2. FE model used for the calculations. 

3.2 Meshing and Contact Modelling 

The specimen is the only solid body of the model taken to be deformable. The finite element 

mesh developed for the calculations consists of 1293 nodes and 1186 axisymmetric CAX4R 
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elements (four-nodded bilinear with a reduced integration scheme) in ABAQUS [31]. Since 

severe incompressible deformation arises throughout the SPCT analysis, reduced integration 

elements have been used in order to avoid numerical errors due to shear and volume locking, 

see also ref. [25]. It should be noted that bending deformation is not negligible during the 

early stages of the creep deformation [32, 33], at least with the geometry recommended by 

CEN, therefore, a suitable number of elements was included through the thickness of the 

specimen in order to accurately calculate the stress field in the specimen. The choice of the 

element size was based on the work of Ma et al. [25] and the results obtained by 

implementing the described model, in terms of damage propagation, are comparable to those 

found in the literature [2, 7, 13, 20, 25]. Figure 2 shows the mesh used for the FE analyses, 

where four regions can be identified. A coarse mesh has been generated in Region IV, 

because that location is not critical for the numerical results (as it is away from the area of the 

specimen where necking occurs) and the corresponding deformation is expected to be small 

[9, 25]. The necking area, Region II in Figure 2, where the most severe deformations are 

expected, is characterised by the smallest element size. A mesh sensitive study was carried 

out in order for this region to be centred on the location where necking is expected, which 

agrees with the findings reported in refs. [9, 25]. Regions I and III are also characterised by a 

relatively fine discretisation because they are adjacent to the necking area and the contact 

interaction with the punch has been defined on them as well. A surface to surface contact 

formulation has been used for the interactions between the specimen (slave contact surface) 

and the punch (master contact surface) and between the specimen and the dies (master 

contact surfaces). For the normal behaviour of all of the contact interactions, a hard pressure-

overclosure relationship has been used, with a penalty formulation adopted for the tangential 

behaviour, with a friction coefficient, μ, of 0.8 for the clamps/specimen and 0.3 for the 

punch/specimen [7]. As reported by Dymáček et al., 0.3 is a realistic value for the friction 
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coefficient between the punch and the specimen for steels at temperatures higher than 600 °C 

[34], while Cortellino et al. assume μ=0.8 between the disc and the clamps [7]. The nodes 

defined on the contact surfaces between the test rig components (in particular the punch) and 

the specimen experience relative sliding, therefore, a finite sliding contact tracking approach 

was used for the frictional formulation [7]. 

3.3 Creep Damage Material Model 

In a uniaxial creep test, damage occurs only in the tertiary creep region [35-37], while during 

a small punch creep test the material is subjected to damage in both the primary and 

secondary regions of the creep curve as well as in the tertiary region [20, 24]. Damage can be 

described as the ratio between the damaged area and the initial area. This ratio is expressed in 

equation (10), where A’ and A0 are the undamaged area and the initial area respectively. 

𝜔 =
𝐴0 − 𝐴′

𝐴0
,     𝑤𝑖𝑡ℎ   0 ≤ 𝜔 ≤ 1  

 

(10)  

Kachanov (1958) and Rabotnov (1969) proposed a creep continuous damage mechanics 

model which describes the cavitation damage. The numerical singularity which occurs when 

the damage variable approaches its critical value (𝜔 → 1) is a limitation of this model, which 

has been overcome by Liu and Murakami’s constitutive model [38] in 1998. Both these 

models degenerate in Norton’s creep law [39] when the damage is zero. As a matter of fact, 

the latter is capable of describing only the first two regions of the creep curve, while the other 

two models allow the entire creep curve to be obtained until the specimen failures. Liu and 

Murakami’s constitutive model relates the creep strain rate, 𝜀�̇�𝑗
𝑐 , with the stress and the 

damage fields. It is reported in equations (11) and (12), where σ1 is the maximum principal 

stress, σRUP is the rupture stress defined in equation (13), α is a material constant taking into 

account the multi-axiality of the stress field, Sij is the deviatoric stress tensor, n, B, q2, χ are 
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material constants. It should be also noted that the hydrostatic part of the tensor stress does 

not concur to creep damage. 

𝜀�̇�𝑗
𝑐 =

3

2
𝐵𝜎𝐸𝑄

𝑛
𝑆𝑖𝑗

𝜎𝐸𝑄
𝑒𝑥𝑝

[
 
 
 
2(𝑛 + 1)

𝜋√1 +
3
𝑛

(
𝜎1

𝜎𝐸𝑄
)

2

𝜔3/2

]
 
 
 

 

 

(11)  

�̇� = 𝐴
1 − exp [−𝑞2]

𝑞2
𝜎𝑅𝑈𝑃

𝜒
exp [𝑞2𝜔] 

 

(12)  

𝜎𝑅𝑈𝑃 = 𝛼𝜎1 + (1 − 𝛼)𝜎𝐸𝑄 (13)  

  

A continuous model for the reduction in load-carrying capability of the damaged material is 

given in equation (14), where E0 is the Young’s modulus of the undamaged material and E is 

the Young’s modulus of the damaged material. In view of equation (14), the stiffness of the 

damaged material decreases when the damage variable value increases. Since the specimen 

rupture occurs when ω approaches 1, in the present work, the maximum damage value has 

been limited to 𝜔𝑀𝐴𝑋 = 0.9901, in order to avoid computational problems. However, the use 

of equation (14) can also lead to numerical inaccuracies because, in the areas where the 

specimen is failed, characterised by ω= ωMAX, the FE model of the specimen can potentially 

carry some load, while this is not physically realistic. A novel alternative to equation (14) is 

proposed in the present work and is reported in equation (15), with 0≤ω<0.9901, and in 

equation (16), with  ω=0.9901.  

𝐸 = 𝐸0(1 − 𝜔),   0 ≤ 𝜔 ≤ 1 (14)  

{
𝐸 = 𝐸0(1 − 𝜔),   0 ≤ 𝜔 < 0.9901
𝐸 = 0.01 𝑀𝑃𝑎,            𝜔 = 0.9901

 
(15)  

(16)  

3.4 Elastic-Plastic Constitutive Models 

In section 6.6 attention is paid to the evolution of the contact angle when other material 

constitutive models are used. In particular, three different material constitutive models have 
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been adopted: two multi-linear isotropic hardening plastic models, characterized by a yielding 

stress, σy, of 280 MPa and a tangential modulus, E’, of 175 and 250 MPa, respectively, and 

an elastic-perfectly plastic constitutive model with σy = 280 MPa. These values of σy and E’ 

are realistic for a P91 steel at room temperature. Figure 3 plots the variation of stress versus 

strain for the two multi-linear isotropic hardening plastic models and the elastic-perfectly 

plastic constitutive model. 

 

Figure 3. Variation of stress versus strain: two multi-linear isotropic hardening plastic models were used, together with an 

elastic-perfectly plastic constitutive model. 

4 EXPERIMENTAL TESTS 

Interrupted small punch creep tests were carried out in order to measure the contact angle at 

different stages of the creep curve. The test data were compared to those acquired by 

Cortellino et al. [2] and to the FE results obtained for this research (see section 6.5.2). 

4.1 Tested Material and Test rig 

The tested material and the test rig geometry, of which Figure 4 reports a schematic cross 

section, are the same as those used by Cortellino et al. [2], who carried out several interrupted 

small punch creep tests of a P91 steel with an initial thickness of the specimen of 0.5 mm and 

a punch radius of 1.04 mm, by applying a load of 25 kg at a constant temperature of 600 °C. 
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For this research, a P91 steel has been used to machine various small disc specimens with a 

final thickness of 0.300±0.001 mm from a power plant steam pipe section, sketched in Figure 

5, which has an outer diameter and a wall thickness of 298.5 and 55mm, respectively. Table 1 

and Table 2 show, respectively, the chemical composition, in wt%, of the P91 steel used for 

the investigation in ref. [36] and the material constants of the P91 steel at 650 °C for the 

damage law [25]. 

A load of 11.5 kg was applied to the dead-weight machine. The temperature was held at 

650±1 °C by the single-zone temperature controller of the furnace. A thermocouple was 

inserted at approximately 10 mm below the specimen for allowing the tracing of potential 

fluctuations of the temperature by the data acquisition system. The loading mechanism of the 

machine had centralised slides which allowed the dead weight load to be applied coaxially 

with the test assembly. Since the experimental results depend on the set up geometry, the 

non-repeatability of the small punch testing technique is a major concern [1, 4, 12, 13]. 

Cortellino et al. found that, when eccentricities in the punch load occur, both the failure life 

and the minimum creep strain rate can significantly change with respect to a situation in 

which the punch load is perfectly aligned [8]. This also leads to asymmetry in the maximum 

principal stress and in the damage variable of the specimen [8].  

Table 1. Chemical composition, in wt%, of the P91 steel used for the investigation in ref. [40]. 

Cr Mo C Si S P Al V Nb N W 

8.60 1.02 0.12 0.34 <0.002 0.017 0.007 0.24 0.070 0.060 0.03 
 

Table 2. Material constants for a P91 steel at 650 °C, with stress (MPa) and time (h) [29]. 

E0 [MPa] ν B n A χ q2 α 

1.500x10
5 

0.3 1.092x10
-20 

8.462 2.952x10
-16 

6.789 3.2 0.215 
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Figure 4. Schematic cross section of the experimental set-up used for the SPCTs with dimensions in mm, adapted from ref. 

[20]. 

 

 

Figure 5. Schematic representation of the specimens manufacturing from the P91 steel pipe, from ref. [2]. 

5 CALCULATION OF THE CONTACT ANGLE 

For each time instant, and of the punch displacement, the contact angle, θ0, has been 

calculated by equation (17), where rcontact is the distance of the contact edge from the axis of 

symmetry of the specimen, measured on the deformed configuration in the radial direction. 

𝜃0 = sin−1 (
𝑟𝑐𝑜𝑛𝑡𝑎𝑐𝑡

𝑅𝑠
) 

(17)  

 

From the FE solution, the contact edge, on the top surface of the specimen (i.e. the slave 

contact surface), has been identified as the farthest node, from the axis of symmetry, where 

the contact status is closed, in either slipping or sticking conditions. 
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6 RESULTS AND DISCUSSION 

6.1 Experimental results 

Figure 6 shows the creep test curves, in terms of the variation of the central deformation of 

the specimen, Δ, versus time, t, obtained by small punch creep tests carried out by applying  a 

load of 11.5 kg to specimens with t0 =0.3 mm at a constant temperature of 650 °C. 

 

Figure 6. Variation of the central deformation of the specimen versus time for the completed and interrupted tests under a 

load of 11.35 kg, with Rs = 1.04 mm and t0=0.3 mm. 

Brucker Interferometer was used to measure the specimen profiles. Figure 7 and Figure 8 

show, respectively, 3D and 2D images, respectively, of the profiles of the SPCT specimens 

from Bruker Interferometer for the tests interrupted after 2 h (𝑡 𝑡𝑓⁄ ≈ 0, ∆
∆𝑓

⁄ ≈ 0.40) and 

after 52 h (𝑡 𝑡𝑓⁄ ≈ 0.23, ∆
∆𝑓

⁄ ≈ 0.62). Figure 9 shows the depth of the 2D profiles, f(y), 

which was fitted against the distance, y, from the axis of symmetry of the specimen in the 

radial direction, by use of a Fourier polynomial function, as shown in equation (18). The 

fitting constant set, reported in Table 3, consists of ai, for i=0…5, of bi, for i=1…5, and of the 

angular frequency, w. 
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𝑓(𝑦) = 𝑎0 + 𝑎1 cos(𝑤𝑦) + 𝑏1 sin(𝑤𝑦) + 𝑎2 cos(2𝑤𝑦) + 𝑏2 sin(2𝑤𝑦)

+ 𝑎3 cos(3𝑤𝑦) + 𝑏3 sin(3𝑤𝑦) +𝑎4 cos(4𝑤𝑦) + 𝑏4 sin(4𝑤𝑦)

+ 𝑎5 cos(5𝑤𝑦) + 𝑏5 sin(5𝑤𝑦) 

(18)  

The contact radii for the two tests, required to obtain the contact angles by equation (17), 

were identified by the values of y that satisfy equation (19), i.e. equating to 0 the second 

derivative of f(y) with respect to y. The contact angles, calculated by using the described 

procedure, are equal to 40° and 45.73° for the test interrupted after 2 and 52 hours, 

respectively. 

𝑑2(𝑓(𝑦))

𝑑𝑦2
= 0 (19)  

Table 3. Fitting constants for equation (18). 

 Test interrupted after 2 h     Test interrupted after 52 h 

w 0.0008006 0.0007165 

a0 -0.150200 -0.291300 

a1 -0.321000 -0.460600 

a2 -0.159300 -0.177000 

a3 -0.043120 -0.106900 

a4 -0.033490 -0.019680 

a5 -0.011940 -0.024150 

b1 0.0588100 -0.016370 

b2 -0.024780 0.0227500 

b3 0.0047090 -0.004242 

b4 0.0035520 -0.002899 

b5 -0.003138 0.0005257 
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Figure 7. 3D image of the profile of the SPCT specimen from Bruker Interferometer for the test interrupted after 52 hours. 

 

Figure 8. 2D images, in the xy plane, of the profile of the SPCT specimens from Bruker Interferometer for the tests 

interrupted after (a) 2 hours and (b) 52 hours. 

 

 

Figure 9. Depth of the SPCT specimen 2D profiles from Bruker Interferometer for the test interrupted after 2 and 52 hours, 

plotted against the distance from the axis of symmetry of the specimen in the radial direction. 

                                      (a) (b) 

 



20 
 

Figure 9 shows an asymmetry in the deformation of the specimens which can been related to 

a misalignment of the punch load, as reported by Cortellino et al. [8]. The asymmetry is more 

evident for the test interrupted after 2 hours, therefore the eccentricity of the punch load was 

larger for that test. 

Additional small punch creep tests, carried out by Cortellino et al. [2]. Figure 10 shows SEM 

images of those tests interrupted after (a) 2 hours (𝑡 𝑡𝑓⁄ ≈ 0, ∆
∆𝑓

⁄ ≈ 0.40), (b) 200 hours 

(𝑡 𝑡𝑓⁄ ≈ 0.20, ∆
∆𝑓

⁄ ≈ 0.62)  and  (c) after 669 hours (𝑡 𝑡𝑓⁄ ≈ 0.64, ∆
∆𝑓

⁄ ≈ 0.82), and FE 

damage contour plots for a P91 steel at 650 °C under a load of 200 N, with Rs=1.04 mm and 

t0=0.5 mm. The FE damage contour plot will be discussed in section 6.5.2. The SEM images 

were used to calculate the contact angle by equation (17), by considering as contact radius the 

one at the inflection point of the profile of the inner surface of the specimens, clearly visible 

from the SEM images in Figure 10. The calculations leaded to values of the contact angle of 

39°, 42.69° and 60.62° for the tests interrupted after 2 h (𝑡 𝑡𝑓⁄ ≈ 0, ∆
∆𝑓

⁄ ≈ 0.40), 200 h 

(𝑡 𝑡𝑓⁄ ≈ 0.20, ∆
∆𝑓

⁄ ≈ 0.62) and 669 h (𝑡 𝑡𝑓⁄ ≈ 0.64, ∆
∆𝑓

⁄ ≈ 0.82), respectively. These 

values of θ0 are similar to those obtained from tests with an initial thickness of the specimen 

of 0.3 mm. 
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Figure 10. SEM images from ref. [2] for a small punch creep test, for a P91 steel at 600 °C with a load of 25 kg,  interrupted 

after (a) 2 hours (𝑡 𝑡𝑓⁄ ≈ 0, ∆
∆𝑓

⁄ ≈ 0.40), (b) 200 hours (𝑡 𝑡𝑓⁄ ≈ 0.20, ∆
∆𝑓

⁄ ≈ 0.62) and (c) after 669 hours (𝑡 𝑡𝑓⁄ ≈ 0.64,

∆
∆𝑓

⁄ ≈ 0.82), and FE damage contour plots for a P91 steel at 650 °C under a load of 200 N, with Rs=1.04 mm and t0=0.5 

mm. 

6.2 Preliminary FE Results 

In order to evaluate the accuracy of the coupled equations adopted between creep and 

elasticity, a set of preliminary analyses was carried out by using equation (14) and equations 

(15) and (16), respectively. Figure 11 (a) shows the contour plot of the von Mises equivalent 

stress when the specimen is approaching the failure time, obtained by using equation (14), i.e. 

the continuous damage model without modification, while Figure 11 (b) shows the contour 

plot of the von Mises equivalent stress, at the failure time, obtained by using equations (15) 

and (16). By using the modified continuous damage model, the time to rupture is lower than 

that obtained by using equation (14). The reduction in the failure time is caused by the 

complete disappearing of load carrying capability of the material obtained when ω 

approaches unity and the modified continuous damage model is used, while, when equation 

(14) is adopted, the material still has a residual strength when ω→1.  

When equation (14) is used, the central displacement of the punch continues increasing after 

the time when the damage variable reaches the upper bound on a path through the whole 

thickness of the sample. The solver is able to compute an equilibrium configuration, 

therefore, the remaining load carrying capability of the specimen, with ω=ωMAX, shows to be 
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not negligible. When the modified coupling equations are used, the solver cannot calculate a 

balanced configuration as soon as ω=ωMAX through the whole thickness of the specimen. The 

reason for the more rapid non-convergence of the solution is the faster decrease in the load 

carrying capability of the specimen, therefore, the modified coupling equations show to be 

more accurate that equation (14) for the modelling procedure of SPCT. 

 

Figure 11. Contour plots of the von Mises equivalent stress obtained with a load of 200 N at (a) t=15.38h, by using a 

continuous damage model, and at (b) t=tf=13.89h, by using the modified coupling equations. 

 

 

Figure 12. Punch displacement vs. time curves obtained under a load of 200 N, with Rs=1.04 mm, t0=0.5 mm, by using the 

continuous damage model and the modified model. 

In view of the more accurate description of the decrease in the load carrying capability of the 

specimen, equations (15) and (16) were used for the calculations discussed hereafter. 
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6.3 Effects of Load Magnitudes 

The effects of the punch load magnitude on the evolution of the contact angle were 

investigated and punch load levels of 90, 110, 130, 150 and 200 N were used for the FE 

analyses. The punch radius and the specimen initial thickness have been fixed at 1.04 and 0.5 

mm, respectively. As shown in Figure 13, the load magnitude does not affect the θ0 

evolution. This is in agreement with Chakrabarty’s theory [15], in which the load level is not 

involved in the equations describing the contact angle evolution. 

However, the load does not influence the variation of θ0 versus Δ because the model does not 

include the effects of plasticity, which is governed by the load level, on the creep response of 

the specimen, which influence the deformation mode of the specimen and, as a consequence, 

the variation of θ0 versus Δ [7, 20]. 

 

Figure 13. Evolution of the contact angle under five different punch load magnitudes, with Rs=1.04 mm and t0=0.5 mm. 

6.4 Effects of Friction Coefficient 

The effects of friction between the punch and the specimen on the evolution of the contact 

angle were investigated and the values of the friction coefficient, μ, of 0, 0.2, 0.3, and 0.5 

were used for the FE analyses. The punch radius and the specimen initial thickness were held 

at 1.04 and 0.5 mm, respectively, while the punch load was held at 90 N. As shown in Figure 

14, the friction coefficient does not drastically affect the θ0 evolution. Figure 15 (a) and (b) 



24 
 

respectively show that the creep equivalent strain and the von Mises equivalent stress, plotted 

against the punch displacement, exhibit remarkably similar trends when different friction 

coefficients between the punch and the specimen are used. 

 

Figure 14. Evolution of the contact angle for different values of the friction coefficient between the punch and the specimen 

with Rs=1.04 mm and t0=0.5 mm, under a load of 90 N. 

 

 
Figure 15. (a) Creep equivalent strain variation and (b) von Mises equivalent stress variation versus punch displacement, 

evaluated at the integration point of the element 780 in the mid-section of the specimen necking area, for different values of 

the friction coefficient between the punch and the specimen, with Rs=1.04 mm and t0=0.5 mm, under a load of 90 N. 

 

6.5 Effects of Punch/Specimen Dimensions 

In order to investigate the effects of the punch radius and of the initial thickness of the 

specimen on the evolution of the contact angle, three different punch radii, Rs, (1.04, 1.25 and 
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1.50 mm) and four different specimen initial thicknesses, t0, (0.5, 0.4, 0.3 and 0.2 mm) were 

adopted for the FE analyses. A receiving hole radius, ap, of 2 mm, and a punch load of 90 N, 

were kept constant. The FE results were compared with the Chakrabarty analytical solutions 

and with the experimental data. 

6.5.1 FE and analytical solutions 

Figure 16 show that the contact angle evolution, plotted against the central punch 

displacement, Δ, tends to approach to Chakrabarty’s θ0 distribution when the punch radius 

increases and the specimen initial thickness decreases. In particular, membrane stretching can 

be assumed as the governing mechanism for the specimen deformation when 

{

0.8 < Δ < 0.95 mm, 1.04 ≤ 𝑅𝑠 < 1.25 mm
0.8 < Δ < 1.15 mm, 1.25 ≤  𝑅𝑠 < 1.50 mm

   Δ >  0.8 mm,               𝑅𝑠 = 1.50 mm.
  

In those ranges, the FE results match with the analytical solution when 0.2 mm ≤ t0≤ 0.3 mm 

obtained by Chakrabarty’s theory, which is valid when the thickness of the blank is small 

compared to the punch radius. The reason why the SPCT specimen experiences bending as 

the governing deformation mechanism when Δ is out of the range boundaries determined in 

this research can be partly related to the boundary conditions applied to the disc. As shown in 

Figure 1, Chakrabarty’s specimen is allowed to rotate of an angle θ where the support is 

applied, while, in the same position, the SPCT specimen cannot rotate at the support due to 

the clamping (see Figure 2). 
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Figure 16. Evolution of the contact angle under a load of 90 N, with different initial thickness of the specimen and with (a) 

Rs=1.04 mm, (b) Rs=1.25 mm and (c) Rs=1.50 mm. The FE data are compared with Chakrabarty’s analytical solution. 

 

Figure 17 shows the variation of the contact angle obtained from FE analyses with the 

reciprocal initial thickness of the specimen at several fixed Δ values, with Rs equals 1.25 mm. 

When the specimen initial thickness decreases from 0.2 to 0.1 mm, the contact angle tends to 

be constant, as assumed in Chakrabarty’s theory [15], which is valid when t0 is small 

compared to the punch radius. 
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Figure 17. Contact angle vs. thickness reciprocal under a load of 90 N, with Rs=1.25 mm and constant punch displacements. 

 

In Figure 18, the contact angle, obtained by FE calculations, is plotted versus the initial 

thickness of the specimen and the punch displacement, both normalised by ap. The FE results 

of Figure 18 were fitted by a relation of the form of equation (20), where a, b, c, d, e, f and g 

are fitting constants, listed in Table 4. It should be noted that these constants are different for 

each punch radius. 

𝜃0 = 𝑎𝑙𝑛 (𝑔
𝑡0
𝑎𝑝

∆

𝑎𝑝
) + b

∆

𝑎𝑝
+ c

𝑡0
𝑎𝑝

 + (d
𝑡0
𝑎𝑝

+ e
∆

𝑎𝑝
)

𝑓

 (20)  

 

A surface fitting of the form of equation (21) was also found for the evolution of the contact 

angle at failure, θ0f, versus the specimen thickness and the punch radius, where pi, for i=0…8, 

are fitting constants, listed in Table 5. Figure 19 plots the evolution of θ0f with t0/ap and Rs/ap. 
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28 
 

Table 4. Fitting constants for equation (20). 

Rs [mm] a b c d e f g 

1.04 0.06195 1.021 -0.875 2.165 0.4317 0.4545 0.5026 

1.25 0.04659 0.9759 0.1492*10
-3 

0.4995 0.2288 0.3584 0.2732 

1.50 0.03861 0.9509 0.1369*10
-3

 0.4009 0.2258 0.2704 0.006693 

 

 

Table 5. Fitting constants for equation (21). 

p0 p1 p2 p3 p4 p5 p6 p7 p8 

2.341 -0.06726 -0.7115 39.3 -27.37 -0.6988 8.217 -45.92 31.15 

 

 

Figure 18. Evolution of the contact angle with the punch displacement and the specimen initial thickness both initialised by 

ap, at a constant punch radius, (a) Rs=1.04 mm, (b) Rs=1.25 mm and (c) Rs=1.50 mm, with the fitted surface to the FE data. 
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Figure 19. Evolution of the contact angle at failure with the punch radius and the specimen initial thickness, with the fitted 

surface to the FE data.  

 

6.5.2 Comparison with the Experimental Findings 

A comparison of the numerical and analytical results with the measured experimental data of 

tested SPCT specimens was also carried out. The contact angles found for the two interrupted 

tests with t0=0.3 mm match with both Chakrabarty’s solution and the FE results, as reported 

in Figure 21.  

Also, the experimental results obtained by Cortellino et al. in 2014 [2] with t0=0.5 mm were 

compared with FE results in terms of deformation shape and damage propagation. The FE 

analysis was performed assuming for the specimen and the punch the same geometry as in 

ref. [2], a punch load of 200 N and a constant temperature of 650 °C. From Figure 10 (a) it is 

possible to notice that after two hours the deformation of the specimen had already reached 

the 40% of its final value, due to creep mechanism. The damage of the specimen was found 

to be very low, around 30%, and localized in the bottom of the specimen in the necking area, 

close to the axis of symmetry. Figure 10 (b) shows that, after 200 h, the damage in the 

specimen was around 70%, and it had spread toward the middle of the necking area and 

through the thickness of the specimen. In Figure 10 (c) the crack in the specimen (ω ≈ 1) is 

visible both in the tested specimen and in the FE contour plot. Cortellino et al. also carried 

out a microscopic investigation on the tested samples and found that after 669 h the crack had 
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spread along the hoop direction of the bottom surface of the disc as well as through the 

thickness of the specimen [2]. Figure 20 shows the propagation of micro-cracks at the tip of 

the crack for the test interrupted after 669 h [2, 20]. The FE analysis show that the zone 

affected by the maximum damage spread from the bottom of the specimen through the 

thickness in the necking area as reported in the open literature [2, 7, 13, 20, 25]. 

 

Figure 20. SEM image from ref. [2] for a small punch creep test, for a P91 steel at 600 °C with a load of 25 kg, interrupted 

after 669 h. 

The difference between the test temperature and that assumed for the material properties 

adopted for the FE analyses does not change the creep mechanism characterising the 

deformation of the specimen, which is represented by dislocation creep in the secondary 

creep regime and inter-granular cavitation when the tertiary creep stage is reached [20]. The 

experimental and FE data in terms of contact angle were also compared with Chakrabarty’s 

solution. Figure 21 plots the contact angle obtained by the numerical, analytical and 

experimental procedures versus the punch displacement, and shows the consistency between 

the FE and analytical results with the experimental evidence. The differences between 

experimental data and FE results can be related to the effects of significant plastic 

deformation which is experienced by the SPCT specimen during the test [7, 11] and to the 

approximation of the friction formulation used in the FE analyses for the interactions between 

the specimens and the testing machine components. Furthermore, geometry inaccuracies of 
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the punch load might also be occurred, as well as specimen elastic recovery [8]. Cortellino et 

al. report an increase of the failure life up to 10% when initial plastic deformation is included 

in the model [7]. Both Kobayashi et al. [41] and Cortellino et al. [20] found that the time to 

failure increases up to 8% when the friction coefficient between the specimen and the punch 

varies from 0 to 0.5. Punch load misalignments can make the failure life to increase up to 

1.6%, according to Ref. [8]. 

 

Figure 21. Evolution of the contact angle: comparison among FE results, Chakrabarty’s analytical solution and experimental 

data. 

 

The comparison of the variation of θ0 versus Δ identified from FE results with material 

properties at 650 °C with that obtained from the results of tests carried out at 600 °C is 

possible because, at these two temperatures, the creep mechanism governing the deformation 

of the specimen is the same, i.e. dislocation creep, therefore the deformation modes are 

consistent [20]. 

6.6 Evolution of the Contact Angle under Different Material Constitutive Models 

The effects of different material constitutive models (such as the multi-linear isotropic 

hardening plastic models and the elastic-perfectly plastic constitutive model described in 
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section 3.4) on the  variation of θ0 versus Δ were investigated and compared to those obtained 

by Liu and Murakami’s damage constitutive model and Norton’s model.  

The punch radius was held constant to 1.04 mm. The load has been chosen to be 200 N and 

90 N for creep analyses, for an initial specimen thickness of 0.5 mm and 0.3 mm, 

respectively. Figure 22 shows the evolution of the contact angle plotted against the central 

punch displacement, Δ, for these different constitutive models, also compared with 

Chakrabarty’s solution. The FE results show that the specimen deformation shape is the same 

for all models, but, when Δ > 0.8 mm, the instantaneous distortion due to strain hardening is 

quite different from the viscous distortion due to creep, as the mechanism which governs the 

stress distribution is different. In fact, during creep, the material is subjected to relaxation 

(Figure 15) and, even if the stress is redistributed around a failed area, allowing the specimen 

to continue in carrying some load, this behaviour cannot be described as hardening. 

It is to be noted that Norton’s model can produce complex θ0 or numerical errors in θ0 

calculation when Δ > 1.6 mm. This Δ value was found to depend on the initial thickness of 

the specimen and on the applied load. From the definition of the contact angle in equation 

(17), this means that Norton’s model simulates the penetration of the punch in the specimen. 

Whereas the specimen volume is constant and this penetration has not been observed during 

tests (see also ref. [2]) and although Norton’s model FE results are close to the Chakrabarty 

analytical solution, this model can predict the deformation shape, but not the failure 

mechanism. 



33 
 

 

Figure 22. Evolution of the contact angle for different constitutive models, with Rs=1.04 mm and with (a) t0=0.5 mm, with a 

load of 200 N, and with (b) t0=0.3 mm, with a load of 90 N. 

7 CONCLUSION REMARKS 

The current research presented an original study on the evolution of the contact angle of the 

small punch creep test specimen, with the goals to investigate the applicability of both 

Chakrabarty’s membrane stretching theory and of the CEN Code of Practice CWA 15627 on 

SPCTs, and to enlighten the deformation and failure mechanisms of the SPCT specimen. 

Currently, material continuous damage models, based on Liu and Murakami’s model, cannot 

simulate zero-stress in those areas where the specimen was supposed to be failed, therefore a 

modified continuous damage model was developed and used in this work. 

The results of FE analyses showed that the variation of the friction coefficient and of the 

punch load level has no influence on the evolution of the contact angle with the central punch 

displacement. 

Further FE analyses were performed for evaluating the effects of different material 

constitutive models on the variation of θ0 with Δ. The deformed shape of the specimen was 

(a) (b) 
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found to be the same for all material models, but the instantaneous distortion was found to be 

different from the viscous distortion caused by creep. 

Changes in the initial thickness of the specimen and in the punch radius have significant 

effects on the evolution of the contact angle with the central punch displacement, as they 

determine the values of Δ for which membrane stretching can be assumed as the governing 

mechanism of the specimen deformation. The numerical results were fitted by equations in 

two variables and compared to the Chakrabarty analytical solution and to the experimental 

data, allowing for the evaluation of new ranges of applicability of the CEN Code of Practice 

CWA 15627 and of Chakrabarty’s theory on the SPCTs. 

Some differences were found between the numerical results and the experimental data, and 

they have been associated to some factors which have not been included in the numerical 

calculations, but could have been occurred during the tests, i.e. the effects on the specimen 

time to failure of punch load misalignments, of initial plasticity, and of friction coefficient 

between the punch and the specimen. In the open literature, it has been found that the 

increment in the failure life is larger when the effects of initial plasticity and of friction 

coefficient are considered in the FE model. 

The results obtained could be useful for the development of an improved data conversion 

relationship between the SPCT data and the uniaxial creep test data, and in particular for the 

progression in the upgrade of the CEN Code of Practice CWA 15627. 
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