Revealing The Exotic Structure Of Molecules In Strong Magnetic Fields

Miles J. Pemberton,¹ Tom J. P. Irons,^{1, a)} Trygve Helgaker,² and Andrew M. Teale^{1, 2} ¹⁾School of Chemistry, University of Nottingham, NG7 2RD, UK

²⁾ Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, Oslo N-0315, Norway

(Dated: 21 April 2022)

 $^{^{\}rm a)} {\it Electronic}$ mail: tom.irons@nottingham.ac.uk

$ \mathbf{B} /B_0$	Ground State	E/E_h	Lowest Energy Dissociation	ΔE / kJ mol ⁻¹
0.0	$\operatorname{He}_{4}^{(0)}$	-11.636889	${ m He}_4^{(0)} ightarrow { m He}_3^{(0)} + { m He}^{(0)}$	0.34
0.2	$\operatorname{He}_{4}^{(0)}$	-11.604836	${ m He}_4^{(0)} ightarrow { m He}_3^{(0)} + { m He}^{(0)}$	0.41
0.4	$\operatorname{He}_{4}^{(0)}$	-11.511727	${ m He}_4^{(0)} ightarrow { m He}_3^{(0)} + { m He}^{(0)}$	0.73
0.6	$\operatorname{He}_4^{(-1)}$	-11.378963	${ m He}_4^{(-1)} ightarrow { m He}_3^{(-1)} + { m He}^{(0)}$	7.25
0.8	$\mathrm{He}_4^{(-2)}$	-11.541239	${\rm He}_4^{(-2)} \to {\rm He}_2^{(-1)} + {\rm He}_2^{(-1)}$	35.17
1.0	$\operatorname{He}_4^{(-4)}$	-11.801422	$\mathrm{He}_4^{(-4)} \to \mathrm{He}_3^{(-3)} + \mathrm{He}^{(-1)}$	133.92

Table SI (a): Lowest energy He_4 dissociation pathways.

$ \mathbf{B} /B_0$	Ground State	E/E_h	Lowest Energy Dissociation	$\Delta E \ / \ { m kJ \ mol^{-1}}$
0.0	$\operatorname{He}_3^{(0)}$	-8.727618	${ m He}_3^{(0)} ightarrow { m He}_2^{(0)} + { m He}^{(0)}$	0.30
0.2	$\operatorname{He}_3^{(0)}$	-8.703583	${ m He}_3^{(0)} ightarrow { m He}_2^{(0)} + { m He}^{(0)}$	0.42
0.4	$\operatorname{He}_3^{(0)}$	-8.633739	${ m He}_3^{(0)} ightarrow { m He}_2^{(0)} + { m He}^{(0)}$	0.75
0.6	$\operatorname{He}_3^{(-1)}$	-8.535540	${\rm He}_3^{(-1)} \to {\rm He}_2^{(-1)} + {\rm He}^{(0)}$	58.72
0.8	$\operatorname{He}_3^{(-2)}$	-8.595461	$\mathrm{He}_3^{(-2)} \to \mathrm{He}_2^{(-1)} + \mathrm{He}^{(-1)}$	37.03
1.0	$\operatorname{He}_3^{(-3)}$	-8.830147	$\mathrm{He}_3^{(-3)} \to \mathrm{He}_2^{(-2)} + \mathrm{He}^{(-1)}$	124.90

Table SI (b): Lowest energy He_3 dissociation pathways.

I. LOWEST ENERGY HE_n DISSOCIATION PATHWAYS

Lowest energy dissociation pathways and their associated energies computed using CDFT with the cTPSS functional and aug-cc-pVTZ orbital basis set for the ground-state He_n (n = 2-4) structures at $|\mathbf{B}| = 0.0\text{-}1.0 \text{ B}_0$ in increments of 0.2 B₀, calculated from the energies of the He_n clusters and the relevant smaller fragments obtained from the AIRSS analysis for these systems.

II. LOWEST ENERGY CH_n DISSOCIATION PATHWAYS

Lowest energy dissociation pathways and their associated energies computed using CDFT with the cTPSS functional and aug-cc-pVTZ orbital basis set for the ground-state CH_n (n

$ \mathbf{B} /B_0$	Ground State	E/E_h	Lowest Energy Dissociation	ΔE / kJ mol ⁻¹
0.0	$\operatorname{He}_{2}^{(0)}$	-5.818360	${ m He}_2^{(0)} ightarrow { m He}^{(0)} + { m He}^{(0)}$	0.20
0.2	$\operatorname{He}_{2}^{(0)}$	-5.802316	${\rm He}_2^{(0)} \to {\rm He}^{(0)} + {\rm He}^{(0)}$	0.32
0.4	$\operatorname{He}_{2}^{(0)}$	-5.755667	${ m He}_2^{(0)} ightarrow { m He}^{(0)} + { m He}^{(0)}$	0.65
0.6	$\operatorname{He}_2^{(0)}$	-5.681800	${\rm He}_2^{(0)} \to {\rm He}^{(0)} + {\rm He}^{(0)}$	1.27
0.8	$\operatorname{He}_2^{(-1)}$	-5.763922	${\rm He}_2^{(-1)} \to {\rm He}^{(-1)} + {\rm He}^{(0)}$	406.00
1.0	$\operatorname{He}_2^{(-2)}$	-5.862310	$\operatorname{He}_{2}^{(-2)} \to \operatorname{He}^{(-1)} + \operatorname{He}^{(-1)}$	57.18

Table SI (c): Lowest energy He_2 dissociation pathways.

$ \mathbf{B} /B_0$	Ground State	E/E_h	Lowest Energy Dissociation	$\Delta E \ / \ { m kJ \ mol^{-1}}$
0.0	$CH_{3}^{(-1/2)}$	-39.864710	$\mathrm{CH}_3^{(-1/2)} \to \mathrm{CH}^{(-1/2)} + \mathrm{H}_2^{(0)}$	475.0
0.2	$CH_{3}^{(-3/2)}$	-39.932304	$CH_3^{(-3/2)} \to CH_2^{(-1)} + H^{(-1/2)}$	4.52
0.4	$CH_{3}^{(-7/2)}$	-40.325536	$CH_3^{(-7/2)} \to CH_2^{(-3)} + H^{(-1/2)}$	3.84
0.6	$\operatorname{CH}_3^{(-7/2)}$	-40.812574	$CH_3^{(-7/2)} \to CH_2^{(-3)} + H^{(-1/2)}$	34.80
0.8	$\operatorname{CH}_3^{(-7/2)}$	-41.308903	$CH_3^{(-7/2)} \to CH_2^{(-3)} + H^{(-1/2)}$	43.43
1.0	$\operatorname{CH}_3^{(-7/2)}$	-41.757455	$\operatorname{CH}_{3}^{(-7/2)} \to \operatorname{CH}_{2}^{(-3)} + \operatorname{H}^{(-1/2)}$	50.16

Table SII (a): Lowest energy CH₃ dissociation pathways.

= 1-3) structures at $|\mathbf{B}| = 0.0$ -1.0 B₀ in increments of 0.2 B₀, calculated from the energies of the CH_n clusters and the relevant smaller fragments obtained from the AIRSS analysis for these systems.

III. CONVEX HULL PLOTS FOR HE_n WITH CTPSS

Convex hull plots for He_n (n = 2 - 4) showing the optimised energies obtained from random initial structures of He_n with the corresponding M_s values in magnetic fields of 0.0-1.0 B₀ at intervals of 0.2 B₀, computed using CDFT with the cTPSS functional and aug-cc-pVTZ orbital basis set. The lowest energy structures of each spin-projection from $|\mathbf{B}| = 0.0-1.0$ B₀ form a convex hull, shown by the dashed lines.

$ \mathbf{B} /B_0$	Ground State	E/E_h	Lowest Energy Dissociation	$\Delta E \ / \ { m kJ \ mol^{-1}}$
0.0	$\mathrm{CH}_2^{(-1)}$	-39.181056	${\rm CH}_2^{(-1)} ightarrow {\rm C}^{(-1)} + {\rm H}_2^{(0)}$	375.65
0.2	$\operatorname{CH}_2^{(-1)}$	-39.340526	${\rm CH}_2^{(-1)} ightarrow {\rm C}^{(-1)} + {\rm H}_2^{(0)}$	159.42
0.4	$\operatorname{CH}_2^{(-3)}$	-39.660549	$CH_2^{(-3)} \to CH^{(-5/2)} + H^{(-1/2)}$	4.30
0.6	$\operatorname{CH}_2^{(-3)}$	-40.073504	$CH_2^{(-3)} \to CH^{(-5/2)} + H^{(-1/2)}$	37.32
0.8	$\operatorname{CH}_2^{(-3)}$	-40.511763	$CH_2^{(-3)} \to CH^{(-5/2)} + H^{(-1/2)}$	42.28
1.0	$\operatorname{CH}_2^{(-3)}$	-40.908811	$\operatorname{CH}_{2}^{(-3)} \to \operatorname{CH}^{(-5/2)} + \operatorname{H}^{(-1/2)}$	46.36

Table SII (b): Lowest energy CH_2 dissociation pathways.

$ \mathbf{B} /B_0$	Ground State	E/E_h	Lowest Energy Dissociation	$\Delta E \ / \ { m kJ \ mol^{-1}}$
0.0	$CH^{(-1/2)}$	-38.503919	$CH^{(-1/2)} \rightarrow C^{(0)} + H^{(-1/2)}$	546.23
0.2	$\mathrm{CH}^{(-3/2)}$	-38.726099	$CH^{(-3/2)} \rightarrow C^{(-1)} + H^{(-1/2)}$	55.60
0.4	$\mathrm{CH}^{(-5/2)}$	-38.995386	$CH^{(-5/2)} \rightarrow C^{(-2)} + H^{(-1/2)}$	3.59
0.6	$\mathrm{CH}^{(-5/2)}$	-39.333473	$CH^{(-5/2)} \rightarrow C^{(-2)} + H^{(-1/2)}$	39.44
0.8	$\mathrm{CH}^{(-5/2)}$	-39.715062	$CH^{(-5/2)} \rightarrow C^{(-2)} + H^{(-1/2)}$	32.40
1.0	$\mathrm{CH}^{(-5/2)}$	-40.061617	$CH^{(-5/2)} \rightarrow C^{(-2)} + H^{(-1/2)}$	30.07

Table SII (c): Lowest energy CH dissociation pathways.

Figure SI: $He_n (n = 2 - 4)$ cluster cTPSS convex hull plots.

Figure SII: CH_n and H_n cTPSS convex hull plots.

IV. CONVEX HULL PLOTS FOR $CH_n \& H_n$ WITH CTPSS

Convex hull plots for CH_n (n = 1 - 3) and H_n (n = 2 - 4) showing the optimised energies obtained from random initial structures of CH_n and H_n with the corresponding M_s values in magnetic fields of 0.0-1.0 B₀ at intervals of 0.2 B₀, computed using CDFT with the cTPSS functional and aug-cc-pVTZ orbital basis set. The lowest energy structures of each spin-projection from $|\mathbf{B}| = 0.0$ -1.0 B₀ form a convex hull, shown by the dashed lines.

Figure SIII: He_n (n = 2 - 5) cluster HF convex hull plots.

V. CONVEX HULL PLOTS FOR HE_n WITH HF

Convex hull plots for He_n (n = 2 - 5) showing the optimised energies obtained from random initial structures of He_n with the corresponding M_s values in magnetic fields of 0.0-1.0 B₀ at intervals of 0.2 B₀, computed using HF and the aug-cc-pVTZ orbital basis set. The lowest energy structures of each spin-projection from $|\mathbf{B}| = 0.0$ -1.0 B₀ form a convex hull, shown by the dashed lines.

VI. CONVEX HULL PLOTS FOR CH_n WITH HF

Convex hull plots for CH_n (n = 1 - 4) showing the optimised energies obtained from random initial structures of CH_n with the corresponding M_s values in magnetic fields of 0.0-1.0 B₀ at intervals of 0.2 B₀, computed using HF and the aug-cc-pVTZ orbital basis set. The lowest energy structures of each spin-projection from $|\mathbf{B}| = 0.0$ -1.0 B₀ form a convex hull, shown by the dashed lines.

Figure SIV: CH_n HF convex hull plots.