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ABSTRACT
A novel implementation for the calculation of molecular gradients under strong magnetic fields is employed at the current-density functional
theory level to optimize the geometries of molecular structures, which change significantly under these conditions. An analog of the ab initio
random structure search is utilized to determine the ground-state equilibrium geometries for Hen and CHn systems at high magnetic field
strengths, revealing the most stable structures to be those in high-spin states with a planar geometry aligned perpendicular to the field. The
electron and current densities for these systems have also been investigated to develop an explanation of chemical bonding in the strong field
regime, providing an insight into the exotic chemistry present in these extreme environments.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0092520

I. INTRODUCTION

Strong magnetic fields many orders of magnitude larger than
those found on Earth are known to exist in the atmospheres of
stellar objects, such as magnetic white dwarf stars.1,2 Under these
conditions, interactions with the magnetic field significantly affect
the chemistry of molecules, resulting in exotic phenomena, such
as the perpendicular paramagnetic bonding mechanism.3 This can
cause significantly different molecular structures to arise in strong
fields compared to those at zero field,4 and in the absence of
being able to take direct measurements to interpret astrochemi-
cal observations, quantum chemical simulations provide a useful
tool to develop an understanding of chemistry under these exotic
conditions.

Recently, many quantum chemical methods have been adapted
to include a non-perturbative treatment of magnetic field effects
on molecular systems, including Hartree–Fock (HF) theory5,6 and
density-functional theory (DFT).7–10 However, their application has
been limited by computational cost, and geometry optimizations
under these conditions have only previously been applied to helium
clusters and small molecules at the restricted HF level.11 Recent
developments in the QUEST program12 have enabled the study of

larger systems in strong magnetic fields and, for the first time,
geometry optimizations of molecules under these conditions can be
carried out with an effective treatment of electron correlation at the
DFT level.9,10,13–15

The present work is concerned with determining the structure
of hydrogen-, helium-, and carbon-containing systems (elements
present in the atmospheres of magnetic white dwarf stars2,16–18) in
the presence of strong magnetic fields up to 2.35×105 T, where mag-
netic interactions can be as significant as the Coulomb interactions
that dominate on Earth, resulting in exotic molecular structures,
which would be impossible to predict from standard chemical intu-
ition. As a consequence, unbiased techniques are needed to search
for and elucidate the possible ground-state molecular structures.

II. THEORETICAL BACKGROUND
A. Systems in strong magnetic fields

In atomic units, the non-relativistic electronic Hamiltonian in
the presence of a uniform magnetic field B has the form

Ĥ = Ĥ0 +
1
2
(B × rO) ⋅ p̂ + B ⋅ ŝ + 1

8
(B × rO) ⋅ (B × rO), (1)
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where Ĥ0 is the electronic Hamiltonian at zero field, p̂ = −ı∇ is
the canonical momentum operator, ŝ is the spin operator, and
rO = r −O is the position with respect to an arbitrary gauge origin
O. A magnetic field satisfies the relation ∇ ⋅ B = 0 and hence can
be represented by a vector potential A for which B = ∇×A. Such
a potential is not unique; in the Coulomb gauge, considered in this
work, the vector potential is defined such that∇ ⋅ A = 0 everywhere.
It follows that for a uniform magnetic field, A is dependent on the
choice of gauge origin O in the manner

AO(r) =
1
2

B × (r −O) (2)

with the result that a change in the position of the gauge origin
O→ O′ constitutes a gauge transformation

AO′(r) = AO(r) −∇AO(O′) ⋅ r (3)

corresponding to the following unitary transformation of the
electronic Hamiltonian:

Ĥ′ = eıAO(O′)⋅rĤe−ıAO(O′)⋅r. (4)

Eigenfunctions Ψ of the Hamiltonian undergo a compensating uni-
tary transformation, Ψ′ = eıAO(O′)⋅rΨ; the observables of the sys-
tem, such as the energy and the charge density, therefore, remain
invariant to translation of the gauge origin.

The dependence of the wavefunction on the choice of the gauge
origin, however, cannot be properly reproduced by a finite basis
set expansion of the wavefunction, other than by explicit inclu-
sion of the gauge origin in the basis functions themselves. London
atomic orbitals (LAOs) follow this approach, comprising a stan-
dard Gaussian-type basis function φa with center R multiplied by
a complex phase factor dependent on both the magnetic field and
the gauge origin,

ωa(r) = φa(r)e−
ı
2 B× (R−O)⋅r, (5)

thereby yielding wavefunctions that exhibit the correct behavior to
first order with respect to the magnetic field and observables that
are gauge origin invariant.19–21 Electronic structure calculations in
a basis of LAOs permit the effects of applied magnetic fields to
be treated non-perturbatively in a gauge-origin invariant manner,
allowing the behavior of systems to be studied in magnetic fields of
arbitrary strength.5,9

This approach to enable electronic structure calculations
in strong magnetic fields was first implemented in the LONDON
code,22 being applied to Hartree–Fock,5 current density-functional,9
Møller–Plesset perturbation, coupled-cluster,23 configuration-
interaction,3 and complete-active-space self-consistent field
(CASSCF) theories.3 Several other electronic structure codes
have subsequently been developed to include the functionality to
consider systems in strong magnetic fields, including BAGEL,24

CHRONUSQ,25 and the QUEST program12 used in this work.

B. Current density functional theory
In the presence of an external magnetic field, given the addi-

tional terms containing the field or the associated vector potential in
the electronic Hamiltonian, the system can no longer be described

exclusively by the charge density as is the case in density functional
theory (DFT).26,27 The complete description of the system may be
achieved in one of two ways: by direct inclusion of the magnetic
field in the density functional (magnetic field DFT, BDFT)28,29 or by
inclusion of the current density in the density functional (current
DFT, CDFT).7,8,30 A formulation of CDFT applying only to uni-
form magnetic fields, linear vector potential DFT (LDFT), has been
presented in Ref. 31.

In this work, the Vignale–Rasolt formulation of CDFT7,8 in
which the density functional depends on the charge density ρ and
the paramagnetic current density jp is utilized. It has been shown30,32

that a convex-conjugate formulation of CDFT, following Lieb’s
approach for DFT,33 may be constructed in this way by re-writing
the energy E(v, A), dependent on the scalar potential v and vector
potential A, in terms of a modified scalar potential u = v + 1

2 A2. The
resulting energy functional E(u, A) is then concave in the poten-
tial; the energy functional and its convex-conjugate universal density
functional can be written, respectively, as

E(u, A) = inf
ρ,jp

{F(ρ, jp) + (u∣ρ) + (A∣jp)}, (6)

F(ρ, jp) = sup
u,A
{E(u, A) − (u∣ρ) − (A∣jp)}, (7)

where (u∣ρ) = ∫ u(r)ρ(r)dr and (A∣jp) = ∫ A(r) ⋅ jp(r)dr are the
potential–density pairings and F(ρ, jp) is the Vignale–Rasolt uni-
versal density functional.7,30

Applying the Kohn–Sham (KS) decomposition27 to the
Vignale–Rasolt functional, it may be written as34

F(ρ, jp) = Ts(ρ, jp) + J(ρ) + Exc(ρ, jp), (8)

where Ts(ρ, jp) is the non-interacting kinetic energy functional,
J(ρ) is the classical Coulomb repulsion energy, and Exc(ρ, jp) is
the exchange–correlation (xc) energy functional. The KS CDFT
equations take the form

[1
2

p̂ 2 + 1
2
{p̂, As} + us + ŝ ⋅ (∇×As)]ϕp = εpϕp, (9)

where ϕp and εp are the KS orbitals and orbital energies, respectively.
In KS CDFT, a non-interacting auxiliary system is introduced with
charge density

ρ =∑
σ

occ

∑
i

ϕ∗iσϕiσ (10)

and paramagnetic current density

jp = −
ı

2∑σ

occ

∑
i
[(∇ϕiσ)ϕ∗iσ − ϕiσ(∇ϕiσ)∗] (11)

constructed from occupied orbitals with spin σ that reproduce the
charge density and paramagnetic current density of the physical
system, respectively. The KS potentials (us, As) are given by

us = vext +
1
2

A2
s + vJ + vxc, As = Aext +Axc (12)
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in which vext and Aext are the physical external potentials due to the
nuclei and magnetic field, respectively, vJ is the Coulomb potential,
and vxc and Axc are the xc scalar and vector potentials, respectively,
defined as

vxc(r) =
δExc(ρ, jp)

δρ(r) , Axc(r) =
δExc(ρ, jp)

δjp(r)
. (13)

Recently, it has been shown that meta-generalized gradient
approximation (meta-GGA) functionals provide good accuracy in
strong magnetic fields.10 Most meta-GGAs depend on the non-
interacting kinetic energy density; in CDFT, this density must be
modified to ensure that the exchange–correlation energy remains
gauge-origin invariant using, for example, the form suggested by
Dobson35,36 and Becke,37

τσ → τσ = τσ −
∣jpσ ∣

2

ρσ
. (14)

In this work, this modification is used in the Tao–Perdew–
Staroverov–Scuseria functional, denoted cTPSS,38,39 previously
applied in the context of response theory for weak fields by Bates
and Furche40 and, here, in a non-perturbative manner, allowing its
application seamlessly to systems in the presence of weak to strong
magnetic fields. In order to describe the effects of correlation on
optimized geometries in strong magnetic fields, analytical deriva-
tives as described by Irons et al. in Ref. 4 are utilized throughout
this work.

C. Ab initio random structure search
Molecular structures in a strong magnetic field may be signifi-

cantly different to those at zero field due to the exotic chemistry in
this regime. As a result, choosing appropriate starting structures for
geometry optimization is challenging, as it is not necessarily possible
to apply simple chemical intuition to start from a structure close to
a chemically meaningful energy minimum. Furthermore, a poten-
tial energy surface (PES) can contain many minima; the number of
minima ns(N)for an N-atom system was shown by Stillinger41 to be

ns(N) = eαN , (15)

where α is a constant, with this scaling having been observed in
computational studies of Lennard-Jones clusters.42–44 This scaling is
likely to be greater in a magnetic field since the energy of each struc-
ture will generally no longer be invariant to rotation, resulting in a
greater number of local minima in the PES and making the global
minimum more difficult to locate.

In order to address these challenges, an analog of the ab initio
random structure search (AIRSS)45 has been employed throughout
this work. This methodology is typically used for the computational
analysis of solid-state structures46–50 and in the present work is mod-
ified to investigate the structure of polyatomic systems in strong
magnetic fields.

The approach employed in the present work involves ran-
domly distributing atoms in a shell around a centrally positioned
atom, shown on the left in Fig. 1, producing multiple 3D random
structures, the geometries of which are optimized and subsequently
ranked in order of equilibrium energy to identify the minima of the

FIG. 1. Distribution of atoms around a centrally positioned atom to produce ran-
domly generated (a) 3D, (b) 2D, and (c) 1D structures for subsequent geometry
optimization.

PES. If sufficient sampling is carried out, then the lowest energy can-
didate is likely to be the global minimum. In cases where many local
minima are accessible, this general approach may struggle to find
high symmetry structures (in particular, concerning relative align-
ment with the magnetic field) from randomly generated 3D starting
points. To address this, the approach was augmented such that addi-
tional 2D random structures were generated on disks in the plane
of and perpendicular to the magnetic field, shown in the center of
Fig. 1, while 1D random structures were generated along axes par-
allel and perpendicular to the magnetic field, shown on the right in
Fig. 1. This enabled linear and planar equilibrium structures with
a high-symmetry alignment relative to the field to be more easily
accessed. The generation of random initial structures with specific
symmetries is a feature of the original AIRSS package of Pickard
and Needs;51 for systems larger than those considered in the present
work, higher symmetry initial structures could be randomly gener-
ated with that approach and rotated to a particular orientation with
respect to the magnetic field.

III. RESULTS AND DISCUSSION
A. Computational details

In the following, the structures of Hen and CHn systems are
considered at a range of spin projections (described by their spin
quantum numbers Ms) and magnetic field strengths in the range
0–1.0B0, where B0 = 2.35 × 105 T is the atomic unit of magnetic field
strength. For all calculations, B is oriented along the z axis.

The AIRSS approach described in Sec. II C was utilized with 32,
48, and 12 randomly generated 3D, 2D, and 1D structures, respec-
tively, each with a minimum distance of 0.5 Å between atoms and
between 1.0 and 4.0 Å from the central atom. The structures were
first optimized at the HF/aug-cc-pVTZ level and ranked in order of
energy to determine which initial structures gave the lowest-energy
equilibrium geometry. Only the initial structures of that symmetry
were subsequently optimized with cTPSS/aug-cc-pVTZ; this pre-
screening approach was effective for managing the computational
cost. Throughout this work, basis sets are used in their uncontracted
form to provide greater flexibility to respond to the effects of the
magnetic field.

For all calculations, the optimization method employed was
a simple quasi-Newton approach with the Broyden–Fletcher–
Goldfarb–Shanno (BFGS) update.52–55 In all cases, optimization
was carried out in Cartesian coordinates.56–58 This simple choice
of coordinate system allows for the effects of the external field to
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be incorporated straightforwardly. The convergence criteria sug-
gested by Baker57 were applied throughout this work: the largest
element of the gradient and subsequent step <3 × 10−4 a.u., the root
mean square of the gradient and subsequent step <2 × 10−4 a.u., and
between iterations the change in energy <5 × 10−6 a.u.

The cTPSS functional was selected for use in this study as it has
been shown to yield high accuracy in strong magnetic fields com-
pared with ab initio wavefunction methods.12,59 For both families
of systems considered in this work, the calculations were con-
ducted using HF theory and CDFT with cTPSS. Only selected CDFT
results are presented here; the full results obtained with CDFT and
many obtained with HF theory for comparison can be found in the
supplementary material.

To reduce the computational cost, the resolution-of-the-
identity (RI) approximation was employed for the two-electron
integrals and derivative integrals; recent work utilizing the RI
approximation with LAOs has shown that it may be applied in a sim-
ilar way to its use with GAOs.4,60,61 This is particularly beneficial due
to the large number of calculations required by the AIRSS protocol.

A preliminary study of helium trimers (with Ms = 0) at field
strengths of 0.4B0 and 1.0B0 was used to identify a suitable orbital
and auxiliary basis set combination. Comparisons were made
between conventional (non-RI) calculations, those utilizing the RI
auxiliary basis sets of Ref. 62 (designed for calculations in the
absence of a magnetic field), and a more conservative one auto-
matically generated using the product space of the orbital basis
(AUTOAUX).63 The results are presented in Table I.

From the energies presented in Table I, it is clear that at both
field strengths, RI with the AUTOAUX basis yields energies closer to
the non-RI values for a given choice of orbital basis than RI with
the optimized-RI auxiliary basis. This result is expected since the
AUTOAUX basis is constructed to favor accuracy over efficiency and,
thus, contains more functions. Using the aug-cc-pVTZ orbital basis,
aug-cc-pVTZ-RI yields energies with mean errors of 76.3 μEh rel-
ative to the non-RI values, compared with mean errors of 5.8 μEh
using the AUTOAUX basis. Furthermore, at 0.4B0, the standard RI
basis predicts an incorrect energetic ordering of structures A and B;
however, the correct ordering is retained using AUTOAUX. There-
fore, RI with the aug-cc-pVTZ orbital basis and AUTOAUX auxiliary
basis is employed throughout the present work, yielding calculations

5–8 times faster than the non-RI equivalents with negligible loss of
accuracy.

B. Helium clusters in strong magnetic fields
At zero field, the ground-state of the helium atom has Ms = 0

with electronic configuration 1sαβ, while at a field strength of 1.0B0,
the ground-state becomes that with Ms = −1 and electronic configu-
ration 1sβ2pβ

−1 because of spin and orbital Zeeman interactions in
Eq. (1), which stabilize the Ms = −1 triplet component and 2p−1
orbital, respectively, in a magnetic field.

Using the AIRSS approach, geometries of the helium structures
were generated and subsequently optimized as outlined in Sec. III A.
The cTPSS results are discussed here; the HF results for both Hen
and CHn (discussed in Sec. III C) are presented in Secs. V and VI of
the supplementary material. While qualitatively similar to the cTPSS
results, their energies do not include any contribution from electron
correlation.

In many cases, particularly at lower field strengths, the
structures are only weakly bound and energy differences between
optimized structures are relatively small. Here, the procedural mod-
ifications to the random structure generation described in Sec. II C
were essential for accessing the minimum energy geometries. The
large number of solutions accessible for He5 can be seen in Fig. 2,
where for each Ms value, the lowest energy solution at each field
strength falls on the convex hull of all calculated energies of that spin
projection. Figure 2 demonstrates that structures with negative Ms
values decrease in energy due, at least in part, to the spin-Zeeman
effect, while the diamagnetic Ms = 0 systems increase in energy with
increasing field strength. The ground state at 1.0B0 has the most neg-
ative possible Ms value and adopts a planar structure perpendicular
to the field. The ground-state equilibrium geometries at each field
strength are shown in Fig. 3.

As the field strength increases from 0 to 1.0B0, there is an
increase in the dissociation energies of the He5 structures. The
different fragmentation pathways of the He5 systems have been
established from geometry optimizations carried out on smaller Hen
clusters, where all of the possible dissociation products and their
energies (shown in Secs. I and III of the supplementary material)
were considered. The lowest energy dissociation pathway for the

TABLE I. Convergence of the energy of the helium trimer (with Ms = 0) as a function of magnetic field strength for optimizations computed
using HF theory from two randomly generated AIRSS candidate structures (“A” and “B”). Magnetic fields of 0.4B0 and 1.0B0 along the z axis
were considered. Two standard orbital basis sets aug-cc-pVDZ64–66 and aug-cc-pVTZ64,65 are presented. Results with standard RI basis
sets62 (-RI suffix) are compared with those using the AUTOAUX basis and without the RI approximation.

∣B∣ = 0.4B0 ∣B∣ = 1.0B0

Orbital basis Auxiliary basis EA/Eh EB/Eh EA/Eh EB/Eh

aug-cc-pVDZ
aug-cc-pVDZ-RI −8.474 893 −8.474 926 −8.027 307 −8.009 060
AUTOAUX −8.473 639 −8.473 691 −8.025 935 −8.008 540
Non-RI −8.473 640 −8.473 693 −8.025 937 −8.008 668

aug-cc-pVTZ
aug-cc-pVTZ-RI −8.491 217 −8.491 221 −8.061 435 −8.041 717
AUTOAUX −8.491 142 −8.491 138 −8.061 345 −8.041 759
Non-RI −8.491 144 −8.491 138 −8.061 347 −8.041 778
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FIG. 2. A convex hull plot for He5 showing the optimized energies
obtained from random initial structures of He5 with Ms = 0,−1,−2,−3,−4,−5
with ∣B∣ = 0.0–1.0B0 at intervals of 0.2B0. The lowest energy structures of each
spin projection from ∣B∣ = 0.0–1.0B0 fall on the convex hull, shown by the dashed
dotted lines.

ground-state He5 clusters at each field strength is given in Table II in
which the notation He(Ms)

n is used. In all cases, He5 dissociates into
two fragments, each of which are in their ground-states.

The ground-state structures at ∣B∣ = 0 and ∣B∣ = 0.2B0 are 3D
He(0)5 clusters with C1 symmetry and, in the case of the ∣B∣ = 0.2B0
structure, with no particular alignment to the field. An increase in
the field strength to ∣B∣ = 0.4B0 causes the He(0)5 ground-state struc-
ture to align in a plane perpendicular to the direction of the applied

field as a result of the stronger magnetic interactions. In all of these
Ms = 0 cases, the lowest energy dissociation involves the removal of
a single helium atom.

At ∣B∣ = 0.6B0 with ground-state He(−1)
5 , the lowest energy dis-

sociation involves the loss of a He(0) atom to form He(−1)
4 , which

further dissociates through the loss of a second He(0) atom, resulting
in the clearly identifiable linear He(−1)

3 subsystem that can be seen in
Fig. 3 and is aligned parallel to the field.

Moving to ∣B∣ = 0.8B0, He(−3)
5 becomes the ground-state sys-

tem, containing two distinct He(−1)
2 subsystems aligned parallel to

the field. These dimers are remarkably stable in a strong mag-
netic field, having been investigated in detail by Austad et al.67 and
demonstrated by the dissociation energies for this structure given in
Table I(c) of the supplementary material. The stability of this
He(−1)

2 dimer rationalizes the dissociation of He(−3)
5 into a He(−1)

2

dimer and the He(−2)
3 system.

At a magnetic field strength of ∣B∣ = 1.0B0, He(−5)
5 is the ground-

state system and has the highest dissociation energy of any of the
ground-state systems, suggesting that systems can become more
strongly bound at higher field strengths. The shape of the He(−5)

5

cluster at ∣B∣ = 1.0B0 is very similar to the shape of He(0)5 at the same
field strength; however, the more negative spin-projection system is
much more strongly bound with a dissociation energy around ten
times greater than that of the closed-shell system. This builds on
the work by Tellgren et al.11 in which restricted HF theory was used
and higher spin states could not be accessed, but which found that
the closed shell He5 cluster was planar perpendicular to the field
and very weakly bound. Furthermore, the dissociation energy cal-
culated using DFT with the cTPSS functional is around 10% higher
than the same value calculated using HF theory, indicating the
importance of considering correlation effects in these studies. The
importance of electron correlation in paramagnetically bound
helium clusters was noted by Stopkowicz et al.,23 who com-
pared the binding energy of He3 calculated using HF theory and
coupled-cluster singles–doubles–perturbative-triples [CCSD(T)]
theory.

The current density induced by an external magnetic field has
been extensively used in explaining the electronic structure in a
magnetic field.68–71 The stability of the He(−5)

5 clusters at high field

FIG. 3. Ground-state structures for He5 at ∣B∣ = 0.0–1.0B0 in increments of 0.2B0 with the direction of the magnetic field relative to the molecular plane indicated by the
arrow.
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TABLE II. Lowest energy dissociation pathways and their associated energies for the ground-state He5 structures at
∣B∣ = 0.0–1.0B0 in increments of 0.2B0, calculated from the energies of the He5 clusters and the relevant smaller Hen

fragments obtained from the AIRSS analysis for these systems. The notation He(Ms)
n is used here.

∣B∣/B0 Ground state E/Eh Lowest energy dissociation ΔE (kJ mol−1)

0.0 He(0)5 −14.546 161 He(0)5 →He(0)4 +He(0) 0.34
0.2 He(0)5 −14.506 096 He(0)5 →He(0)4 +He(0) 0.42
0.4 He(0)5 −14.389 737 He(0)5 →He(0)4 +He(0) 1.23
0.6 He(−1)

5 −14.222 990 He(−1)
5 →He(−1)

4 +He(0) 8.84
0.8 He(−3)

5 −14.387 322 He(−3)
5 →He(−2)

3 +He(−1)
2 73.35

1.0 He(−5)
5 −14.773 498 He(−5)

5 →He(−4)
4 +He(−1) 136.03

strengths can be rationalized by considering the charge and current
densities of the equilibrium geometry relative to those of the isolated
atoms, plotted for He(0)5 and He(−5)

5 at ∣B∣ = 1.0B0 in the upper and
lower panels of Fig. 4, respectively. It can be seen that in He(−5)

5 ,
there is an accumulation of charge in the interatomic regions; the
local paratropic current flow indicates that this is caused by the mag-
netic field rather than conventional bonding, thus stabilizing the
structure. In contrast, there is very little build-up of electron den-
sity and no strong current between the atoms in He(0)5 , hence the
weakly bound nature of this low spin system.

C. CHn systems in strong magnetic fields
The AIRSS approach was also applied to CHn with 1 ≤ n ≤ 4.

An initial study was conducted following the same approach as
for Hen. However, in some cases, it was observed that the lowest-
energy structures with a given Ms at a particular field strength had
energies above the convex hull formed from the energies of the
lowest-energy structures with that Ms at the other field strengths.
This was particularly the case at low field strengths and indicated
that the ground-state equilibrium geometry had not been located.
Further sampling of initial structures with smaller internuclear dis-
tances yielded lower energy solutions, which fell on the convex hulls
formed by the lowest-energy structures for the given Ms at the other
field strengths, as shown in Fig. 5 for CH4. This highlights two
important aspects of the AIRSS approach— namely, that the volume
for sampling atomic positions must be chosen carefully and that the
convex hull analysis can help identify where additional sampling is
required to obtain the ground state.

The general trends observed for CHn closely follow those
observed with the helium clusters, where systems with more
negative spin projection become increasingly stabilized at higher
field strengths due to the spin-Zeeman effect. The CH(−4)

4 system
becomes the ground-state at higher field strengths, as presented in
the convex hull plot for this combination of atoms in Fig. 5. For the
CH4 system, the point at which the ground state switches to more
negative Ms occurs at a lower field strength and over a smaller field
range than it does for the He5 cluster. This happens since the energy
of the carbon atom becomes stabilized more quickly by the magnetic
field as a result of the occupation of the high angular momentum
3d−2 orbital, which is lowered in energy at high field strengths by the

FIG. 4. Charge density (contours) and current density (streamlines) plots for two
He5 systems at Ms = 0 (upper) and Ms = −5 (lower) compared to the respective
charge and current densities of the isolated atoms, considered in a magnetic field
of strength 1.0B0 aligned perpendicular to the plane of the atoms. The plots are
shown in the xy plane intersecting the atomic positions with the magnetic field
directed in the z-direction out of the plane.
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FIG. 5. A convex hull plot for CH4 showing the optimized energies obtained from
random initial structures of CH4 with Ms = 0, −1, −2, −3, −4 with ∣B∣ = 0.0–1.0B0
at intervals of 0.2B0. The lowest energy structures of each spin-projection from
∣B∣ = 0.0–1.0B0 form a convex hull, shown by the dashed dotted lines.

orbital paramagnetic terms in the molecular Hamiltonian in Eq. (1).
Indeed, the energy difference between the highest occupied α orbital
and the lowest unoccupied β orbital is lower in CH4 at zero field
than in He5 and closes more rapidly with field strength; thus, the
first α→ β transition becomes energetically favorable at a lower field
strength.

Overall, the CH4 system moves from a tetrahedral CH(0)4

molecule at zero field to a planar CH(−4)
4 molecule at higher field

strengths. However, the stability of the covalently bound CH(0)4
molecule at zero field introduces some differences in the behavior of
the dissociation energies between the CHn and Hen systems, which
are given along with the respective energies for the ground-state
systems at different field strengths in Table III. The corresponding
structures are illustrated in Fig. 6.

It is apparent that the most strongly bound structure with
respect to dissociation is the tetrahedral CH(0)4 molecule due to the
covalent bonding between the carbon and hydrogen atoms. How-
ever, the presence of an external magnetic field destabilizes the
diamagnetic CH(0)4 system with respect to its dissociation products
(these dissociation energies along with convex hull plots for these
species are given in Secs. II and IV of the supplementary material),
whereas the stability of the systems with Ms < 0 increases with field
strength. This causes the covalent bonds to break, and the more neg-
ative spin-projection ground-states adopt new conformations in a
plane perpendicular to the field.

At ∣B∣ = 0.2B0, the CH(−2)
4 system is the ground state. The low-

est energy dissociation pathway in this case is the removal of a single
weakly bound hydrogen atom, present at a considerable distance
from the rest of the CH(−2)

4 system, as can be seen in Fig. 6. Above
this field strength, the Ms = −4 system becomes the ground-state.

The geometries of CH(−4)
4 systems at ∣B∣ = 0.4B0, 0.6B0, and

0.8B0 are planar and perpendicular to the field. However, this pla-
nar configuration is lost at ∣B∣ = 1.0B0 with the C–H bonds no
longer being exactly perpendicular to the magnetic field. This is due
to electrostatic repulsion between the constituent atoms, rational-
ized by considering the mean C–H and H–H internuclear distances
for different high-field CH(−4)

4 systems, shown in Table IV. The
C–H and H–H internuclear distances both decrease with increasing
field strength as a result of favorable magnetic interactions between
hydrogen atoms as described in Ref. 3. However, as the atoms
approach each other more closely, electrostatic repulsion becomes
increasingly significant; the most energetically favorable arrange-
ment of these atoms ceases to be a planar configuration but instead is
the one in which the carbon atom becomes displaced from the plane
in order to preserve the more stabilizing paramagnetic interactions
between adjacent hydrogen atoms.

The bonding in these systems is analyzed through the use of
current density plots in Fig. 7 (analogous to those for He5 in Fig. 4)

TABLE III. Lowest energy dissociation pathways and their associated energies for the ground-state CH4 structures at
∣B∣ = 0.0–1.0B0 in increments of 0.2B0, calculated from the energies of the CH4 clusters and the relevant smaller CHn

and Hn fragments obtained from the AIRSS analysis for these systems. The notation CH(Ms)
n is used here.

∣B∣/B0 Ground state E/Eh Lowest energy dissociation ΔE (kJ mol−1)

0.0 CH(0)4 −40.541 554 CH(0)4 → CH(0)2 +H(0)2 546.71
0.2 CH(−2)

4 −40.522 488 CH(−2)
4 → CH(−3/2)

3 +H(−1/2) 0.34
0.4 CH(−4)

4 −40.991 056 CH(−4)
4 → CH(−7/2)

3 +H(−1/2) 5.23
0.6 CH(−4)

4 −41.550 562 CH(−4)
4 → CH(−7/2)

3 +H(−1/2) 31.95
0.8 CH(−4)

4 −42.105 474 CH(−4)
4 → CH(−7/2)

3 +H(−1/2) 41.94
1.0 CH(−4)

4 −42.605 768 CH(−4)
4 → CH(−7/2)

3 +H(−1/2) 49.29
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FIG. 6. Ground-state structures for CH4 at ∣B∣ = 0.0–1.0B0 in increments of 0.2B0 with the direction of the magnetic field relative to the molecular plane indicated by the
arrow (pointing into the plane of the image).

TABLE IV. Mean internuclear C–H and H–H distances in the CH(−4)
4 structure at

three magnetic field strengths.

∣B∣/B0 Mean C–H distance (Å) Mean H–H distance (Å)

0.6 2.46 1.87
0.8 2.14 1.59
1.0 1.95 1.41

FIG. 7. Electron density (contours) and current density (streamlines) plots for the
CH4 system with Ms = −4 compared to the respective electron and current densi-
ties of the isolated atoms, considered in a magnetic field of strength 0.8B0 aligned
perpendicular to the plane of the atoms. The plots are shown in the xy plane inter-
secting the atomic positions with the magnetic field directed in the z-direction out
of the plane.

for the CH(−4)
4 system at ∣B∣ = 0.8B0. The build-up of the electron

density between the hydrogen atoms confirms the presence of the
paramagnetic bonding regime, which is further supported by the
clockwise paratropic current density streamlines.

IV. CONCLUSION

In this work, the structures of Hen clusters and CHn systems in
strong magnetic fields have been investigated using a novel imple-
mentation for the evaluation of molecular gradients at the HF and
CDFT levels of theory in a basis of London atomic orbitals.4 Since
the strong magnetic fields can lead to exotic chemical behavior, a
modification of the AIRSS method45 was employed to optimize ran-
domly generated structures and locate the ground-state for these
systems. This modification can be applied in future studies on other
small molecules under similar extreme conditions.

As high-spin states are increasingly favored over low-spin states
in a magnetic field of increasing field strength, we observe the
usual reordering of electronic states driven primarily by the lin-
ear spin-Zeeman effect lowering the energy of high-spin states and
the quadratic diamagnetic effect raising the energy of the lower-
spin states with increasing field strength, as previously observed for
atoms—see, for example, Refs. 23 and 67. Remarkably, this convex
behavior is only observed if the geometrical structure of the sys-
tem is fully optimized at each field strength. As the spin-Zeeman
interaction breaks covalent bonds by promoting alpha electrons to
beta electrons, the system becomes stabilized by the perpendicu-
lar paramagnetic bonding mechanism,3 assuming a (near-)planar
configuration perpendicular to the field to maximize the effect of
paramagnetic bonding. At the highest field strengths considered, the
confining effects of the external field cause the inter-atomic distances
to shorten in CH(−4)

4 , and this leads to distortion away from a planar
structure as Coulomb interactions again become more significant
and have to be counterbalanced with the confinement due to the
field. This case exemplifies how the Coulomb interactions and those
with the external field interplay—leading to an exotic chemistry
under these conditions.

The current densities induced by the field were used to ratio-
nalize the bonding in He5 and CH4, revealing that paratropic cur-
rent densities in the interatomic regions cause an accumulation of
β-charge density, indicative of chemical bonding occurring due to
the external magnetic field and thus explaining why these high-spin
structures become more strongly bound at higher field strengths.

The predictions of molecular structures in strong magnetic
fields obtained with this approach could facilitate new insights into
the environments on the surface of magnetic white dwarf stars by
aiding in the interpretation of astrochemical spectra from these
bodies as computational modeling has previously led to the identifi-
cation of C–C and C–H bonds in these environments,72,73 and due
to the chemical composition of magnetic white dwarf stars, He and
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CHn clusters are likely candidates for any further molecules to be
identified.

SUPPLEMENTARY MATERIAL

See the supplementary material for convex hull plots and tables
of dissociation energies for He5 and CH4 computed with HF along
with the convex hull plots and tables of dissociation energies for their
possible dissociation fragments computed with HF and CDFT.

ACKNOWLEDGMENTS
We acknowledge financial support from the European Research

Council under H2020/ERC Consolidator Grant top DFT (Grant No.
772259). This work was partially supported by the Research Coun-
cil of Norway through its Centres of Excellence scheme (Project No.
262695). We are grateful for access to the University of Nottingham’s
Augusta HPC service. The authors are grateful to Professor
D. Sundholm and Dr. M. Dimitrova for insightful discussions on the
structure of molecular species in strong magnetic fields.

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

DATA AVAILABILITY

The data that support the findings of this study are available
within the article and its supplementary material.

REFERENCES
1R. H. Garstang, Rep. Prog. Phys. 40, 105 (1977).
2J. R. P. Angel, Astrophys. J. 216, 1 (1977).
3K. K. Lange, E. I. Tellgren, M. R. Hoffmann, and T. Helgaker, Science 337, 327
(2012).
4T. J. P. Irons, G. David, and A. M. Teale, J. Chem. Theory Comput. 17, 2166
(2021).
5E. I. Tellgren, A. Soncini, and T. Helgaker, J. Chem. Phys. 129, 154114 (2008).
6E. I. Tellgren, T. Helgaker, and A. Soncini, Phys. Chem. Chem. Phys. 11, 5489
(2009).
7G. Vignale and M. Rasolt, Phys. Rev. Lett. 59, 2360 (1987).
8G. Vignale and M. Rasolt, Phys. Rev. B 37, 10685 (1988).
9E. I. Tellgren, A. M. Teale, J. W. Furness, K. K. Lange, U. Ekström, and T.
Helgaker, J. Chem. Phys. 140, 034101 (2014).
10J. W. Furness, J. Verbeke, E. I. Tellgren, S. Stopkowicz, U. Ekström, T. Helgaker,
and A. M. Teale, J. Chem. Theory Comput. 11, 4169 (2015).
11E. I. Tellgren, S. S. Reine, and T. Helgaker, Phys. Chem. Chem. Phys. 14, 9492
(2012).
12QUEST, a rapid development platform for quantum electronic structure
techniques, quest.codes, 2017.
13T. J. P. Irons, J. W. Furness, M. S. Ryley, J. Zemen, T. Helgaker, and A. M. Teale,
J. Chem. Phys. 147, 134107 (2017).
14T. J. P. Irons, L. Spence, G. David, B. T. Speake, T. Helgaker, and A. M. Teale,
J. Phys. Chem. A 124, 1321 (2020).

15M. Wibowo, T. J. P. Irons, and A. M. Teale, J. Chem. Theory Comput. 17, 2137
(2021).
16G. D. Schmidt, J. Liebert, H. C. Harris, C. C. Dahn, and S. K. Leggett,
Astrophys. J. 512, 916 (1999).
17T. Vornanen, S. V. Berdyugina, A. V. Berdyugin, and V. Piirola, Astrophys. J.
720, L52 (2010).
18P. Dufour, J. Liebert, G. Fontaine, and N. Behara, Nature 450, 522 (2007).
19F. London, J. Phys. Radium 8, 397 (1937).
20R. Ditchfield, Mol. Phys. 27, 789 (1974).
21R. Ditchfield, J. Chem. Phys. 65, 3123 (1976).
22LONDON, a quantum chemistry program for plane–wave/GTO hybrid basis
sets and finite magnetic field calculations, londonprogram.org.
23S. Stopkowicz, J. Gauss, K. K. Lange, E. I. Tellgren, and T. Helgaker, J. Chem.
Phys. 143, 074110 (2015).
24BAGEL, brilliantly advanced general electronic-structure library, nubakery.org,
published under the GNU General Public License.
25D. B. Williams-Young, A. Petrone, S. Sun, T. F. Stetina, P. Lestrange, C. E.
Hoyer, D. R. Nascimento, L. Koulias, A. Wildman, J. Kasper, J. J. Goings, F. Ding,
A. E. DePrince, E. F. Valeev, and X. Li, Wiley Interdiscip. Rev.: Comput. Mol. Sci.
10, e1436 (2019).
26P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
27W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
28C. J. Grayce and R. A. Harris, Phys. Rev. A 50, 3089 (1994).
29F. R. Salsbury and R. A. Harris, J. Chem. Phys. 107, 7350 (1997).
30E. I. Tellgren, S. Kvaal, E. Sagvolden, U. Ekström, A. M. Teale, and T. Helgaker,
Phys. Rev. A 86, 062506 (2012).
31E. I. Tellgren, A. Laestadius, T. Helgaker, S. Kvaal, and A. M. Teale, J. Chem.
Phys. 148, 024101 (2018).
32S. Kvaal, A. Laestadius, E. Tellgren, and T. Helgaker, J. Phys. Chem. Lett. 12,
1421 (2021).
33E. H. Lieb, Int. J. Quantum Chem. 24, 243 (1983).
34S. Reimann, A. Borgoo, J. Austad, E. I. Tellgren, A. M. Teale, T. Helgaker, and
S. Stopkowicz, Mol. Phys. 117, 97 (2018).
35J. F. Dobson, J. Phys.: Condens. Matter 4, 7877 (1992).
36J. F. Dobson, J. Chem. Phys. 98, 8870 (1993).
37A. D. Becke, Can. J. Chem. 74, 995 (1996).
38J. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria, Phys. Rev. Lett. 91,
146401 (2003).
39J. Tao, Phys. Rev. B 71, 205107 (2005).
40J. E. Bates and F. Furche, J. Chem. Phys. 137, 164105 (2012).
41F. H. Stillinger, Phys. Rev. E 59, 48 (1999).
42M. R. Hoare and J. McInnes, Faraday Discuss. Chem. Soc. 61, 12 (1976).
43C. J. Tsai and K. D. Jordan, J. Phys. Chem. 97, 11227 (1993).
44J. P. K. Doye, M. A. Miller, and D. J. Wales, J. Chem. Phys. 111, 8417 (1999).
45C. J. Pickard and R. J. Needs, J. Phys.: Condens. Matter 23, 053201 (2011).
46C. J. Pickard and R. J. Needs, Phys. Rev. Lett. 97, 045504 (2006).
47C. J. Pickard and R. J. Needs, Nat. Phys. 3, 473 (2007).
48C. J. Pickard and R. J. Needs, Phys. Status Solidi B 246, 536 (2009).
49C. J. Pickard and R. J. Needs, J. Chem. Phys. 127, 244503 (2007).
50C. J. Pickard and R. J. Needs, J. Phys.: Condens. Matter 21, 452205 (2009).
51The AIRSS Package, airss-docs.github.io, 2022.
52C. G. Broyden, IMA J. Appl. Math. 6, 76 (1970).
53R. Fletcher, Comput. J. 13, 317 (1970).
54D. Goldfarb, Math. Comput. 24, 23 (1970).
55D. F. Shanno, Math. Comput. 24, 647 (1970).
56J. Baker, J. Comput. Chem. 13, 240 (1992).
57J. Baker, J. Comput. Chem. 14, 1085 (1993).
58J. Baker and D. Bergeron, J. Comput. Chem. 14, 1339 (1993).
59S. Sen and E. I. Tellgren, J. Chem. Theory Comput. 17, 1480 (2021).
60A. Pausch and W. Klopper, Mol. Phys. 118, e1736675 (2020).
61G. David, T. J. P. Irons, A. E. A. Fouda, J. W. Furness, and A. M. Teale, J. Chem.
Theory Comput. 17, 5492 (2021).
62F. Weigend, A. Köhn, and C. Hättig, J. Chem. Phys. 116, 3175 (2002).

J. Chem. Phys. 156, 204113 (2022); doi: 10.1063/5.0092520 156, 204113-9

© Author(s) 2022

https://scitation.org/journal/jcp
https://www.scitation.org/doi/suppl/10.1063/5.0092520
https://www.scitation.org/doi/suppl/10.1063/5.0092520
https://doi.org/10.1088/0034-4885/40/2/001
https://doi.org/10.1086/155436
https://doi.org/10.1126/science.1219703
https://doi.org/10.1021/acs.jctc.0c01297
https://doi.org/10.1063/1.2996525
https://doi.org/10.1039/b822262b
https://doi.org/10.1103/physrevlett.59.2360
https://doi.org/10.1103/physrevb.37.10685
https://doi.org/10.1063/1.4861427
https://doi.org/10.1021/acs.jctc.5b00535
https://doi.org/10.1039/c2cp40965h
https://doi.org/10.1063/1.4985883
https://doi.org/10.1021/acs.jpca.9b10833
https://doi.org/10.1021/acs.jctc.0c01269
https://doi.org/10.1086/306819
https://doi.org/10.1088/2041-8205/720/1/l52
https://doi.org/10.1038/nature06318
https://doi.org/10.1051/jphysrad:01937008010039700
https://doi.org/10.1080/00268977400100711
https://doi.org/10.1063/1.433526
http://londonprogram.org
https://doi.org/10.1063/1.4928056
https://doi.org/10.1063/1.4928056
http://nubakery.org
https://doi.org/10.1002/wcms.1436
https://doi.org/10.1103/physrev.136.b864
https://doi.org/10.1103/physrev.140.a1133
https://doi.org/10.1103/physreva.50.3089
https://doi.org/10.1063/1.475165
https://doi.org/10.1103/physreva.86.062506
https://doi.org/10.1063/1.5007300
https://doi.org/10.1063/1.5007300
https://doi.org/10.1021/acs.jpclett.0c03422
https://doi.org/10.1002/qua.560240302
https://doi.org/10.1080/00268976.2018.1495849
https://doi.org/10.1088/0953-8984/4/39/003
https://doi.org/10.1063/1.464444
https://doi.org/10.1139/v96-110
https://doi.org/10.1103/physrevlett.91.146401
https://doi.org/10.1103/physrevb.71.205107
https://doi.org/10.1063/1.4759080
https://doi.org/10.1103/physreve.59.48
https://doi.org/10.1039/dc9766100012
https://doi.org/10.1021/j100145a019
https://doi.org/10.1063/1.480217
https://doi.org/10.1088/0953-8984/23/5/053201
https://doi.org/10.1103/physrevlett.97.045504
https://doi.org/10.1038/nphys625
https://doi.org/10.1002/pssb.200880546
https://doi.org/10.1063/1.2812268
https://doi.org/10.1088/0953-8984/21/45/452205
https://doi.org/10.1093/imamat/6.1.76
https://doi.org/10.1093/comjnl/13.3.317
https://doi.org/10.1090/s0025-5718-1970-0258249-6
https://doi.org/10.1090/s0025-5718-1970-0274029-x
https://doi.org/10.1002/jcc.540130215
https://doi.org/10.1002/jcc.540140910
https://doi.org/10.1002/jcc.540141111
https://doi.org/10.1021/acs.jctc.0c01222
https://doi.org/10.1080/00268976.2020.1736675
https://doi.org/10.1021/acs.jctc.1c00236
https://doi.org/10.1021/acs.jctc.1c00236
https://doi.org/10.1063/1.1445115


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

63G. L. Stoychev, A. A. Auer, and F. Neese, J. Chem. Theory Comput. 13, 554
(2017).
64R. A. Kendall, T. H. Dunning, and R. J. Harrison, J. Chem. Phys. 96, 6796 (1992).
65D. E. Woon and T. H. Dunning, J. Chem. Phys. 98, 1358 (1993).
66T. H. Dunning, J. Chem. Phys. 90, 1007 (1989).
67J. Austad, A. Borgoo, E. I. Tellgren, and T. Helgaker, Phys. Chem. Chem. Phys.
22, 23502 (2020).
68R. D. Reynolds and T. Shiozaki, Phys. Chem. Chem. Phys. 17, 14280 (2015).

69H. Fliegl, S. Taubert, O. Lehtonen, and D. Sundholm, Phys. Chem. Chem. Phys.
13, 20500 (2011).
70D. Sundholm, H. Fliegl, and R. J. F. Berger, Wiley Interdiscip. Rev.: Comput.
Mol. Sci. 6, 639 (2016).
71I. Benkyi and D. Sundholm, J. Phys. Chem. A 123, 284 (2018).
72J. R. P. Angel and J. D. Landstreet, Astrophys. J. 191, 457 (1974).
73S. V. Berdyugina, A. V. Berdyugin, and V. Piirola, Phys. Rev. Lett. 99, 091101
(2007).

J. Chem. Phys. 156, 204113 (2022); doi: 10.1063/5.0092520 156, 204113-10

© Author(s) 2022

https://scitation.org/journal/jcp
https://doi.org/10.1021/acs.jctc.6b01041
https://doi.org/10.1063/1.462569
https://doi.org/10.1063/1.464303
https://doi.org/10.1063/1.456153
https://doi.org/10.1039/d0cp03259j
https://doi.org/10.1039/c4cp04027a
https://doi.org/10.1039/c1cp21812c
https://doi.org/10.1002/wcms.1270
https://doi.org/10.1002/wcms.1270
https://doi.org/10.1021/acs.jpca.8b10818
https://doi.org/10.1086/152984
https://doi.org/10.1103/physrevlett.99.091101

