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Dromedaries have been fundamental to the development of human
societies in arid landscapes and for long-distance trade across hostile
hot terrains for 3,000 y. Today they continue to be an important
livestock resource in marginal agro-ecological zones. However, the
history of dromedary domestication and the influence of ancient
trading networks on their genetic structure have remained elusive.
We combined ancient DNA sequences of wild and early-domesticated
dromedary samples from arid regions with nuclear microsatellite and
mitochondrial genotype information from 1,083 extant animals col-
lected across the species’ range. We observe little phylogeographic
signal in the modern population, indicative of extensive gene flow
and virtually affecting all regions except East Africa, where drome-
dary populations have remained relatively isolated. In agreement
with archaeological findings, we identify wild dromedaries from
the southeast Arabian Peninsula among the founders of the domes-
tic dromedary gene pool. Approximate Bayesian computations fur-
ther support the “restocking from the wild” hypothesis, with an
initial domestication followed by introgression from individuals
from wild, now-extinct populations. Compared with other livestock,
which show a long history of gene flow with their wild ancestors,
we find a high initial diversity relative to the native distribution of
the wild ancestor on the Arabian Peninsula and to the brief coexis-
tence of early-domesticated and wild individuals. This study also
demonstrates the potential to retrieve ancient DNA sequences from
osseous remains excavated in hot and dry desert environments.

anthropogenic admixture | Camelus dromedarius | demographic history |
paleogenetics | wild dromedary

The dromedary (Camelus dromedarius) is one of the largest
domestic ungulates and one of the most recent additions to

livestock. Known as the “ship of the desert” (1), it enabled the
transportation of people and valuable goods (e.g., salt, incense,
spices) over long distances connecting Arabia, the Near East, and
North Africa. This multipurpose animal has outperformed all other
domestic mammals, including the donkey, in arid environments
and continues to provide basic commodities to millions of people

inhabiting marginal agro-ecological zones. In the current context
of advancing desertification and global climate change, there is
renewed interest in the biology and production traits of the species
(2), with the first annotated genome drafts having been recently
released (3, 4).

Significance

The dromedary is one of the largest domesticates, sustainably
used in arid and hostile environments. It provides food and
transport to millions of people in marginal agricultural areas.
We show how important long-distance and back-and-forth
movements in ancient caravan routes shaped the species’ genetic
diversity. Using a global sample set and ancient mitochondrial
DNA analyses, we describe the population structure in modern
dromedaries and their wild extinct ancestors. Phylogenetic
analyses of ancient andmodern dromedaries suggest a history of
restocking from wild animals from the southeast coast of the
Arabian Peninsula. Dromedaries now extend the list of species
for which classic models of domestication from a single center
and from wild conspecific individuals in isolation are rejected.
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In contrast to other livestock species, the evolutionary his-
tory and domestication of Old World camelids (Camelini) have
remained largely unexplored because of the scarcity of camel bone
assemblages from well-dated archaeological contexts (5). Following
the Pleistocene, the wild dromedary retreated to ecologically fa-
vored areas (i.e., mangrove habitats) on the Arabian Peninsula (6),
a rather small geographic region compared with the native distri-
butions of the wild ancestors of other domesticates (SI Appendix).
The domestication of the dromedary likely happened in the late
second millennium BCE as deduced from: (i) diachronic osteo-
metric analysis illustrating a significant decrease in bone size in
remains dating to the very end of the second or beginning of the
first millennium BCE (ca. 1,100–800 BCE) (7–12); (ii) changes in
the cultural context, i.e., increased representation of dromedary
bones in settlement refuse vs. large concentrations in sites without
architecture, e.g., site of Al-Sufouh, United Arab Emirates (UAE);
and (iii) figurines and representations of indubitably domesticated
dromedaries (13). Based on the available zooarchaeological re-
cords, it is assumed that the wild one-humped camel did not sur-
vive the start of the CE (8, 9, 12, 14), in contrast to the wild
ancestors of most other livestock species (15, 16). Small numbers of
domesticated dromedaries likely arrived in Mesopotamia by the
second quarter of the first millennium BCE, but there, as well as in
northeast Africa, larger herds appeared only during Late Antiquity
and/or early medieval times (fourth to seventh centuries CE) (1, 11,
17). If its use as “camelry” in warfare was minor compared with the
horse (1), the dromedary was readily adopted as beast of burden
and continued fulfilling this role well into the 20th century CE in
caravans sometimes encompassing thousands of animals (18, 19).
In the present study, we address the questions of domestication

and demographic history of the dromedary across its geographic
range, combining information from ancient DNA Sanger and next-
generation sequencing data of wild and early-domestic dromedary
osseous remains with modern nuclear (microsatellites) and mito-
chondrial genetic diversity. Our results show that the domestication
process and the current diversity of the species were shaped by early
introgression from the wild as well as by human-mediated factors.

Results and Discussion
Little Population Structure in Modern Dromedaries, a Consequence of
Cross-Continental Back-and-Forth Movements. By examining mod-
ern genetic diversity and its global distribution, it is possible to
gain insight into the domestication process, because, in the ab-
sence of recurrent introgression, populations close to the puta-
tive domestication centers are assumed to retain higher levels of
ancestral polymorphism (20). Such distribution of genetic di-
versity has been suggested to explain the frequently observed
negative correlation between genetic diversity and the geo-
graphic distance from the place of origin in numerous livestock
species (20–25). In the case of the dromedary, before the intro-
duction of the domestic form, there had been no representatives
of Camelus on the African continent since the Late Pleistocene,
and the Holocene native distribution of wild dromedaries seems
to have been restricted to the Arabian Peninsula (6, 7). Modern
dromedary populations from the Arabian Peninsula therefore
were expected to display the highest level of genetic diversity and
variation. To test this expectation, we combined two comprehen-
sive datasets encompassing 759 mitochondrial (867 bp; end of
cytochrome B, tRNAs threonine and proline, beginning of con-
trol region; MT-CR) and 970 multiloci (17 autosomal micro-
satellites) genotypes, covering five defined geographical regions
(26): Eastern Africa (EAF, n = 170), Western and Northern
Africa (WNAF, n = 233), North Arabian Peninsula (NAP, n =
349), South Arabian Peninsula (SAP, n = 181), and Southern
Asia including Australia (SAS, n = 150) (Dataset S1).
Shared genetic diversity and population structure in modern dromedaries.
In contrast to the hypothesis that the greatest ancestral variation
is retained close to the area of domestication (20), we observed
similar amounts of heterozygosity (HE: 0.58–0.63) and allelic rich-
ness (Ar: 4.88–6.47) among the different populations (Bonferroni
corrected Wilcoxon rank-sum test; P > 0.05) (SI Appendix, Table

S1). This finding precluded any conclusion about the existence of
an ancestral population or a geographic center of dispersion (for
comparisons with other camelids, see SI Appendix). Shared diversity
also was revealed by the analysis of molecular variance with 95.7%
(nuclear) and 95.3% (mtDNA) of the variation distributed within
populations. Hence, we investigated genetic population structure in
modern dromedaries disregarding their geographic origins. Mito-
chondrial median-joining network (MJN) analysis (27) split the 76
haplotypes into two haplogroups, HA and HB, containing six major
haplotypes (HA: A1 and A2; HB: B1–4) (Fig. 1B). This partition
was supported by Bayesian phylogenetic analysis [posterior prob-
ability (PP) = 0.98] (SI Appendix, Fig. S1). No phylogeographic
pattern was detectable, because the six major haplotypes were
observed across the global range of the species (Fig. 1A). In contrast,
with the nuclear structure analysis we retrieved an optimal number
of two ancestral populations (SI Appendix, Fig. S2A), clearly sepa-
rating EAF dromedaries from all other populations (Fig. 2). This
separation also is reflected in the 3D factorial correspondence
analysis (SI Appendix, Fig. S3) and in the limited population dif-
ferentiation (nuclear FST = 0.013–0.070) (SI Appendix, Table S2), a
plausible consequence of the intense back-and-forth movements that
characterized the use of dromedaries in cross-continental trading.
Genetic distinctiveness of East African dromedaries. Modern EAF
dromedaries exhibit the lowest nuclear (HE = 0.58, Ar = 4.48) but the
highest mtDNA (Hd = 0.79, θπ = 3.62) diversity of all populations (SI
Appendix, Table S1). These elevated values could, in principle, be
explained by a large proportion of ancestral diversity in the mtDNA
or by a cryptic population structure not accounted for in the analysis
(28). Although 85% of the investigated haplotypes belonged to HB,
dromedaries in Eastern Africa exhibited a more balanced ratio be-
tween HA (38%) and HB (62%) (Fig. 1A). These results may be
interpreted as the consequence of a random founder effect followed
by successive gene flow with a restricted number of sires. Global-
ization of genetic diversity might not have affected the EAF as much
as other populations, likely because of its isolation from the northern
part of the continent by eco-geographical obstacles (e.g., the Ethio-
pian Plateau and the swamps of the Sudd), physiological constraints
(humidity, food plants, lack of salt, disease) and, perhaps most im-
portantly, cultural barriers (SI Appendix, Fig. S4).
Subtle population structure within the SAP. To investigate subtle
population structure that might have been masked by the high
distinctiveness of EAF, we excluded the latter from structure
analysis and observed nine independent clusters (Fig. 2 and SI
Appendix, Fig. S2B). Despite substantial admixture, two dromedary
populations (Awarik and Awadi; Dataset S1) from an isolated
mountainous region in southwestern Saudi Arabia segregated.
Dromedaries from Oman and UAE separated from the cluster
containing Southern Asian individuals, whereas WNAF and NAP
populations shared common ancestry and genetic diversity. Within
the latter only the Hadana breed (Dataset S1) appeared to have a
contrasting genetic makeup (Fig. 2).
Introduction of Arabian dromedaries into Africa. The absence of ge-
netic structure between WNAF and NAP (ϕST = 0.006; P <
0.001; FST = −0.002; P > 0.05) points to an extensive exchange of
dromedaries introduced into northeastern Africa from the Ara-
bian Peninsula via the Sinai (SI Appendix, Fig. S4), possibly
starting in the early first millennium BCE and intensifying in the
Ptolemaic period (1, 17). From here, dromedaries spread across
northern Africa, but their adoption into local economies may
have been slow, considering that the first unequivocal evidence
for their presence in northwestern Africa comes from archaeo-
logical layers dating to the fourth to the seventh century CE
(Late Antiquity/Early Middle Ages) (SI Appendix). Although
WNAF-NAP showed close cross-continental affinities with
Southern Arabian and Asian dromedaries, the two African pop-
ulations were genetically the most distant (EAF/WNAF-NAP ϕST =
0.164; FST = 0.040; P < 0.001), in contrast with their geographical
proximity. The lowest pairwise genetic distances for Eastern African
dromedaries were actually measured with the SAP populations (SI
Appendix, Table S2), suggesting a few possible routes for domestic
dromedaries to be introduced to Eastern Africa. These involve the
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transfer from the Arabian Peninsula by boat either directly across
the Gulf of Aden or further north across the Red Sea to Egypt and
then traveling south along the western coast of the Red Sea to
northwestern Sudan, Eritrea, and Ethiopia (SI Appendix, Fig. S4). A
seaborne introduction appears likely, because there is increasing
evidence that the southern Arabian Peninsula played an important
role in domestication [e.g., African wild ass (29)] and in the transfer
of crops and livestock [e.g., zebu cattle, fat-tailed sheep (30, 31)]
between South Asia and the African continent. Additional evidence
for a separate introduction might come from socio-ethological ob-
servations; today’s Eastern African dromedaries are used largely for
milk production rather than for riding and transportation, and this
use could be rooted in practices associated with the early stage of
dromedary husbandry in the southern Arabian Peninsula (1, 7).
Representation of the global genetic diversity in Australian dromedaries.
An interesting observation concerns the genetic makeup of the
Australian population. Although animals were imported from a
single geographic area (northwest of the Indian subcontinent)
between the 1860s and 1920s (2, 32), domestic and feral Aus-
tralian dromedaries possess all mtDNA haplogroups observed in
the global population (Fig. 1A) and nuclear diversity similar to that
of the global population (Fig. 2 and SI Appendix, Table S3). This
diversity mirrors the extensive admixture in the dromedary pop-
ulation of the Old World through historical cross-continental ex-
changes that was already attained by the middle of the 19th century.

Domestication of Dromedaries and Restocking from the Wild in the
Southeast Coast of the Arabian Peninsula.
Ancient mitochondrial haplotypes in early-domestic and wild (extinct)
dromedaries. In absence of phylogeographic signals supporting the
hypothesis of ancestral populations, we investigated the historic ge-
netic repartition before the intensive gene flow induced by large-scale
back-and-forth movements. Because poor DNA preservation in arid
regions poses significant technical challenges (33), there are only a few
findings from hot areas, where ancient DNA (aDNA) contributed
significantly to the understanding of prehistoric events (34–37). In this
study, we retrieved aDNA from up to 7,000-y-old wild dromedary
specimens originating from archaeological contexts in the Arabian
desert (SI Appendix, Table S4). We successfully amplified 531-bp
mtDNA using 10 overlapping primer pairs (SI Appendix, Table S5)
from eight wild dromedary bones from the sites Al-Sufouh (AS), Tell
Abraq (TA), Umm-an-Nar (UN), and Al-Buhais (AB) in the UAE
and from seven early-domesticated dromedary specimens excavated
in Apamea (AP; Syria), Aqaba (AQ; Jordan), Sagalassos (SG;
Turkey), and Tulln (TU; Austria) (Fig. 1A). No novel mitochondrial
haplotypes were retrieved in the early-domesticated individuals, be-
cause six of them (AQ30, AQ34, AQ40, SG1, SG2, and TU)
exhibited MT-CR sequences identical to those of the modern
dromedaries belonging to the frequent haplotype B1 (Fig. 1C). Only
the Syrian specimen was characteristic of the rare haplotype A1
(AP2) (Fig. 1C). This finding implies that both haplogroups (HA and
HB) were already present in the Levantine herds of the fourth to
seventh century CE. Different estimates of the time to the most
recent common ancestor (TMRCA) of HA and HB [>5,700 y ago
(ya)] (SI Appendix, Table S6) predate the assumed period of do-
mestication during the end of the second or beginning of the first
millennium BCE (7, 8, 12, 14), suggesting that at least two, but more
likely a minimum of six wild maternal lineages were captured during
the process of domestication. The eight ancient wild dromedary
samples from four different locations in the UAE presented at least
six different mitochondrial haplotypes (Fig. 1C) with a diversity of
θπ = 1.643 andHd = 0.929 (SI Appendix, Table S1). At least three of
these remains (AS1, AB620, and TA618) shared their respective
haplotypes with modern dromedaries belonging to haplogroup HB.
The last three retrieved haplotypes were unique to wild camels
(AS13 with AS36, AS34, TA623) and occupied an intermediate
position between the modern haplogroups HA and HB (Fig. 1C; see
SI Appendix for UN624).
Wild dromedaries from the southeast coast of the Arabian Peninsula
contribute to the domestic gene pool. The sharing of MT-CR se-
quences characteristic of HB haplotypes between wild and modern

A

B

C

Fig. 1. Representation of the mitochondrial haplotypes retrieved from 759
modern dromedaries and 15 archaeological specimens. (A) Geographical distri-
bution of the modern haplogroups across the species range (delimited by orange
dashed line). Pie charts are proportional to sample sizes of the five distinctive
regions (Dataset S1). Haplogroups were defined according to Bayesian analysis of
population structure (BAPS) clustering (SI Appendix). The proportion of singletons
diverging from B1 by one or two mutations (seventh cluster) is depicted by the
dotted line within B1 (white). The chart in the upper right corner represents
haplogroups retrieved from Southern Asian (SAS*; n= 87) and Australian (AU; n=
38) dromedaries. Stars depict locations of the archaeological sites: SG, Sagalassos,
Turkey (Early Byzantine, 450–700 CE); TU, Tulln, Austria (second Ottoman–Habs-
burg war, ca. 1683 CE); AP, Apamea, Syria (Early Byzantine, 400–600 CE); AQ,
Aqaba, Jordan (Mamluk and Ottoman periods, 1260–1870 CE). The Inset in the
lower right corner shows sites in the UAE: AB, Al-Buhais (5000–4000 BCE); AS, Al-
Sufouh (ca. 2400–1400 BCE); TA, Tell Abraq (Late Bronze–Iron Age, 1260–500 BCE);
UN, Umm-an-Nar (Early Bronze Age, 3000–2000 BCE). (B) MJN displaying 76
haplotypes grouped into two maternal lineages, HA (A1 and A2) and HB (B1–4).
Haplotypes diverging from A1 and A2 and from B1–4 are colored according to
BAPS clustering (SI Appendix). Circles are proportional to the sample size. Small
diamonds represent median vectors corresponding to missing haplotypes or ho-
moplasies. (C) Parsimonious representation of the occurrence and sharing of mi-
tochondrial haplotypes (531 bp) between modern (light gray) and ancient (dark
red) samples. Wild dromedary samples are marked with a dagger (†). Taxonomic
determinations of ancient specimens are detailed in SI Appendix. Umm-an-Nar’s
sample (UN624) was represented assuming the most frequent nucleotide
(nt15486: G). In the case of the alternative allele (nt15486: A), UN624 shared its
haplotype with the specimen from Tell Abraq (TA623) (SI Appendix). For both
networks, consensus network of all shortest trees is shown; branch lengths are
proportional to number of mutations.
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dromedaries from the same geographical region (today’s UAE)
illustrates the contribution of ancient relatives of these wild
dromedary populations to the modern domestic gene pool. Al-
though the wild specimens in our sample set come from a limited
geographical distribution, large prehistoric faunal assemblages
from sites dating from 5000–500 BCE in other parts of the
Arabian Peninsula, such as coastal Yemen (38), have not yielded
wild dromedary remains so far, indicating that at the time people
started domesticating dromedaries, the native distribution of the
wild ancestor of the one-humped camel already may have been
limited to the Arabian southeast coast. This finding, together
with the low frequency of HA in modern dromedaries, suggests
that the A-haplotypes were already present in lower frequency in
the ancestral wild dromedary population, or, alternatively, were
restricted to regions where there has been less intense archae-
ological research and/or poor faunal preservation.

Dynamics of Dromedary Domestication.
Population expansion in the context of domestication. In the context of
domestication, molecular signals of sudden expansion are of-
ten interpreted as population growth or diffusion of domesti-
cates across a wider geographic range (39). From the mtDNA,
we obtained negative values of Tajima’s D (−1.735; P = 0.021)
and Fu’s FS (−87.48; P < 10−5), which, in the absence of se-
lection, indicate past demographic expansion. In the MJN
analysis, we distinguished two haplogroups harboring six hap-
lotypes at high frequencies, from which singletons radiate
differing by one or two mutations (Fig. 1B). We could not
reject the hypothesis that the pairwise differences between
sequences of A1 and A2 and B1–4 and their respective “de-
rived” haplotypes were distributed according to a Poisson
distribution, which indicates sudden expansion (40) and pro-
vides support for multiple contributions of ancestral female
lineages to the current gene pool of modern dromedaries (SI
Appendix). The Bayesian Skyline Plot (BSP) obtained from
modern and early-domesticated maternal sequences (448 bp)
shows a rise of the domestic Ne, around 600 ya [95% highest pos-
terior density (HPD): 300–1,000 ya] (Fig. 3). This finding coincides
with the Arab expansion in general and with the rise of the Ottoman
Empire, the conquest of Constantinople (1453 CE), and of South-
ern Asia, including the Red Sea coasts, in the following century
(41). Once Medina and Mecca had become part of the Empire (in
the early 16th century CE), dromedaries were widely used for long-
distance trade along the ancient Incense Route and for pilgrim
transport (42) (SI Appendix, Fig. S4). There is tentative evidence
that trade between southwest and southeast Arabia began as early
as the first centuries of the first millennium BCE. This exchange was
almost certainly camel-borne (13).
Approximate Bayesian computation inferences of domestication scenarios.
Four scenarios can potentially explain the patterns of genetic
diversity recorded in modern dromedaries: at the time of
domestication, the initial gene pool was captured from: (i) one
unique and diverse wild dromedary population; (ii) a primary

small population of domesticates, with subsequent introgression
of wild lineages into the early-domesticated gene pool; (iii) two
independent source populations, each represented by one of the
two observed ancestral lineages; or (iv) two source populations at
successive time periods. Using approximate Bayesian computa-
tion (ABC) algorithms (43) on a combined mitochondrial and
microsatellite dataset (n = 642), we simulated these four dif-
ferent scenarios (SI Appendix, Fig. S6). We obtained realistic PPs
for up to 11 historic and demographic parameters (SI Appendix,
Fig. S7), with the exception of the first scenario, for which the Ne
of “Pop 2” was larger than 108 individuals and could not be re-
duced to a biologically meaningful value, and the time of di-
vergence between populations was around 50 ya (generation
time of 5 y). Thus, the remaining scenarios were compared to
assess the one that best fit the data. The highest PP and Bayes
Factor (BF) (SI Appendix, Tables S7 and S8) were obtained for
the second scenario involving one domestication mode with in-
trogression from a wild unsampled source population. In all
pairwise comparisons the second scenario had a higher proba-
bility, with the BF ranging from ∼63 to ∼1023. The remaining
comparisons had substantially smaller BF values, mostly lower
than 1 (SI Appendix, Table S8). This endorsement of the second
scenario mirrors recent studies in pigs and other livestock in
which a model incorporating continuous gene flow between a wild
and a domestic species was better supported than traditional
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Fig. 2. Individual assignment (structure) plots of 970 (global dataset) and 810 dromedaries (excluding EAF) for a theoretical number of ancestral genetic
populations (K) set at 2 and 9, respectively. Optimal clustering solution determined with DeltaK is reported in SI Appendix, Fig. S2. Sample sizes of the
distinctive regions and countries are presented in SI Appendix, Table S1 and Dataset S1.

Fig. 3. BSP derived from the alignment of 759 modern with seven early-
domesticated dromedary MT-CR sequences. The thick solid line depicts the
median estimate of Ne, with black thin lines delimiting the 95% HPD. We
used the archaeological dating of the wild and early-domesticated drome-
dary samples (SI Appendix, Table S4) to estimate the substitution rate μ =
1.232 × 10−06 substitution·site−1·y−1 (95% HPD: 4.435 × 10−07, 2.213 × 10−06).
LA, Late Antiquity; MA, Middle Ages.
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hypotheses assuming reproductive isolation (15, 16). Because wild
and early-domesticated dromedaries coexisted in the Arabian
Peninsula for only a short time [probably less than 2,000 y (8)], the
period of potential gene flow was rather short compared those for
cattle (16), pigs (15), or horses (25, 44, 45). This short period for
potential gene flow, together with the possible existence of geno-
mic islands of domestication, as recently proposed in pigs (15),
likely explains the maintenance of the domestic phenotype in
dromedaries. However, in the absence of complete genomes from
wild dromedaries, this question requires further investigation.
Regarding the later introgression of an unsampled wild gene

pool, the poor knowledge of the Holocene distribution of wild
one-humped camels on the Arabian Peninsula is a limiting factor.
Concentrations of bones indicative of larger camel herds have been
found only in Neolithic to Bronze Age contexts on the eastern coast
of the Arabian Peninsula (8, 14, 46, 47). The presence of pre-Iron
Age camel remains in the Southern Levant has been controversial,
because these specimens were considered to be intrusive to the
archaeological context or unreliably 14C-dated (9, 48).
Population bottlenecks predating domestication. Using coalescent
simulations based on microsatellite diversity (MSVAR 1.3) in
modern dromedaries, we captured several signals of severe
bottlenecks (Ne reductions up to 65-fold) predating domestica-
tion (∼8,600 ya in EAF; ∼5,100 ya in the other populations) (SI
Appendix, Fig. S8 and Table S9). The genetic distinctiveness of
the EAF population, which could be a consequence of a random
founder effect, might explain the precocity of its Ne decline. The
drastic population reduction observed across all populations
possibly relates to abrupt worldwide climate events, which triggered
a general cooling and drying of the northern hemisphere, causing
region-wide crop failures and the collapse of several civilizations
(49–55). By the time cultural control over the wild dromedary was
initiated, its native population and distribution may already have
become diminished (SI Appendix, Fig. S5) and increasingly dis-
jointed before the global extinction of the wild populations less than
two millennia after the appearance of the domestic form (8, 14).
Given the environmental context in which the wild dromedary

would have evolved, it can be assumed that its native distribution
and population size were generally quite restricted compared with
the ancestral ranges of other livestock species before domestica-
tion. As suggested by the environmental context of the archaeo-
logical findings, the wild ancestors of C. dromedarius spent part of
their lives foraging in coastal habitats including mangroves (6). Salt
is crucial to the health of camels (47, 56), and feeding in coastal
habitats might have offered possibilities to enhance salt intake
because of sea spray and the presence of halophyte vegetation.
Because in prehistoric times mangroves may have occurred on the
coastal southern Arabian Peninsula, the possibility that this region
also sustained a wild dromedary population cannot be excluded.
However, elevated sea levels and the lack of (zoo)archaeological
investigations in the southern Arabian Peninsula may explain why
genetic screening of the ancestral diversity remains incomplete.

Conclusion
The dromedary’s fundamental role in the tradition of cross-
continental caravan networks gave rise to an intense sharing of
genetic variation, blurring genetic signals about ancestral di-
versity and possible center of domestication. Nevertheless, using
a large modern DNA dataset in combination with a number of
ancient sequences, we were able to support a scenario with an
initial domestication followed by consecutive introgression from
wild populations echoing findings from other species (57), such
as horses (25, 44, 45), cattle (16), and pigs (15). Interestingly, in
dromedaries, this restocking occurred from an unsourced wild
“ghost” population, a pattern thus far observed in only few other
domestic species (e.g., pigs and dogs). A remarkable feature in
the history of dromedary domestication is the substantial genetic
diversity of the domestic population, given the temporally and
geographically restricted coexistence of early-domestic animals
and their wild ancestors, which already were heading to extinction
when the domestic form emerged. Modern dromedary populations

largely maintained and consolidated this ancestral diversity, often
lost in other livestock, underlining their potential to adapt sus-
tainably to future challenges of desertification and climate change.

Materials and Methods
Modern and Ancestral Genetic Diversity. Hair, blood, and saliva samples were
collected commensally during routine veterinary treatments, and all owners
agreed to the analysis; no further specific permissions were required from the
Ethics Committee of the Vetmeduni Vienna for this study. To infer the genetic
diversity, population structure, and differentiation of the modern and ancient
dromedary populations, we performed genetic analyses on a total of 1,083
modern dromedaries originating from 21 countries, seven early-domesticated
(400–1870 CE) specimens, and eight wild dromedary specimens (5000–1000
BCE) (Fig. 1A). Wild dromedaries were classified based on the archaeological
context (SI Appendix) and morphological differentiation (12). Detailed in-
formation about samples is given in Dataset S1; collection, wet-laboratory, and
in silico procedures are given in SI Appendix, Table S4.

Population Genetics and Demographic Analysis. Genetic diversity estimators,
genetic distances on the nuclear and mitochondrial data, and neutrality tests
(mtDNA) are detailed in SI Appendix. Test of the goodness of fit for the
Poisson distribution to the pairwise differences between the haplotypes and
minimal mitochondrial diversity in the initial pool of domesticated camels (SI
Appendix) followed Luikart et al. (58). Historical population demographic
dynamics were assessed using the 448-bp MT-CR alignment from modern,
early-domesticated, and wild samples. The birth–death skyline plot serial
model (59) was implemented in BEAST 2.2.0 (60), accounting for serial
samples taken at different time points (SI Appendix, Table S4). The resulting
substitution rate was used to compute BSPs for domestic and wild drome-
daries separately (SI Appendix). Coalescent simulations based on micro-
satellite diversity were implemented in MSVAR 1.3 (61, 62). The model
assumes a single stable ancestral population N1 at some time t1 ago that
experienced a demographic change (bottleneck or expansion) starting at
time t and changed exponentially in size to the current population N0. We
simulated two different demographic scenarios by choosing (i) larger prior
lognormal distribution values for N0 than for N1 (expansion) and (ii) vice
versa (a bottleneck). In the absence of a species-specific microsatellite mu-
tation rate in camels, we chose an average mammalian microsatellite mu-
tation rate (63) of 10−4 (rate variation: 10−3–10−5) (SI Appendix).

ABC Inferences of Four Alternative Domestication Scenarios. To test the hy-
potheses of one independent or multiple domestication scenarios vs. restocking
from the wild, we used ABCtoolbox (43) on the combined (n = 642) mito-
chondrial and microsatellite dataset. For each of the four scenarios (SI Appen-
dix, Fig. S6) we simulated a large number of datasets (1,000,000) using
Fastsimcoal2 (64) under the coalescent model drawing parameter values from
prior distribution ranges (SI Appendix, Table S10). We tested a maximum of 11
historical parameters and generated 15 summary statistics for each simulation
in Arlequin3.5 (65) (SI Appendix, Table S11). Summary statistics with highest
pairwise correlations (R correlation test with Spearman’s rho statistics; SI Ap-
pendix, Fig. S9) were removed, resulting in 12 summary statistics for further
analysis. With the 5,000 simulations closest to the observed dataset, we eval-
uated model differentiation with the R package abc (66) (SI Appendix, Fig. S10)
and assessed model fit with the ABC-GLM postsampling adjustment step built
into ABCtoolbox (43, 67) to calculate marginal densities and probability of each
scenario. Marginal distributions of each scenario were used to calculate PPs and
BF for each pairwise comparison between scenarios; the alternative hypothesis
can be rejected if the BF between two scenarios is greater than three (43, 68).
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SUPPLEMENTARY INFORMATION 1 

Sample collection and geographical distribution  2 

In this study, we sampled 1,083 modern dromedaries from 21 countries across the species 3 

range (Dataset1). Sampling covered five defined geographical regions (1), namely: Eastern 4 

Africa (EAF; n = 170), Western and Northern Africa (WNAF; n = 233), North Arabian 5 

Peninsula (NAP; n = 349), South Arabian Peninsula (SAP; n = 181), and Southern Asia (SAS; 6 

n=150). From the 1860s until the 1920s about 20,000 camels were imported to Australia from 7 

northwest regions of the Indian subcontinent (2, 3). For this reason, and as confirmed by our 8 

population genetic structure and phylogenetic analyses (Figs. 2 and S3), we included 9 

Australian dromedaries into the Southern Asian population. In parallel, we carried out DNA 10 

analyses on seven early-domesticated dromedary specimens excavated in Apamea, Syria 11 

(Early Byzantine: 400-600 CE (Common Era)); Sagalassos, Turkey (Early Byzantine: 450-12 

700 CE); Aqaba, Jordan (Mamluk and Ottoman Periods: 1260-1870 CE); and Tulln, Austria 13 

(2nd Turkish war circa 1683 CE) (Figs. 1 and S4). In addition, eight wild dromedary 14 

specimens originating from the United Arabian Emirates (UAE) were genetically 15 

investigated. The wild specimens were excavated from archaeological sites of Al-Buhais 16 

(5000-4000 BCE (Before Common Era); Umm an-Nar (Early Bronze Age: 3000-2000 BCE); 17 

Al-Sufouh (ca. 2400-1400 BCE); and Tell Abraq (Late Bronze – Iron Age: 1260-500 BCE) 18 

(Figs. 1 and S4). Detailed information on the modern and archaeological sampling is available 19 

in Dataset1 and Table S4, respectively. 20 

Classification of the wild dromedaries. Here we provide a detailed description of the 21 

archaeological context of the specimens from Al-Sufouh and Tell Abraq, UAE, in support of 22 

the classification of these findings as “wild dromedaries”. Apart from their large size, there 23 

are several indications that the Camelus bone specimens collected at Al-Sufouh pertain to 24 

wild animals. The site’s environmental setting appears very particular, as the faunal 25 

assemblage (> 80,000 specimens) is heavily dominated by marine fish and molluscs (> 120 26 

taxa) (4). Together with other species that died naturally, they represent the natural 27 

taphocoenosis typical of littoral settings. Amongst the marine gastropods, the most frequent 28 

and edible large mud creeper (Terebralia palustris) is very conspicuous. It is a typical 29 

inhabitant of mangrove forests and khors (i.e., tidal creek systems). The latter ecotopes are 30 

characterized by broad intertidal flats dotted with supratidal islets typically vegetated with 31 

haplophyte species. Khor environments must have been attractive to camels, considering the 32 

necessity of salt intake to their well-being (5). The location of Al-Sufouh and its faunal 33 

composition clearly illustrates that Bronze Age communities living on the coast deliberately 34 
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exploited such situations: 99.4% of the terrestrial mammalian assemblage totalling 17,911 35 

specimens can be assigned to the one-humped camel (NISP = 17,812; minimum number of 36 

individuals: 123), whilst sheep, goat, cattle, dog, gazelle, Arabian oryx and striped hyena 37 

taken together account for only 0.6% of the assemblage. From a taxonomic viewpoint, the 38 

mammalian fauna from Al-Sufouh clearly contrasts with settlement refuse from 39 

contemporaneous Bronze Age contexts, which usually are characterized by a heavy 40 

dominance of small livestock and cattle. With less than 100 potsherds, some flints objects 41 

including an arrowhead as well as an axe and arrowhead made of copper, material culture at 42 

the site is scanty and therefore particular as well. A survey near Al-Sufouh moreover revealed 43 

the lack of contemporaneous habitation nearby, excluding the possibility that the camel 44 

remains represent carcass refuse from large livestock butchering at the settlement’s periphery. 45 

The latter is also contradicted by the high frequency of long bones in the assemblage, body 46 

parts mostly removed to be processed more intensely (e.g., cooking) to obtain the marrow. 47 

Interestingly, demographic profiling based on dental remains showed that only a single animal 48 

out of 29 evaluable individuals proved younger than two years. Animals older than six years 49 

accounted for a quarter of the assemblage, whilst more than two thirds represented animals 50 

aged between two and six years, the majority of these being older than four years when killed. 51 

Based on the pelvic remains (n = 70), it can be concluded that amongst sexually mature 52 

individuals, stallions numbered twice as many as mares. Sex-related demographic profiling 53 

thus suggests that meat provisioning targeted mainly young adult males, which clearly 54 

contradicts human management aiming at camels predestined for labour and/or trade. The 55 

presence of cut and chop marks on the bones shows that dismembering took place on the spot, 56 

whilst the skeletal part distribution implies that the skins with the foot bones still attached as 57 

well as particularly meat parts (e.g., shoulder region) were likely removed to be processed 58 

elsewhere (4). In sum, the site’s ecological setting, archaeology and faunal composition as 59 

well as the morphology, relative frequency, age and body part distribution, ratio male to 60 

female and comparably large size of the remains excavated allow concluding that during the 61 

3rd and 2nd millennium BCE, the khor site of Al-Sufouh was a suitable place to hunt wild 62 

dromedaries, and bachelor males in particular. 63 

Tell Abraq is a major mounded Tell site in the north of the UAE. The excavations have 64 

focused on habitation levels that stretch from c. 1500 BC to 500 BC on the southern side of 65 

the mound. Specimen TA618 comes from the vertical defined unit (e.g., Locus) 5111, which 66 

was a part of a filling event that occurred as a large surround wall was constructed around the 67 

site. The material from within the filling event is dated by three 14C-dates that were taken 68 

from the lowest, middle, and upper deposits. The three dates are statistically the same and 69 
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when combined suggest a chronology of between 1300 and 1100 BC, a chronological range 70 

which is in complete agreement with the artifacts from these levels which date to the 71 

transitional Late Bronze Age/Iron Age I period. TA623 comes from Locus 5163. This deposit 72 

is part of a collapse level of the large surround wall noted above. The deposit contains Iron 73 

Age II ceramics (1000-600 BC) with a very small quantity of Iron Age III ceramics (600-74 

300BC). A 14C sample from an ash layer below this collapse deposit has an upper limit in the 75 

eighth century BC suggesting that this collapse layer dates to the second phase of the Iron 76 

Age II period to the early Iron Age III period. 77 

Holocene distribution of wild dromedaries in the Arabian Peninsula. While the wild 78 

specimens in our sample set come from a limited geographical distribution, large prehistoric 79 

faunal assemblages from 5000-500 BCE, sites in other parts of the Arabian Peninsula, such as 80 

coastal Yemen (6), did not yield wild dromedary remains so far, indicating that at the time 81 

people started its domestication, the native distribution of the wild ancestor of the one-82 

humped camel may already have been limited to the Arabian Southeast coast. The poor 83 

knowledge of the Holocene distribution of wild one-humped camels on the Arabian Peninsula 84 

is a further limiting factor. To date, concentrations of bones indicative of larger camel herds 85 

have only been found in Neolithic to Bronze Age contexts on the eastern coast of the Arabian 86 

Peninsula (4, 5, 7, 8). Zooarchaeological evidence for pre-Iron Age camel population in the 87 

Southern Levant is not equivocal, since some of these specimens turned out to be intrusive 88 

based on 14C-dates, whereas in other cases the stratigraphical position was considered 89 

insecure because of superposing later occupations (9, 10). Conceivably, wild dromedaries 90 

may have found suitable habitat in the interior of the Arabian Peninsula as well. However, the 91 

current state of archaeo(zoo)logical research in this vast region does not allow verifying this 92 

assumption. 93 

 94 

DNA extraction 95 

Modern samples. Hair, blood and saliva were collected during routine veterinary treatments. 96 

Hair samples were digested with a modified lysis buffer (11) and DNA was extracted using 97 

the DNeasy® Blood and Tissue Kit (Qiagen, Hilden, DE). Blood and saliva were blotted on 98 

FTA® Cards (Whatman Inc, New Jersey, US). DNA was extracted from blood and saliva 99 

using FTA® Purification Reagent following the manufacturer’s protocol. DNA from 100 

Australian camels was provided by Peter Spencer (Murdoch University, Perth, AU). 101 

Ancient samples. Early-domesticated and wild dromedary specimens were prepared in a 102 

dedicated and highly contained ancient DNA laboratory (Paleogenetic Core Facility, 103 

ArchaeoBioCenter, LMU Munich, Germany). DNA was extracted from bone material 104 
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following a range of standard contamination precautions. Authentication criteria for aDNA 105 

studies, such as multiple DNA extractions, independent PCR amplification and parallel 106 

extraction/ PCR controls were performed following protocols previously described (12, 13). 107 

Extractions were conducted in batches of seven samples in the presence of blank controls. 108 

 109 

DNA genotyping and sequencing 110 

Modern samples. From 1,083 dromedaries sampled in this study, we successfully genotyped 111 

970 individuals with 17 microsatellite loci (Table S12) as well as 20 Bactrian camels (C. 112 

bactrianus) to confirm the absence of introgression between the two domestic forms. This set 113 

of markers was selected according to recommendations from the joint Food and Agricultural 114 

organization of the United Nations (FAO) and International Society for Animal Genetics 115 

(ISAG) panel on livestock genetic diversity. We selected 759 individuals for sequencing a 116 

continuous 867 bp mitochondrial fragment (nt15112 - nt15978; numbering according to 117 

GenBank Accession number NC_009849.1) spanning the end of cytochrome B (184 bp), 118 

tRNA threonine and proline (134 bp) and the beginning of the control region (MT-CR; 549 119 

bp) until the short tandem repeat. Sequencing was performed in both directions using an in-120 

house MegaBACE 500 sequencer (GE Healthcare) or outsourced. Mitochondrial sequences 121 

were aligned with CODONCODE ALIGNER 3.7.1 (Codon Code Corporation); unique and novel 122 

mitochondrial haplotypes were deposited in GenBank (Accession numbers JX946206-123 

JX946273, KF719283-KF719290). The final overlapping data set of mitochondrial and 124 

nuclear markers consisted of 646 individuals (Dataset1). 125 

Ancient samples. For the 15 ancient specimens, we amplified a 531 bp fragment of MT-CR 126 

and preceding tRNAs (nt15347 - nt15877) using ten overlapping primer pairs (Table S5) or 127 

genomics technology on the Illumina platform (see methods below; Table S4). Similarly to 128 

the modern haplotypes, ancient mitochondrial sequences were edited and aligned with 129 

CODONCODE ALIGNER. Ancient mitochondrial haplotypes were deposited in GenBank 130 

(Accession numbers KT334309-KT334323). In the dromedary sample from Umm-an-Nar 131 

(UN624; Table S4), the determination of the nucleotide nt15486 (G/A; numbering according 132 

to GenBank Accession number NC_009849.1) remained ambiguous despite six repetitions 133 

from two independent extractions. Assuming the most frequent nucleotide (nt15486: G), 134 

UN624 sample represented a MT-CR fragment identical to the modern haplotype B3 (Fig. 135 

1c). In the case of the alternative allele (nt15486: A), UN624 shared its haplotype with the 136 

specimen from Tel Abraq (TA623; Fig. 1c; Table S4).  137 
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Preparation of Illumina sequencing libraries for early-domesticated specimens. Prior to next-138 

generation library construction, the 80 bp fragments (including the primers) of MT-CR were 139 

amplified to verify the success of DNA extraction. The library preparation, indexing and 140 

capture enrichment for six early-domesticated samples (Tulln specimen was not included; 141 

Table S4) were performed in a dedicated aDNA laboratory at the University of York (UK), 142 

following the standard contamination precautions (14). The double-stranded libraries (DSL) 143 

were produced directly from the aDNA extracts as well as the extraction blank and water 144 

control, following Meyer et al. (15) with minor modifications as described in Zhang et al. 145 

(16). Indexing PCRs were performed to create indexed libraries for the individual samples. 146 

In-solution hybridization capture. MtDNA from the six early-domesticated dromedaries was 147 

enriched in the barcoded Illumina libraries by in-solution hybridization capture, using 148 

Mycroarray’s Mybait kit according to manufacturer’s instructions. We performed the capture 149 

enrichment for the entire dromedary mtDNA using 827 unique 80 bp custom designed baits 150 

that were tiled every 20 bp (4 x tiling). Following the capture procedure the entire enriched 151 

libraries were amplified in 40 µl reaction volume containing 1x AmpliTaq Gold buffer, 2mM 152 

MgCl2, 0.1 mg/ml BSA, 0.25 mM dNTPs, 0.75 µM of each primary library amplification 153 

primer (IS5 and IS6) from Meyer and Kircher (17), 0.05 U AmpliTaq Gold and 20µl library 154 

template. The post-capture PCR programme consisted of initial denaturation at 94°C for 10 155 

min followed by 10-20 cycles of 94°C for 30 sec, 60°C for 45 sec, 72°C for 45 sec and a final 156 

extension of 72°C for 5 min. Following the post capture amplification, the indexed libraries 157 

were pooled in equimolar ratio and single-end (SE) sequenced on one lane of the HiSeq2000 158 

Illumina platform (National High-throughput DNA Sequencing Centre, University of 159 

Copenhagen, Denmark). Although we attempted to capture the entire mtDNA, here we used 160 

the 531-bp fragment of MT-CR and preceding tRNAs (nt15347 - nt15877) in accordance with 161 

the modern dromedary data set. 162 

High-throughput data pre-processing. A total of 22,851,585 SE reads from six early-163 

domesticated samples were trimmed for adapter and index sequences using the software 164 

CUTADAPT (18). Initially the reads shorter than 25 nucleotides were discarded to reduce the 165 

chance of spurious hits against the reference genome. The individual read collections were 166 

then assembled against the dromedary mitochondrial reference sequence (Genbank Accession 167 

number NC_009849.1) by using the BURROWS-WHEELER ALIGNMENT TOOL v.0.7.3a (19) 168 

with the parameters -l 1024 -i 0 -o 2 -n 0.03 -t 6, as optimized in Schubert et al. (20). The 169 

PCR duplicates were removed using MARKDUPLICATES as implemented in PICARD tools 170 

(www.picard.sourceforge.net). The reads were filtered for mapping quality lower than 20 and 171 
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the consensus and the SNPs were called using SAMTOOLS package v.0.1.19 (21). The filtered 172 

SNPs output of BCFTOOLS (part of SAMTOOLS) was transformed into a file for haplogroup 173 

calling. The assembly was checked by eye at each informative SNP position to identify 174 

sequencing reads conflicting with the reference sequence. Only SNPs that were covered by 175 

three unique read with different start and end positions within the region nt15347-nt15878 176 

were accepted for downstream analysis. In general, aDNA sequences show damage patterns 177 

including fragmentation and C-T misincorporation at the 5’ and G-A at the 3’ end (22-24). To 178 

confirm the authenticity of the aDNA sequence data, we used the python script mapdamage2 179 

(http://geogenetics.ku.dk/publications/mapdamage/) (25) to identify these aDNA damage 180 

patterns in all sequences mapping to the dromedary mitochondrial genome. The damage 181 

pattern for one early-domesticated sample representing each archaeological site is illustrated 182 

in Fig S11. 183 

 184 

Inferences of population structure and genetic distance within the modern dromedary 185 

stock 186 

Nuclear data. Without using any prior information about the location of the samples (loc-187 

prior), we investigated the potential number of genetic clusters (K) and whether these 188 

clustering solutions reflect geographically defined populations. We used the mixed ancestry 189 

admixture model implemented in STRUCTURE (26), which assumes that each individual 190 

derived its ancestry from 1 to K populations. Ten independent simulations for each K (2 ! K 191 

! 11) were performed to estimate the true number of populations using 50,000 iterations after 192 

a burn-in of 10,000 Markov Chain Monte Carlo (MCMC). We determined the best clustering 193 

solution by calculating DeltaK in STRUCTURE HARVESTER (27). Results from the multiple 194 

runs were concatenated using CLUMPP (28) and displayed in R. To investigate subtle 195 

population structure that might have been masked by the high genetic distinctiveness of EAF, 196 

we excluded EAF in the analysis and re-ran STRUCTURE (Figs. 2 and S2). Despite an 197 

important amount of admixture, genetic grouping reflected populations slightly different from 198 

the one defined by the FAO (Fig. 2; Dataset1) (1). Despite significant positive FIS values, all 199 

these clustering solutions did not seem to result from strong inbreeding (Table S1). 200 

Additionally, we estimated the degree of population structure applying a non-model based 201 

approach like the multidimensional factorial correspondence analysis (FCA) implemented in 202 

GENETIX 4.05.2 (29). No introgression with Bactrian camels was detected in our dromedary 203 

sample-set using the 17 nuclear markers. 204 

Mitochondrial data. We applied a Bayesian Analysis of Population Structure implemented in 205 

BAPS 5.3 using the ‘clustering of linked loci’ model (30). We performed five independent 206 
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runs for each of the specified prior upper bound values for the numbers of clusters (i.e., 2-10). 207 

BAPS revealed seven clusters (PP = 1), corresponding to the six most frequent haplotypes 208 

(A1-2, B1-4; Fig. 1b) and an additional cluster grouping the singletons diverging from B1 by 209 

one mutation. 210 

Genetic distance. Analysis of molecular variance (AMOVA), nuclear (FST) and mitochondrial  211 

(!ST) pairwise values were calculated with ARLEQUIN3.5 (31). Both pairwise genetic distances 212 

(FST and !ST) displayed EAF as the most distant population (Table S2).  213 

 214 

Genetic diversity based on nuclear and mitochondrial DNA  215 

Genetic diversity. For each modern dromedary population, observed (HO) and expected (HE) 216 

heterozygosities, total (TNA) and mean number of alleles (MNA) were calculated in 217 

MICROSATELLITE TOOLKIT (32). To compare allelic diversity between populations, we 218 

calculated allelic richness (Ar) for each population based on the rarefaction approach 219 

implemented in FSTAT 2.9.3.2 (33). Inbreeding coefficients (FIS) were calculated using 220 

GENETIX 4.05.2. Analysis of deviations of allele frequencies from the Hardy–Weinberg 221 

equilibrium (HWE) and the null alleles (null a.) were estimated with CERVUS V. 3.0.7. With 222 

the selected set of 17 microsatellite loci we detected a total of 158 alleles among the 970 223 

genotyped animals (Table S12). The majority of the loci exhibited substantial polymorphisms. 224 

Multiple testing for all markers considering the global dromedary population showed that 225 

only six out of the 17 loci were in Hardy–Weinberg equilibrium (HWE). After removing all 226 

EAF individuals from the analysis, which is the most distinct genetic population, we found 11 227 

loci in HWE. When HWE was tested in just the EAF population, only one locus (YWLL59) 228 

showed significant deviation (Table S12). Mitochondrial haplotype (Hd), average number of 229 

pairwise differences ("#; (34)) and Watterson "w (based on the number of segregating sites; 230 

(35)) were computed in ARLEQUIN 3.5. The HKY+G substitution model with gamma 231 

correction ($= 0.0221) was selected as the best-fit model to the 76 unique dromedary 232 

sequences based on the Akaike Information Criterion with correction for small sample size 233 

(AICc) in the program jModelTest v.0.1.1 (36), using Maximum Likelihood (ML) tree as base 234 

tree for the likelihood calculations. As the HKY model is not implemented in the program 235 

ARLEQUIN3.5, the more inclusive Tamura-Nei (TN) model with the same parameters for ti/tv 236 

rate and a gamma correction of $ = 0.02 was used. For the eight ancient wild dromedary 237 

samples the Kimura-2-Parameter (K2P) model with gamma correction of $ = 0.05 was 238 

selected as the best-fit evolutionary model based on AICc. In the wild dromedary sample from 239 

Umm-an-Nar, UAE (UN624; Table S4), despite multiple repetitions, the determination of the 240 
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nucleotide nt15486 remained ambiguous (G/A). Therefore we estimated the haplotype 241 

diversity parameters for the wild dromedaries using both alternative alignments (Table S1). 242 

Comparison of genetic diversity levels among the camelids. Overall nuclear heterozygosity 243 

(HE = 0.630 ± 0.183) corresponded to the variation previously reported in dromedaries (37-244 

40) and was comparable to the estimates obtained for the populations separately (Table S1). 245 

While the amount of heterozygosity and allelic richness did not differ significantly among 246 

WNAF-NAP, SWAP (Southwestern Arabian Peninsula population grouping the Awadi and 247 

Awarik Arabian camels), SEAP (Southeastern Arabian Peninsula) and SAS populations 248 

(Bonferroni corrected Wilcoxon-Rank-Sum test; P-value > 0.05), modern EAF camels exhibit 249 

the lowest nuclear diversity in terms of HE (0.579 ± 0.175) and Ar (4.48; Table S1). 250 

Mitochondrial haplotype diversities (Hd) in dromedaries were slightly lower (0.71-0.79; 251 

overall: 0.74; Table S1) than the estimates obtained for other camelids, such as domestic 252 

Bactrian camels (0.60-0.93; overall: 0.73; (41)), vicuñas (0.72-0.90; overall: 0.76; (42)), and 253 

guanacos (0.6-0.81; overall: 0.75), with the exception of a population in Tierra del Fuego that 254 

presents an Hd of 0.36 (43). The highest Hd and "# (0.793 and 3.617, respectively) were 255 

measured in EAF, slightly exceeding the estimates for the populations confined to the Arabian 256 

Peninsula (Table S1). These elevated values of Hd and "# could, in principle, be explained by 257 

an unaccounted cryptic population structure in EAF (44), or by a large proportion of ancestral 258 

diversity in the mtDNA. While 85% (n = 646) of the investigated haplotypes pertained to HB, 259 

and both haplogroups could not be assigned to specific geographical areas, camels in EAF 260 

exhibited a more balanced ratio between HA (38%) and HB (62%) (Fig. 1a). In contrast to the 261 

hypothesis of retained ancestral variation, EAF presented one of the lowest nuclear 262 

heterozygosity (HO and HE) among the populations tested (Table S1). These results can be 263 

interpreted as the consequence of a random founder effect followed by successive gene flow 264 

with a restricted number of sires. 265 

Cultural context of EAF’s genetic set-up. The uniqueness of the genetic setting of the EAF 266 

may result from geographical as well as cultural barriers. Indeed, prior to the introduction of 267 

one-humped camels, communities with economies based on cattle and/or small livestock 268 

pastoralism were already distributed in Eastern Africa, and in this cultural landscape, camel 269 

keeping may well have prospered especially in landscapes submarginal to the raising of cattle, 270 

sheep and goat. Moreover, many areas located around the Horn of Africa have remained 271 

infested with trypanosomes, which probably constrained the expansion of camel husbandry 272 

once established in arid East Africa. Finally, it is worth noting that the dromedary dung from 273 

the site of Qasr Ibrim in South Egypt dated around 740 BCE provides us with a terminus ante 274 
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quem for the species’ appearance in the African continent (10). Its presence in South Egypt 275 

opens up the possibility of a third potential route of camel imports into Africa, namely by 276 

vessel across the Red Sea to coastal south-eastern Egypt or north-western Sudan (Fig. S4). 277 

However, the presence of camel remains in 1st millennium BCE sites along the western Red 278 

Sea coast of present-day Egypt and Sudan is necessary to confirm this hypothesis.  279 

 280 

Phylogenetic relationship and divergence time estimates 281 

The relationships between the different mitochondrial haplotypes were investigated by 282 

constructing a Median Joining Network (MJN) using the program NETWORK 4.6.1.0 (45). The 283 

MJN including the 15 ancient specimens was constructed based on 531 bp of MT-CR 284 

(nt15347-nt15877; numbering according to GenBank NC_009849.1). The dromedary’s 285 

mtDNA haplotype phylogeny (Fig. S1) was inferred using the Bayesian approach 286 

implemented in the program MRBAYES V.3.2.1 (46) using two independent Markov Chain 287 

Monte Carlo (MCMC) runs of 2 million generations each. Trees were sampled every 1000 288 

generations; the first 25% being discarded as burn-in. 289 

Divergence time estimates. In general, estimation of divergence time requires calibration 290 

points that approximate the divergence between an outgroup and the clade of interest; usually 291 

these time inferences require the assumption of a constant mutation rate (µ) over time and 292 

across taxa. Therefore, we tested the null hypothesis of a constant evolutionary rate with the 293 

molecular clock test implemented in the program TREEPUZZLE V.5.2 (47). We used a subset 294 

of data composed of one sequence per dromedary haplotype (n = 76) to reduce the number of 295 

parameters and provided a ML tree rooted with the Bactrian camel (GenBank accession 296 

number NC_009628.1) as the starting tree (PhyML V.2.4.4; (48). We noted that the 297 

assumption of a constant rate of change among the camelids was rejected previously (49). For 298 

this reason, we performed an additional molecular clock test in PAML V.4.6 (50) using a mid-299 

point rooted starting tree obtained from the 76 dromedary haplotypes without an out-group. 300 

We used the program FIGTREE V.1.3 (51) to define the mid-point root from a consensus 301 

unrooted ML tree built in the program PhyML. In the rooted-tree approach, we rejected the 302 

molecular clock hypothesis at a significance level of 5% (rooted tree: df = 75; % = 161.74 > 303 

&2
$ = 0.05 = 96.22). However, using the unrooted tree, we failed to reject the molecular clock 304 

hypothesis (unrooted tree: df = 74; % = 62.51 < &2
$ = 0.05= 95.08). Failure to reject the 305 

molecular clock hypothesis allowed us to estimate the divergence time based on the 306 

relationship between time and genetic distance between clades (D = 2!T, where D is the 307 

sequence divergence between clades, ! is the mutation rate in units of substitutions per site 308 
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per year or generation and T is the divergence time between two clades). Computation of D 309 

was performed in ARLEQUIN3.5 using the net number of nucleotides between populations (DA) 310 

and the coalescent method (tau), which accounts for the effect of unequal sizes of the derived 311 

populations (52). Time to the most recent common ancestor (TMRCA) between HA and HB 312 

was estimated as TMRCA = (distance/length of sequence)/(2!).  313 

We used different mutations rates (!) to estimate the TMRCA of HA and HB: (i) the mutation 314 

rate estimate inferred from cattle MT-CR sequences and aDNA calibration (! = 6.94x10-07 315 

[4.52x10-07, 9.35x10-07] sub/site/y; (53); and (ii) the two mutation rates deduced from the 316 

estimated Camelus species split (4.4x106  [1.9x106 - 7.2x106] ya; (54) and the distances DA 317 

(268.25 substitutions for the 867-bp fragment) and tau (258.08 sub/867-bp) measured 318 

between the Bactrian and the dromedary sequences (!DA = 3.516x10-08 [2.149x10-08 - 319 

8.142x10-08] sub/site/y; !tau = 3.383x10-08 [2.067x10-08 - 7.833x10-08] sub/site/y). The 320 

estimated DA between HA and HB (10.90973 sub/867-bp) translates into a TMRCA comprised 321 

between 6,700 and 304,000 ya, while the distance tau results into TMRCA estimates ranging 322 

from 5,700 and 260,000 ya (Table S6). While the TMRCA inferred from the divergence 323 

between Bactrian and dromedary camels violates the molecular clock assumption, the 324 

TMRCA deduced from the mutation rate estimate based on the bovine MT-CR (TMRCADA = 325 

9,066 [6,729 – 13,920] ya; TMRCAtau = 7,761 [5,761 – 11,917] ya; Table S6) are likely to be 326 

much shorter than real TMRCA due to the fact that they focused on the non-coding part of the 327 

mitochondrial genome, only.  328 

Bayesian inferences of divergence time. In addition, we estimated the TMCRA of HA and HB 329 

using the MT-CR (448 bp) fragment from modern and ancient dromedary samples with 330 

BEAST 2.2.0 (55). We dated the tips with the archaeological dates of the ancient samples 331 

(Table S4). We applied a relaxed lognormal clock, coalescent Bayesian skyline and TN93 332 

nucleotide substitution model and ran MCMC for 100,000,000 generations with initial 333 

1,000,000 steps discarded as burn-in. Examination of the autocorrelation times of the MCMC 334 

plots indicated that runs were optimal, as was revealed by the convergence of the posterior 335 

distribution with adequate ESS (> 100) for all parameters. We estimated the parameter root 336 

height, which represents the total height of the tree about 9 kya (TMRCA = 8,932 y [95% 337 

HPD 7,000 - 14,191]). We applied a second approach in BEAST 2.2.0 using the 859 bp 338 

fragment from 759 modern sequences and the substitution rate ! = 1.232x10-06 sub/site/y 339 

[95% HPD: 4.4353x10-07, 2.2132x10-06], which was estimated previously from the tip dates 340 

using the 448 bp CR fragment including all ancient samples. This second approach delivered 341 

a TMRCA of 6,094 ya [95% HPD: 5,829 - 6,374]. Overall and independently of the approach, 342 
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with a minimum TMCRA dated to 5,700 ya (Table S6) it seems unlikely that the actual 343 

divergence between HA and HB happened subsequently or concordantly to domestication. 344 

 345 

Demographic history analysis 346 

For each pre-defined population, evaluation of possible population expansions were assessed 347 

using the neutrality tests of Tajima’s D (56) and Fu’s FS, which have been shown to be 348 

especially sensitive to population expansion (57) as implemented in the program 349 

ARLEQUIN3.5.  350 

Estimating population expansion. Assuming a constant mutation rate, pairwise differences of 351 

a population that underwent sudden expansion in the context of domestication are distributed 352 

according a Poisson distribution (58). To test the goodness of fit of a Poisson distribution to 353 

the observed pairwise differences between the modern haplotypes, we compared the empirical 354 

log-likelihood values with the ones obtained for 1,000 simulated Poisson distributions (with 355 

parameter of the simulated distribution equals to 'empirical) using a chi-square test. In the cases 356 

where the data fit a Poisson distribution, the single parameter of the empirical Poisson 357 

distribution, lambda ('), is an estimate of the rate of mutation (µ) occurring in a period of time 358 

(t in generation); consequently, we inferred µ with the formula ' = 2µT. Minimal 359 

mitochondrial diversity required in the initial pool of domesticated camels was inferred by 360 

estimating µ for different evolutionary scenarios. From the modern MJN (Fig. 1b) and the 361 

phylogram (Fig. S1) we distinguished six haplogroups corresponding to the BAPS clustering 362 

solution of K = 6, distributed into two haplogroups HA and HB. As the divergence between HA 363 

and HB likely predated domestication (see TMRCA calculations above), at least one haplotype 364 

representing of each of the two haplogroups should have been present in the initial domestic 365 

pool. Within the ancestral lineage HA, two haplogroups were centered on the haplotypes A1 366 

and A2; while in HB four grouped around the haplotypes B1, B2, B3 and B4 (Fig. 1b). The 367 

topology of these six haplotypes at high frequency, from which singletons dispersed in a star-368 

like shape of one- or two-step mutations, and the uniformity of the external branch lengths 369 

(Fig. S1) suggest population expansion. We first postulated that the entire diversity within the 370 

lineages HA and HB was generated since the time of domestication (strong bottleneck). We 371 

thus tested whether the number of substitutions on the external branches followed a Poisson 372 

distribution (58). Under the assumption that the initial pool of domesticated camels consisted 373 

of individuals representative of the most frequent mitochondrial haplotypes, A1 for HA and B1 374 

for HB, the distribution of the substitutions was not significantly different from a Poisson 375 

distribution (P > 0.05). Similarly the distribution of the substitutions of the second scenario 376 

assuming one unique wild source population consisting of all the six haplotypes, did not differ 377 
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significantly from a Poisson distribution. Using the relationship between ' (unique parameter 378 

of the Poisson distribution), mutation rate and time (' = 2µt) and assuming that domestication 379 

commenced t = 600 generations ago (ca. 3000 y with a generation time of 5 y), we estimated 380 

the different µ. Our first scenario, involving the contribution of the six most frequent 381 

haplotypes to the initial domestic pool, yielded estimation of !(A1+A2+B1+B2+B3+B4) = 0.08 382 

sub/site/Myr. Yet, the second scenario, where the minimum initial domestication pool was 383 

assumed to be formed of the two most frequent haplotypes within each haplogroup (A1 and 384 

B1), resulted in an estimate of !(A1+B1) = 0.22 sub/site/Myr. Whereas both estimates were in 385 

the same order of magnitude as ! calculated from coding parts of mammalian mitochondrial 386 

genomes (59), they remained slower than that of the one calculated for the MT-CR in cattle 387 

(e.g., 0.694 sub/site/Myr; (53). Nonetheless, the first scenario yielded similar estimate, 388 

!(A1+A2+B1+B2+B3+B4), that the one calculated for the 867 bp fragment using the TMRCA 389 

between the dromedary and Bactrian camels (!DA = 0.035 [0.021 – 0.081] sub/site/Myr; !tau = 390 

0.034 [0.021 - 0.078] sub/site/Myr; see above method in ‘Phylogenetic relationship and 391 

divergence time estimates’). As we could not argue against the contribution of at least six 392 

ancestral female lineages to the current gene pool and that comparable amount of maternal 393 

diversity was observed in goats, cattle and donkeys (60-64), we presumed the first scenario as 394 

the most plausible. Hence in this perspective, the initial diversity was remarkably high relative 395 

to the distribution of the wild one-humped camel on the coastal Arabian Peninsula and to the 396 

brief co-existence (e.g., less than two millennia) of wild and early-domesticated individuals 397 

postulated on the basis of the current archaeofaunal record of that region (4, 8). High 398 

mitochondrial DNA diversity in ungulate species such as goat, horse and cattle has been 399 

interpreted as a sign of recurrent introgression during the early stage of domestication (60, 61, 400 

65). 401 

 402 

Coalescent simulations to infer demographic changes 403 

Coalescent simulations with mitochondrial data. To assess historical population demographic 404 

dynamics, we used the MT-CR (448 bp) on the combined modern, early-domesticated and 405 

wild dromedary data set consisting of 774 individual (not collapsed) haplotypes. We applied 406 

the birth-death skyline plot serial model implemented in BEAST 2.2.0, which accounts for 407 

serial samples taken at different time points (55, 66). We used the archaeological dating of the 408 

extinct wild and early-domesticated samples (Table S4) to date the tips and estimated the 409 

substitution rate with a relaxed lognormal clock model from the combined ancient and 410 

modern samples. We used the resulting substitution rate ! = 1.232x10-06 sub/site/y [95% 411 

HPD: 4.435x10-07, 2.213x10-06] to compute Bayesian Skyline plots (BSP) for the domestic 412 
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and the wild dromedaries separately under the stepwise constant function. To infer ancestral 413 

gene trees, we used the TN93 substitution model. Each MCMC sample was based on a run of 414 

200 million generations, sampled every 1,000 generations with the initial 20 million 415 

generations discarded as burn-in. Runs were repeated twice using different random number 416 

seeds to confirm consistency of the generated skyline plot and refine skyline parameters for 417 

acceptance of effective sample sizes (ESS). Convergence of the chains to the likelihood 418 

stationary distribution was systematically confirmed by visual inspection of the plotted 419 

posterior estimates following analysis and visualization with the program TRACER V.1.5.1 420 

(http://beast.bio.ed.ac.uk/Tracer). Examination of the autocorrelation times of the MCMC 421 

plots indicated that runs were optimal, as was revealed by the convergence of the posterior 422 

distribution with adequate ESS (> 100) for all parameters. The “tree” and “log” files from the 423 

two independent runs were combined using LOGCOMBINER V.1.6.1 and the combined files 424 

were used to generate the BSP for each dataset. The final BSPs were displayed in R using the 425 

output values imported from TRACER. 426 

Within the constraints of the number of ancient wild camels (n = 8) examined, we see a 427 

potential signal of a sudden population decline around 6,000 - 8,000 ya, followed by a slow 428 

expansion (Fig. S5) until they disappeared ca. 2,000 ya (67). However, the low sample sizes 429 

can lead to unreliable BSPs (68) and we observed large Bayesian credible intervals (CIs; Fig. 430 

S5), especially towards recent times, which is compatible with many possible demographic 431 

trajectories, including a simple flat line (no demographic change). Although we tried to 432 

exclude a possible false signal in the ancient wild camels with the re-analysis of 100 randomly 433 

down-sampled (n = 8) modern datasets, of which none resulted in a bottleneck, we 434 

acknowledge the limitation of this analysis with so few samples. 435 

Coalescent simulations with nuclear data. For the inference of more recent demographic 436 

history, we used coalescent simulations implemented in MSVAR 1.3 (69, 70) with the 437 

microsatellite dataset. The model assumes a single stable ancestral population N1 at some time 438 

t1 ago that experienced a demographic change (bottleneck or expansion) starting at time t and 439 

subsequently changed exponentially in size to the current population N0. We simulated two 440 

different demographic scenarios by choosing (i) larger prior distribution values for the current 441 

population size N0 than the ancestral N1 (expansion) and (ii) vice versa, larger priors for N1 442 

than N0 (decline or bottleneck). To assess the independency of the posterior estimates for the 443 

parameters N0, N1 and t, for each scenario we tested various prior distributions (Fig. S8). In 444 

absence of a species-specific microsatellite mutation rate in camels we choose an average 445 

mammalian mutation rate (71, 72) of 1x10-4 sub/site/y allowing a rate variation between 10-3 446 

and 10-5. As the method convergences slower if the sample size is large (more than 200 447 
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chromosomes per locus) we sub-sampled 100 individuals from the five populations, 448 

respectively. We run three coalescent simulations for each population with 2.5x109 iterations 449 

of the MCMC algorithm discarding the first 20% as burn-in. Convergence of the chains from 450 

each population simulated with four different priors, respectively, were assessed with the 451 

Gelman and Rubin’s diagnostic (73) implemented in the R package boa (74). Gelman-Rubin’s 452 

convergence tests of the MCMC algorithm for the independent runs and each variable resulted 453 

in values below the threshold of 1.1 (75). However, convergence could not be reached after 454 

2.5x109 MCMC iterations for the parameters N0 and t in the SEAP and SAS groups. Although 455 

the current Ne and the timing of the bottleneck could not be estimated in the SEAP and SAS 456 

populations (Gelman-Rubin diagnostic values >1.1 (76)), we can assume a comparable 457 

demographic history based on the similarity of genetic makeup of these groups. 458 

The oldest bottleneck, detected from the maternal sequences of the wild dromedaries (Fig. S5) 459 

and the nuclear polymorphisms of the EAF (Fig. S8; Table S9), possibly relates to the abrupt 460 

worldwide climate event that occurred ca. 8,200 ya when the glacial lake Agassiz drained into 461 

the northern Atlantic ocean causing a general cooling and drying of the northern hemisphere 462 

that lasted between two and four centuries (77, 78). It could also correspond to climatic 463 

change observed in the Eastern Sahara around 7,300 ya, when desiccation resulted in 464 

southward shifting of the desert margin and the sub-Saharan spreading of pastoralism (79). 465 

Despite rather large CIs (Table S9), the time point estimates of the bottleneck detected from 466 

the nuclear polymorphisms of the other populations (e.g., combined WNAF-NAP, SAP and 467 

SAS) coincided with the archeological-deduced onset of the domestication process, but as 468 

well concurred with two additional abrupt climatic events occurring between 4,200 and 2,500 469 

ya. The first of these two events (ca. 4,200 to 3,900 ya) was marked by an increase in wind 470 

circulation and aridification of the Middle East and was a potential cause for the synchronous 471 

collapse of the Akkadian empire and populations in neighbouring regions (80, 81). The 472 

second event (ca. 3,500 to 2,500 ya) had a stronger effect on the region and lasted much 473 

longer, causing region-wide crop failures marking the collapse of the Ugarit kingdom (82, 83) 474 

and ending the late Bronze Age. By the time cultural control over the wild one-humped 475 

dromedary was initiated, its native distribution may already have become increasingly 476 

disjointed due to anthropogenic activities. 477 

 478 

Approximate Bayesian Computation (ABC) inferences of four alternative domestication 479 

scenarios 480 

To test the hypotheses of one independent or multiple domestication scenarios we studied the 481 

genealogical history of the dromedary populations using ABCTOOLBOX (84) on a combined 482 
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mitochondrial and microsatellite dataset (n = 642). We followed the population structure 483 

observed in STRUCTURE (best-fitting K = 2; Fig. S2) and restricted the analysis to two 484 

populations (EAF vs. WNAF_NAR_SAR_SAS_combined) to avoid overparametrization of 485 

the models tested (85). We acknowledge that we might capture only a simplified version of 486 

the real demographic history while we reduced parameters to fit the four categories of events: 487 

population divergence, discrete change of effective population size, admixture and sampling. 488 

We tested four scenarios, in which we hypothesized (i) one domestication, (ii) one 489 

domestication with consecutive admixture from a wild unsampled source population, (iii) two 490 

independent domestications at variable time points, and (iv) two domestications at serial time 491 

points (Fig. S6). For each scenario we simulated a large number (1x106) of datasets under the 492 

coalescent model drawing their parameter values from a prior distribution range (Table S10). 493 

We estimated the following historic and demographic parameters: effective population size of 494 

the sampled modern populations (N1 and N2), the wild unsampled source populations (NW1, 495 

NW2), and the ancestral population (NA); and the time of domestication (t_dom), admixture 496 

(t_adm) between a wild and a domestic population, and divergence (t_div) between the two 497 

unsampled wild populations (Fig. S6). The genetic variation within and between populations 498 

was summarized in 15 summary statistics (Table S11): as population specific summary 499 

statistics we used the mean number of alleles (Obs0_K) and mean genetic diversity (Obs0_H) 500 

across loci, the mean of pairwise differences (Obs1_Pi), the segregating sites (Obs1_S) and 501 

the private segregating sites (Obs1_PrS); for population pairwise comparisons we used the 502 

mean total genetic diversity (Obs0_tot_H), the pairwise FST for microsatellite (Obs0_FST) 503 

(86), mean number of alleles (Obs0_tot_K) (87) across loci for two populations, number of 504 

haplotypes (Obs1_tot_K), and the mean of pairwise differences (Obs1_PI_2_1). The 505 

mutational model for the microsatellites was the Strict Stepwise Mutation model allowing 506 

variation in mutation rate across loci following a gamma distribution. For the mtDNA we 507 

used the default finite site model. We assessed if the observed summary statistics occurred 508 

within the 95% quantiles of the simulated summary statistics by generating a density 509 

distribution for each statistic and calculating the 2.5 and 97.5 percentile of the distribution 510 

(Fig. S12). Correlations between the summary statistics and their respective significances 511 

were estimated using Spearman's rho statistics and the function cor.test in R. Graphical 512 

representation of these results was obtained using a modified script of the plotcorr function 513 

from the ellipse R package (Fig. S9). Summary statistics with a high correlation 514 

(Obs1_S_1/_2, Obs0_tot_H; Table S11) were removed from the analysis of the final dataset. 515 

We run a cross-validation for model selection using the function cv4postpr in the R package 516 

abc (88) to evaluate if the twelve summary statistics provide enough statistical power to 517 
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discriminate the four scenarios. We used the summary statistics of the 5000 simulations 518 

closest to the observed data and randomly selected 1000 as sample (nval) for cross-validation 519 

with a single tolerance rate (tols) of 0.05 and the method ‘mnlogistic’ based on multinomial 520 

logistic regression. The model misclassification plots showing the clear separation between 521 

the four scenarios are displayed in Fig. S10.  522 

The posterior distribution of each parameter was performed using the GLM approach 523 

implemented in ABCTOOLBOX (89). To identify the best-fitting scenario, the marginal 524 

distributions of each scenario were used to calculate the scenario’s probability (Table S7), 525 

which corresponds to the proportion of the retained simulations that presented a lower or 526 

equal likelihood under the inferred GLM as compared to the observed data (89). We also used 527 

the marginal densities to calculate Bayes factors (BF) for each pairwise comparison between 528 

scenarios (84). The highest support was estimated for scenario (ii) using both the scenario 529 

probabilities and the Bayes Factors (Table S8). The resulting posterior distributions of the 530 

parameter values of the four scenarios are presented in Figure S7 and Table S13.  531 
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SUPPLEMENTARY TABLES 

 
Table S1. Genetic diversity of the modern domestic and wild dromedary populations 

 Microsatellite (17 loci)   
Genetic diversity Allelic diversity  Sample source No. of 

samples HE (SD) HO (SD) TNA MNA (SD) Ar FIS 
EAF 160 0.579 (0.175) 0.532 (0.179) 97 5.71 (3.48) 4.882 0.082*** 
WNAF-NAP 524 0.634 (0.175) 0.602 (0.169) 146 8.59 (5.36) 6.469 0.051*** 
SWAP 64 0.562 (0.197) 0.513 (0.181) 90 5.29 (3.46) 5.259 0.089*** 
SEAP 77 0.620 (0.214) 0.578 (0.208) 103 6.06 (3.42) 5.899 0.067*** 
SAS 145 0.617 (0.200) 0.559 (0.187) 121 7.12 (4.87) 6.375 0.092*** 
Total 970 0.630 (0.183) 0.577 (0.170) 158 9.29 (5.45) 6.468 0.085*** 
  mtDNA (867 bp)     

Sample source No. of 
samples 

Variable 
sites 

No. of 
haplotypes Hd (SD) !" (SD) !w (SD) Tajima’s D Fu’s FS 

EAF 74 16 15 0.793 (0.028) 3.617 (2.056) 3.282 (1.150)   0.297 ns -1.77 ns 
WNAF-NAP 410 33 42 0.712 (0.023) 2.000 (1.249) 5.006 (1.282) -1.617 *  -26.67*** 
SAP (SWAP-SEAP) 150 23 32 0.764 (0.034) 2.595 (1.547) 4.119 (1.244)  -1.042 ns -20.81*** 
SAS 125 19 22 0.711 (0.042) 2.012 (1.263) 3.518 (1.129)  -1.197 ns -11.76**  
Total 759 47 76 0.743 (0.016) 2.353 (1.421) 6.520 (1.477)  -1.712 ** -87.48*** 
  mtDNA (531 bp)     

Sample source No. of 
samples 

Variable 
sites 

No. of 
haplotypes Hd (SD) !" (SD) !w (SD) Tajima’s D Fu’s FS 

EAF 74 11 12 0.767 (0.029) 2.120 (1.324) 2.257 (0.872)   -0.165 ns -2.45 ns 
WNAF-NAP 410 23 35 0.700 (0.023) 1.430 (0.874) 3.489 (0.976) -1.510 *  -28.38 *** 
SAP (SWAP-SEAP) 150 18 28 0.754 (0.035) 1.806 (1.160) 3.223 (1.033) -1.193 * -21.63 *** 
SAS 125 13 17 0.690 (0.043) 1.485 (1.000) 2.407 (0.854)  -1.003 ns -8.73 *  
Total 759 33 59 0.731 (0.016) 1.621 (1.062) 4.578 (1.122)  -1.661 ** -27.01 *** 
 aDNA (531 bp)     

Sample source No. of 
samples 

Variable 
sites 

No. of 
haplotypes Hd (SD) !" (SD) !w (SD) Tajima’s D Fu’s FS  

WildG 8 3 7 0.964 (0.077) 1.679 (1.096) 1.157 (0.781) 1.855 ns -5.16 ** 
WildA 8 3 6 0.929 (0.084) 1.643 (1.078) 1.157 (0.781) 1.728 ns -3.18 ** 

 
According to the clustering solutions (Fig. 2 and SI Appendix, Fig. S3), dromedaries from Western and 
Northern Africa (WNAF) were grouped with the ones originating from North Arabian Peninsula 
(NAP) for calculation of the nuclear and mitochondrial diversity estimators. Due to the sub-structure 
existing at the nuclear level (Fig. 2) in South Arabian Peninsula (SAP), individuals from this region 
have been divided accordingly into Southwestern (SWAP) and Southeastern (SEAP) populations. 
Australian individuals were included in the Southern Asian (SAS) group due to their shared ancestry 
(Fig. 1 and 2; Table S4). EAF: Eastern Africa population; HE: Expected heterozygote frequency; HO: 
Observed heterozygote frequency; TNA: total number of alleles; MNA: mean number of alleles per 
locus; Ar: allelic richness per locus calculated for a population based on minimum sample size of 60 
diploid individuals; FIS: Inbreeding coefficient; Hd: haplotype diversity; "#: theta estimator based on 
the mean number of nucleotide differences; "w: theta estimator based on the segregating sites; SD: 
standard deviation values. Significance: *P <0.1; **P <0.01; ***P <0.001; ns: not significant. G/A 
Genetic diversity estimators calculated with the two potential haplotypes of UN624 at nt15486 (either 
allele G or A; SI Appendix). 
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Table S2. Population pairwise distances based on the 867 bp mtDNA sequences (ϕST; above 
diagonal) and 17 microsatellite loci (FST; below diagonal). 

*: P-value < 0.1; ***: P-value < 0.001; ns: not significant 

 

 
 
Table S3. Genetic diversity of the Southern Asian dromedaries inferred from mitochondrial and 17 
microsatellites data. 
 

 
No. drom.: sample size; .Hd: haplotype diversity; "": theta estimator based on the mean number of 
nucleotide differences; "w: theta estimator based on the segregating sites; TNA: total number of alleles; 
MNA: mean number of alleles per locus; Ar: allelic richness per locus calculated for a population 
based on minimum sample size of one diploid individual; HE: expected heterozygote frequency; HO: 
observed heterozygote frequency; FIS: Inbreeding coefficient. Standard deviation values are indicated 
between brackets.  

                      
ϕST  

   FST         
EAF WNAF- NAP SWAP SEAP SAS 

EAF - 0.164***  0.077*** 0.081***  0.155*** 
WNAF-NAP 0.040*** - 0.004ns 0.014*** 0.000ns 
SWAP 0.070*** 0.035*** - -0.006ns 0.006ns 
SEAP 0.051*** 0.013***  0.033*** - 0.012ns 
SAS 0.060*** 0.013***  0.037*** 0.018*** - 

  mtDNA (867 bp)  

Populations No. drom. Haplotypes Var. sites Hd  !! !w 
Australia (AU) 38 11 13 0.814 (0.052) 3.153 (1.670) 3.094 (1.216) 

Iran (IR) 30 12 15 0.717 (0.090) 3.396 (1.788)  3.786 (1.484) 

Pakistan (PK) 38 7 8 0.588  (0.088) 1.793 (1.059) 1.904 (0.848) 

India (BD) 19 3 2 0.632 (0.073)  0.804 (0.606) 0.572 (0.427) 

Southern Asia 125 22 19 0.711 (0.042) 2.502 (1.358) 3.518 (1.129) 

 Microsatellite (17 loci)  
Populations No. drom. TNA MNA Ar HE  HO  FIS 

Australia (AU) 59 99 5.82 (3.54) 1.60 0.604 (0.206) 0.544 (0.183) 0.100 

Iran (IR) 28 98 5.76 (3.60) 1.61 0.616 (0.191) 0.574 (0.194) 0.070 

Pakistan (PK) 39 99 5.82 (3.78) 1.62 0.617 (0.193) 0.561 (0.209) 0.092 

India (BD) 19 81 4.76 (2.44) 1.57 0.574 (0.257) 0.588 (0.273) -0.025 

Southern Asia 145 121 7.12 (4.87) 1.62 0.617 (0.200) 0.559 (0.187) 0.092 
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Table S4. Geographical locations and archaeological information of the early-domestic and wild 
dromedary specimens successfully amplified for the 531-bp MT-CR fragment. 
 

Sample ID Site Sector-level Date  
(archeological period) Sequencing Technology GenBank  

Accession Number 

Wild      

AB620 Al-Buhais (BHS 18), 
UAE - 5000-4000 BCE Sanger sequencing KT334320 

 

UN624 Umm an-Nar,  
UAE - Early Bronze Age  

(3000-2000 BCE) Sanger sequencing KT334323 
 

AS1 Al Sufouh 2,  
UAE A-C7-lvl7 2400-1400 BCE Sanger sequencing KT334316 

 

AS13 Al Sufouh 2,  
UAE A-C7-lvl3 2400-1400 BCE Sanger sequencing KT334317 

 

AS34 Al Sufouh 2,  
UAE A-1N-lvl5 2400-1400 BCE Sanger sequencing KT334318 

 

AS36 Al Sufouh 2,  
UAE A-C7-lvl4 2400-1400 BCE Sanger sequencing KT334319 

 

TA618 Tell Abraq,  
UAE Locus 5111 

Transition Late Bronze - 
Early Iron Age  

(ca. 1260 - 1130 BCE) 
Sanger sequencing KT334321 

 

TA623 Tell Abraq,  
UAE Locus 5163 Iron Age II  

(ca. 800 - 500 BCE) Sanger sequencing KT334322 
 

Early-
domestic      

AP2 Apamea,  
Syria G357 Early Byzantine  

(400-600 CE) 

Ds-DNA library  
In-solution capture  
NGS sequencing 

 

KT334309 
 
 

SG1 Sagalassos,  
Turkey 92N7 Early Byzantine  

(450-550 CE) 

Ds-DNA library  
In-solution capture  
NGS sequencing 

 

KT334313 
 

SG2 Sagalassos,  
Turkey 98PQ35 Early Byzantine  

(450-700 CE) 

Ds-DNA library  
In-solution capture  
NGS sequencing 

 

KT334314 
 
 

AQ30 Aqaba,  
Jordan D3-14 Mamluk  

(1260-1456 CE) 

Ds-DNA library  
In-solution capture  
NGS sequencing 

 

KT334310 
 
 

AQ34 Aqaba,  
Jordan D3-30 Mamluk  

(1260-1456 CE) 

Ds-DNA library  
In-solution capture  
NGS sequencing 

 

KT334311 
 

AQ40 Aqaba,  
Jordan D5A-1 Ottoman  

(1456-1870 CE) 

Ds-DNA library  
In-solution capture  
NGS sequencing 

KT334312 
 

TU Tulln an der Donau, 
Austria SE 6684 2nd Ottoman-Habsburg 

war (ca. 1683) Sanger sequencing KT334315 
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Table S5. Primer pairs used to amplify the 531-bp MT-CR fragment (nt15347-15877) in ancient 
dromedary samples.  
 

Primer Name  Sequence (5’ to 3’) Tm °  C Product size 
(bp) 

Ancient_mtDNA_F1 RCCACACCCTCCCTAAGACT 60.51 92 

Ancient_mtDNA_R1 CGGAGGTCAGGGGGTAGT 59.91  

Ancient_mtDNA_F2 CACCCAAAGCTGGAATTCTT 59.17 100 

Ancient_mtDNA_R2 GGCATGAYATGTGGTTTTTAG 58.01  

Ancient_mtDNA_F3 ACGGCAATAGCCCTTGAGTA 59.73 97 

Ancient_mtDNA_R3 CAACGCGTGCTGTGACAT 60.50  

Ancient_mtDNA_F4 GCGTRCATGAAACCTCAATA 59.69 90 

Ancient_mtDNA_R4 TATATGCATGGGGCAAACAA 59.78  

Ancient_mtDNA_F5 TGTTTGCCCCATGCATATAA 59.78 85 

Ancient_mtDNA_R5 TGCGTATTGACTGGAAATGA 57.70  

Ancient_mtDNA_F6 CRCATTATGTCAAATCATTTCC 59.33 99 

Ancient_mtDNA_R6 CTGCYRAGCGGGTTGATGAT 60.24  

Ancient_mtDNA_F7 CCGCGTGAAATCATCAACC 62.41 94 

Ancient_mtDNA_R7 TGCCTGGTAAAGTTCCGGTAT 60.73  

Ancient_mtDNA_F8 CATCCATTGTGGGGGTTTCT 61.90 86 

Ancient_mtDNA_R8 AGTGTGGGCGATTTTAGGTG 59.99  

Ancient_mtDNA_F9 GGACCATCTCACCTAAAATCG 58.52 80 

Ancient_mtDNA_R9 GGCATGGGCTGATTAGTCATT 61.22  

Ancient_mtDNA_F10 GGCATCTGGTTCTTACTTCAGG 60.13 100 

Ancient_mtDNA_R10 GGCATGGGCTGATTAGTCATT 61.22  

 
Primer sequences were designed using Camelus dromedarius mitogenome as reference (accession 
number: NC_009849.1) 
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Table S6. Estimates of the time to the most recent common ancestor (TMRCA) of the two 
haplogroups HA and HB inferred with different approaches. 
 
(i) TMRCA calculation based on the mutation rate inferred from cattle MT-CR  
(# = 6.94x10-07 [4.52x10-07, 9.35x10-07] sub/site/y; (53))  
tau (HA-HB) = 9.34 sub /867bp     
 # (MT-CR cattle) TMRCA     
 4.52E-07  11,917      
 6.94E-07  7,761      
 9.35E-07  5,761      
       
DA (HA-HB) = 10.91 sub /867bp     
 # (MT-CR cattle) TMRCA     
 4.52E-07  13,920      
 6.94E-07  9,066      
 9.35E-07  6,729      
       
       
(ii) TMRCA calculation based on the genetic distance between dromedary - Bactrian camel for the 867bp 
fragment  
 
Assuming a divergence time between dromedary - Bactrian camel to 4.4x106 [1.9x106 - 7.2x106] ya  (54) 
 
(iia) Drom-Bac._DA= 268.25 sub /867bp  (iib) Drom-Bac._tau= 258.08 sub /867bp 
       

tau (HA-HB) = 9.34 sub /867bp   tau (HA-HB) = 9.34 sub /867bp 
 # (Drom-Bac._DA) TMRCA  # (Drom-Bac._tau) TMRCA 
 2.15E-08  250,692    2.07E-08  260,571  
 3.52E-08  153,200    3.38E-08  159,237  
 8.14E-08  66,155    7.83E-08  68,762  

DA (HA-HB) = 10.91 sub /867bp   DA (HA-HB) = 10.91 sub /867bp 
 # (Drom-Bac._DA) TMRCA  # (Drom-Bac._tau) TMRCA 
 2.15E-08  292,824    2.07E-08  304,364  
 3.52E-08  178,948    3.38E-08  185,999  
 8.14E-08  77,273    7.83E-08  80,318  
 
 
(iii) Bayesian inference of TMRCA by incorporating tip date information from ancient samples on the 
448 bp MT-CR fragment in BEAST 2.2.0 
  TMRCA 95% HPD    
  8,933  7,000 – 14,191    

 
 
(iv) Bayesian inference of TMRCA using the substitution rate # = 1.232x10-6 sub/site/y [95% HPD: 
4.4353x10 - 7, 2.2132x10-06], which was estimated previously from the tip dates using the 448 bp CR 
fragment including all ancient samples    

TMRCA 95% HPD 
6,094  5,829 – 6,374 
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Table S7. Marginal densities and posterior probabilities (PP) for scenarios (i) - (iv). 
 

Scenario log10 (marginal density) PP 
i   -4.119 0.013 

ii    5.993 0.212 
iii -17.000 0.002 
iv    4.193 0.035 

 
 
 
 
 
 
Table S8. Log10 Bayes factors (BF) calculated for all pairwise comparisons between scenarios (i) - 
(iv). 
 

Scenario i ii iii iv 
i  10.1122 -12.8808 8.3123 

ii -10.1122  -22.9930 -1.7999 
iii 12.8808 22.9930  21.1931 
iv -8.3123 1.7999 -21.1931  

 
The scenario given on the header row is the hypothesis tested with the scenario in the first column 
being the alternative hypothesis. Shaded cells indicate BF values >3 (log10(3) = ~0.477). 
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Table S9. Current (N0), ancestral (N1) effective population size and time since bottleneck (t) and their 
95% highest probability density (HPD) intervals inferred in MSVAR and boa R Package. 
 

 
N0 = current effective population size (Ne); N1 = ancestral Ne; t = time in years since demographic 
event started; HPD = 95% highest probability density interval; na = not applicable. While Gelman-
Rubin’s diagnostic test indicated reasonable convergence for WNAF-NAP and SWAP populations 
(values <1.1; (75)), convergence could not be reached after 2.5*109 MCMC iterations for the 
parameters N0 and t in the SEAP and SAS groups. EAF = East Africa; All-excl.EAF = all populations 
combined without EAF; WNAF-NAP = Western North Africa and Northern Arabian Peninsula; SEAP 
= Southeast Arabian Peninsula, SWAP = Southwest Arabian Peninsula; SAS = Southeast Asia 
including Australia. 

Population Run N0 HPD  N1 HPD  t HPD 
EAF 1 407  93-1,778   19,055 3,236-114,815   8,710  1,072-58,884 
 2 347  81-1,514   16,982  3,162-91,201   7,762  1,096-48,978 
 3 437  102-1,778   16,982  2,951-100,000   8,710  1,380-58,884 
 4 398  95-1,585   18,621  3,388-97,724   9,333  1,585-57,544 

All-excl.EAF 1 476 78-2,407  14,594 3,043-66,755  4,270 450-32,032 
 2 427 67-2,347  11,646 2,459-54,746  3,475 335-30,576 
 3 654 123-2,954  17,197 3,491-83,685  7,177 871-56,087 
 4 584 123-2,444  13,759 2,874-62,912  5,549 834-34,310 

WNAF-NAP 1 389 48-2,344   7,413  1,318-38,019   3,311  309-30,903 
 2 295 21-2,570   6,607  1,202-37,154   2,344  63-52,481 
 3 562 93-2,691   8,913  1,585-54,954   5,129  427-60,256 
 4 427 76-2,399   7,413  1,259-4,1687   3,802  407-36,308 

SEAP 1 na na   8,128  1,479-39,811   na  na 
 2 na na   5,370  933-28,184   na  na 
 3 na na   6,918  1,259-32,359   na  na 
 4 na na   6,918  1,288-38,019   na  na 

SWAP 1 166 18-1,230  10,000  1,584-58,884   3,715  324-37,154 
 2 162 24-977   8,128  1,318-50,119   3,631  457-30,200 
 3 112 2-1,175  10,233  1,698-61,660   2,570  45-33,884 
 4 91 5-912   6,607  977-38,019   1,660  62-24,547 

SAS 1 na na   7,244  1,445-39,811  na na 
 2 na na   7,079  1,259-37,154  na na 
 3 na na   8,710  1,585-46,774  na na 
 4 na na   7,244  1,259-3,5481  na na 
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Table S10. Prior boundaries of the parameters used to generate the four scenarios. 

 
 
DNA_MUTATION: rate per site per generation, with a generation time assumed to be 5y; 
MSAT_MUTATION: rate per locus per generation; GAMMA: gamma distribution of the msat mutation 
rate; LOG N1/N2/NA/NW1/NW2: Log of the estimated effective population size of population 1/ 2/ 
ancestral/ wild 1/ wild 2; Migrants: proportion of population 1 made of migrants from population 2; 
tadm: time of admixture between populations, in generations; tdom/1 /2: time of domestication, in 
generations. 
 
 
 
 
 
Table S11. Fifteen summary statistics of the observed dataset (n = 642) generated by ARLEQUIN. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Obs0 refers to statistics calculated from the 
microsatellite data. Obs1 refers to statistics 
calculated from the mtDNA data. Statistics in bold 
were removed before the final analysis due to high 
correlation to other statistics estimated with the 
Spearman rho correlation analysis (Fig. S9). 
 
Population specific summary statistics: the mean 
number of alleles (Obs0_K) and mean genetic 
diversity (Obs0_H) across loci, the mean of 
pairwise differences (Obs1_Pi), the segregating 
sites (Obs1_S) and the private segregating sites 
(Obs1_PrS). 
 
Population pairwise comparisons: the mean total 
genetic diversity (Obs0_tot_H), the pairwise FST for 
microsatellite (Obs0_FST), mean number of alleles 
(Obs0_tot_K) across loci for two populations, 
number of haplotypes (Obs1_tot_K), and the mean 
of pairwise differences (Obs1_PI_2_1). 

 Scenario (i) Scenario (ii) Scenario (iii) Scenario (iv) 
Parameter Min Max Min Max Min Max Min Max 
DNA_MUTATION 1.00E-08 1.00E-06 1.00E-08 1.00E-06 1.00E-08 1.00E-06 1.00E-08 1.00E-06 
MSAT_MUTATION 1.00E-05 1.00E-02 1.00E-05 1.00E-02 1.00E-05 1.00E-02 1.00E-05 1.00E-02 
GAMMA 8 15 8 15 8 15 8 15 
LOG_N1 1 6 1 6.5 1 8 1 6 
LOG_N2 1 8 1 8 1 8.5 1 8.5 
LOG_NA 1 8 1 8 1 8 1 9 
LOG_NW1   1 8 1 5 1 7 
LOG_NW2     1 5   
Migrants (m)   0 1     
tadm   10 5,000     
tdiv     10 15,000   
tdom 10 8,000 10 25,000   10 8,000 
tdom1     10 7,000   
tdom2     10 7,000 10 3,000 

Statistic Obs. Values 
OBS0_K_1 5 
OBS0_K_2 8.8235!
OBS0_TOT_K 9!
OBS0_H_1 0.5638!
OBS0_H_2 0.6282 
OBS0_TOT_H 0.6268 
OBS0_FST_2_1 0.042 
OBS1_S_1 16 
OBS1_S_2 42 
OBS1_PRS_1 3 
OBS1_PRS_2 29 
OBS1_TOT_S 45 
OBS1_PI_1 3.61132 
OBS1_PI_2 2.07592 
OBS1_PI_2_1 3.1901 
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Table S12. Information about the seventeen microsatellite loci. 

 
 
 
 
 

 
 
 

 
The set of markers was selected according to recommendations from the joint Food and Agricultural 
organization of the United Nations (FAO) and International Society for Animal Genetics (ISAG) panel 
on livestock genetic diversity. Genotypes from locus CMS17 were excluded from the analysis, as this 
marker, which was developed for C. bactrianus, was found monomorphic in C. dromedarius. 
Parameter estimations were performed with CERVUS 3.0.7. 
 
†modified from Mariasegaram et al. (91); nA: number of alleles; PIC: Polymorphism Information 
Content – value of a marker for detecting polymorphism within the dromedary population; HWE: non-
deviation from Hardy-Weinberg Equilibrium expectation (NS: non significant P-value > 0.01); null a.: 
estimated frequency of null allele. 

Marker Reference nA HO HE PIC null a. 
HWE 
global 

population 

HWE 
without 

EAF 

HWE 
only 
EAF 

CMS09 (90) 10 0.685 0.725 0.683 0.029 NS NS NS 

CMS13 (90) 9 0.661 0.716 0.671 0.042 7.03E-04 NS NS 

CMS15 (90) 12 0.705 0.773 0.739 0.046 9.13E-06 NS NS 

CMS18 (90) 5 0.369 0.402 0.359 0.041 NS 1.21E-05 NS 

CMS25 (90) 8 0.570 0.637 0.567 0.056 9.41E-06 3.07E-05 NS 

CMS50 (90) 15 0.786 0.865 0.849 0.048 4.10E-07 NS NS 

CMS121 (90) 14 0.709 0.761 0.727 0.036 1.61E-03 NS NS 

CVRL01R† (91) 24 0.809 0.868 0.858 0.035 2.49E-04 2.18E-03 NS 

CVRL04R† (91) 7 0.611 0.643 0.570 0.024 NS NS NS 

CVRL05R† (91) 12 0.617 0.667 0.616 0.041 1.30E-04 NS NS 

CVRL06R† (91) 5 0.316 0.328 0.294 0.017 NS NS NS 

CVRL08 (91) 3 0.296 0.338 0.282 0.065 2.78E-04 2.32E-03 NS 

LCA66 (92) 7 0.677 0.735 0.688 0.041 NS NS NS 

VOLP10 (93) 12 0.723 0.795 0.763 0.048 6.00E-08 NS NS 

VOLP32 (93) 3 0.342 0.348 0.288 0.009 NS NS NS 

YWLL44 (94) 10 0.527 0.626 0.574 0.081 6.47E-11 4.01E-10 NS 

YWLL59 (94) 2 0.401 0.483 0.366 0.092 3.10E-07 2.30E-04 3.00E-04 

Average 
over all loci 

(95) 9.29 0.577 0.582 0.630    

  5'-3' Forward sequence 5'-3' Reverse sequence 

CVRL1R† GGGCAAGCTTGACTTGACTT TGCTTATCATGCACGAGGTC 

CVRL4R† CTTTCTGAACTTCTGTTGTCTGC AAACCTGCAAGTTCTCAGTTTAAG 

CVRL5R† TCTTCCTGGTCCATATCTTGTAGAC CACTGGTCCCTGTCATTATGC 

CVRL6R† AATTCTGACCAGGAGTCTGCTT AGTCCATGAGCAAGTGAATGAA 
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Table S13. Posterior density distributions of historical and demographic parameters in the best-fitting scenario (ii) estimated with ABCTOOLBOX 
 
Parameter DNA 

MUTATION 
GAMMA LOG N1 LOG N2 LOG NA LOG NW1 MSAT 

MUTATION 
 

MIGRANTS 
tadm tdom 

Mode 1.095E-07 13.241 4.040 5.538 2.688 2.970 7.63E-04 0.84925 85.23 2783.39 
Median 2.312E-07 11.773 4.051 5.552 3.369 3.973 1.51E-03 0.71201 680.54 6333.29 
Quantile 50 Lower bound 1.185E-07 10.086 3.582 5.086 2.305 2.645 7.46E-04 0.52397 319.87 3081.82 
Quantile 50 Upper bound 3.923E-07 13.279 4.529 6.016 4.674 5.550 2.53E-03 0.85322 1185.80 11661.10 
Quantile 90 Lower bound 3.159E-08 8.540 2.922 4.424 1.326 1.437 1.47E-04 0.22328 61.54 654.12 
Quantile 90 Upper bound 6.773E-07 14.543 5.227 6.672 6.620 7.277 4.66E-03 0.96650 2145.68 19923.50 
Quantile 95 Lower bound 1.976E-08 8.285 2.712 4.212 1.165 1.229 6.68E-05 0.14043 29.54 315.33 
Quantile 95 Upper bound 7.586E-07 14.749 5.452 6.880 7.100 7.586 5.51E-03 0.98266 2490.23 21684.50 
Quantile 99 Lower bound 9.994E-09 8.048 2.306 3.803 1.021 1.036 1.39E-06 0.03751 3.88 31.80 
Quantile 99 Upper bound 8.685E-07 14.935 5.877 7.278 7.674 7.884 6.87E-03 0.99629 3025.11 23639.30 
HPD 50 Lower bound 2.481E-05 11.166 3.570 5.116 1.704 1.915 3.91E-05 0.69349 10.00 22.00 
HPD 50 Upper bound -2.457E-05 14.191 4.482 5.995 3.920 4.623 1.44E-03 0.97485 661.96 6297.88 
HPD 90 Lower bound 2.725E-05 8.774 2.907 4.447 1.000 1.141 3.53E-05 0.34173 10.00 22.00 
HPD 90 Upper bound -2.668E-05 14.719 5.201 6.628 5.889 6.874 3.70E-03 0.99998 1740.20 17092.40 
HPD 95 Lower bound 2.774E-05 8.493 2.714 4.236 1.000 1.000 3.30E-05 0.23621 10.00 22.00 
HPD 95 Upper bound -2.706E-05 14.894 5.450 6.874 6.593 7.226 4.66E-03 0.99998 2141.41 19979.30 
HPD 99 Lower bound 2.704E-05 8.1407 2.299 3.814 1.000 1.000 3.43E-05 0.09048 10.00 22.00 
HPD 99 Upper bound -2.621E-05 15 5.864 7.261 7.508 7.789 6.41E-03 0.99998 2843.52 22991.70 
 
DNA_MUTATION: rate per mitochondrial site per generation, with a generation assumed to be 5y; MSAT_MUTATION: rate per autosomal locus per generation; 
GAMMA: gamma distribution of the microsatellite mutation rate; LOG N1/N2/NA/NW1/NW2: Log of the estimated effective population size of population 1/ 2/ 
ancestral/ wild 1/ wild 2; MIGRANTS: proportion of population 1 made of migrants from population 2; tadm: time of admixture between populations, in 
generations; tdom/1 /2: time of domestication, in generations. 
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Figure S1. Consensus Bayesian phylogeny of the 76 modern dromedary haplotypes, resolving into 
two haplogroups (HA and HB). 

Values above the branches indicated the posterior probabilities (PP).



(a) (b) 

Figure S2. Delta K analysis for a different number of clusters (K). 

(a) For the global modern sample set consisting of 970 dromedaries, Delta K showed a peak at K = 2, suggesting two 
clusters as the optimal solution. (b) Excluding the EAF individuals from the dataset (n=810 dromedaries), Delta K showed 
a peak at K = 9, suggesting nine clusters as the optimal solution.



Axe 1 (41.67 %)

7.06.05.04.03.02.01.00-1.0-2.0-3.0-4.0

80

70

60

50

40

30

20

10

0

-10

-20

-30

-40

-50

-60

A
xe

 2
 (2

7.
64

 %
)

EAF
WNAF
NAP
SAP
SAS

Figure S3. Factorial correspondence analysis (FCA) of 970 modern dromedaries based on 17 micro-
satellite loci. 

The individuals are colored according to their geographical origin. The axes 1–2 explain 69.31% of the 
variation among the populations and separate most of the EAF individuals from the rest of the population.
EAF: East African population (n = 160); WNAF: Western and Northern African populations (n = 207); NAP: 
Northern Arabian Peninsula (n = 317); SAP: Southern Arabian Peninsula (n = 141); SAS: Southern Asian 
population (n = 145).
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Figure S4. Schematic representation of the historical network of caravan routes (i.e., Incense and Silk routes) 
according to descriptions from Bulliet (1) and Heiss (16). 

Archaeological sites from which the ancient specimens originated are pictured with a black star (right-bottom-corner 
zoom on the UAE peninsula – 1: Al-Buhais (5000-4000 BCE); 2: Umm-an-Nar (Early Bronze Age: 3000-2000 BCE); 3: 
Al-Sufouh (ca. 2400-1400 BCE); 4: Tell Abraq (Late Bronze – Iron Age: 1260-500 BCE); main map – 5: Apamea, Syria 
(Early Byzantine: 400-600 CE); 6: Sagalassos, Turkey (Early Byzantine: 450-700 CE); 7: Aqaba, Jordan (Mamluk and 
Ottoman Periods: 1260-1870 CE); 8: Tulln, Austria (2nd Turkish war ca. 1683 CE)). 
The historical repartition of domestic dromedaries (depicted with dashed lines) is bordered on the south by areas infested 
with Trypanosoma and included some geographical barriers as Ethiopian Highlands and Arabian Desert (surrounded with 
white lines). 
The land route (depicted by solid lines) from Aden to North Arabian Peninsula was part of the Incense Road and 
consisted of three main itineraries, namely i) al tariq Tihama (or Tihama road) along the coastal plains, ii) al tariq al jibal 
(or the highland road), and iii) al tariq al sufla (or the lower road) via eastern Arabian Desert. On the western coast of the 
Red Sea existed a trading route connecting the Horn of Africa to Petra and Damascus via Port Sudan, ‘Aydhab and Myos 
Hormos (near today’s Kosseir). The trans-Saharan route passed through the major centers of southern Saharan rock art 
such as Darfur (western Sudan), Ennedi and Tibesti (Chad), Tassili and Ahaggar (Algeria) up to Adrar (Algeria) and 
linked these regions with the upper Nile valley. A second route, bordering the Mediterranean coast, connected Northwest-
ern Africa to the North of the Arabian Peninsula from where caravans were leaving to Southern Asia along the Silk Road. 
Two major sea routes (pictured with dotted lines) connected the Arabian Peninsula to the African continent: i) the south-
ern one, from Hadharamut and Aden to the Horn of Africa (‘Land of Punt’), and ii) from Jiddah to ‘Aydhab and Port 
Sudan. Sea routes were also used between the Gulf of Oman and Iran and between South Arabian Peninsula (Aden) and 
Indian subcontinent, known as the Spice Route. The most contemporary migration route started in the 1860s and linked 
Pakistan to Australia where several thousands of camels were imported.
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Figure S5. Bayesian skyline plot derived from the alignment of eight MT-CR sequences from wild 
dromedaries showing the female effective population size (Ne) fluctuations for the past ten millennia. 

The thick dashed line depicts the median estimate of Ne with black lines delimiting the 95% HPD. Substitution 
rate ! = 1.232x10-06 sub/site/y [95% HPD: 4.4353x10-07, 2.2132x10-06] was used to compute the BSP under 
the stepwise constant function.
For comparison, approximate archaeological time periods have been added to the time scale (in years before 
present). LA: Late Antiquity; MA: Middle Age. 
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Figure S6. Four different scenarios of domestication simulated with ABCToolbox on the combined mitochon-
drial and nuclear dataset (n = 642). 

Scenarios: (i) one domestication, (ii) one domestication with consecutive admixture from a wild unsampled source 
population, (iii) two independent domestications at the variable time points, and (iv) two domestications at serial time 
points. In scenario (iii), tdom1 and tdom2 do not constrain each other.
Pop1 = EAF (n = 62); Pop2 = WNAF_NAP_SAP_SAS_combined (n = 580); 
NA = ancestral Ne; N1 = Ne of Pop1; N2 = Ne of Pop2; NW1 = Ne of a wild unsampled source population 1; NW2 = Ne 
of a wild unsampled source population 2; tdom = time of domestication; tdom1/2 = time of domestication at variable time 
points; tdiv = time of divergence of the two unsampled wild ancestral populations; tadm = time of admixture 
(introgression) from a wild unsampled population; t0 = present. Time is not to scale. 
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(b) Scenario (ii)

Figure S7. Posterior (in red), marginal (in blue), and prior (in black) distributions of the demographic parameters for 
the four domestication scenarios (a-d), plotted using the 5,000 closest simulations to the observed dataset.
 
DNA_MUTATION: rate per site per generation, with a generation time assumed to be 5y; MSAT_MUTATION: rate per locus 
per generation; GAMMA: gamma distribution of the msat mutation rate; LOG N1/N2/NA/NW1/NW2: Log of the estimated 
effective population size of population 1/ 2/ ancestral/ wild 1/ wild 2; MIGRANTS: proportion of population 1 made of 
migrants from population 2;tdom: time of domestication, in generation; tdom1/2: time of domestication at variable time points;  
tadm: time of admixture (introgression) between populations.
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Figure S8. Density plots of MSVAR results showing ancestral (dashed lines) and current (solid lines) effective 
population size (Ne) estimations of (a) the different dromedary populations and (c) all populations combined 
excluding EAF, as well as (b, d) the time since their respective declines. 

Coalescent simulations were run using the 17-nuclear-loci dataset. Different priors are shown in grey dotted lines. Details are 
available in Table S9. EAF = East Africa, WNAF-NAP = Western-Northern Africa and Northern Arabian Peninsula, SWAP = 
Southwest Arabian Peninsula, SAS = Southern Asia, including Australia.
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pairwise differences (Obs1_PI_2_1).
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Figure S10. Model missclassification of the four different domestication scenarios 
using the R package abc. 

The confusion matrix is based on 1,000 samples of each scenario. Each grey shade from 
dark to light corresponds to the scenarios (i) to (iv), respectively. Scenario (ii) clearly 
differentiated based on the twelve summary statistics (Fig. S9; Table S11).



Figure S11. Examples of damage patterns in early-domestic dromedary sequences obtained from the 
samples collected in Aqaba (AQ30) and Sagalassos (SG2) archaeological sites. 

The base frequencies at the 5’ and 3’ ends of the strand breaks are depicted (top and middle). Frequencies are 
shown for A, G, C and T for the 10 bases at the 5’ and 3’ ends of the breaking sites. Note the excess of purines 
(A and G) at the first nucleotide position preceding the strand break. The gray square brackets show the start and 
end of the molecules (strand break). The C to T nucleotide misincorporation at the first and the last 25 bases is 
shown (bottom). There is an increase in frequency of T at the 5’ and A at the 3’ end, which is a typical pattern for 
aDNA damage.
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Figure S12. Density distributions of the twelve summary statistics (black) with 2.5 and 97.5 quantiles (blue). 

Distributions were generated from the 5,000 simulations closest to the observed dataset of scenario (ii). Corresponding 
observed summary statistic of each plot is shown in red.
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