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Abstract — This paper presents a two-output indirect matrix converter feeding an open-ended 

winding induction machine. The modulation strategy for the converter input stage, which 

provides the DC voltage for the output stages, exploits the capability of the input rectifier to 

produce different DC voltage levels. Moreover, this paper includes a space vector modulation 

strategy for the converter output stages intended to eliminate the zero sequence load voltage. 

Furthermore, in order to decrease commutation losses, output stage commutation will take 

place at reduced voltage when load voltage requirements are low. Modulation strategies and 

overall system operation are verified via simulation in a PSim/Matlab platform with the 

machine operating under an open loop V/f control strategy. Experimental results are also 

presented to validate the control strategies. 

Keywords—Matrix converters; Space vector pulse width modulation; Variable speed drives; 

Open-ended winding. 
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1. Introduction 

In recent years, dual-inverter systems feeding open-ended winding induction motor drives have 

gained interest because they present several advantages when compared to a standard wye or delta 

connected induction machine drives. The main features of an open-winding induction machine drive 

can be summarized as [15]: each inverter is rated at half the machine power because power is supplied 

to the machine from both winding ends; each phase stator current can be controlled independently; 

possibility to have twice the effective switching frequency depending on the modulation strategy; 

extensibility to more phases [1],[3] leading to a phase current reduction; possibility of reducing 

common-mode voltage [5]; and certain degree of fault tolerance because of the voltage space vector 

redundancy. 

However, an open-ended winding induction machine drive can have some drawbacks, such as [15]: 

possibility of zero sequence current flowing in the machine because of the occurrence of zero 

sequence voltage when a single DC supply is used [9]; increased conduction losses; higher complexity 

in the power converter, i.e. more power devices, circuit gate drives, etc. 

Direct-link converters or matrix converters [14], have the distinctive advantages of bidirectional 

power flow capability, low distorted input currents with small passive input filter and do not require 

bulky energy storage elements. Moreover, when these converters are used to feed open-ended 

winding AC machines up to 1.5 times the input phase voltage can be produced across the machine 

phase windings [12]. In this paper an open-ended winding induction machine supplied by a two-

output Indirect Matrix Converter (IMC) is presented. A Space Vector Modulation (SVM) strategy 

which eliminates the output zero sequence voltage is shown. Moreover, the capability of the input 

rectifier to produce different virtual DC voltages is exploited [8],[10]. If the virtual DC voltage is 

reduced, then commutations of the output Voltage Source Inverters (VSI’s) can take place at lower 

voltages, thus reducing commutation losses. Therefore, input stage modulation is used to increase or 

decrease the DC voltage, depending on the machine operating conditions. Special care is paid in order 



not to cause over modulation. The technical feasibility of the proposed topology, modulation strategy 

and control algorithms is thoroughly validated by means of PSim simulations, considering a V/f 

controlled induction machine. Experimental results are also presented using a 2 kW machine. 

2. Power converter topology 

The IMC, also known as a direct two-stage power converter, shows similar performance as the 

standard MC in terms of low distortion input currents, bidirectional power flow and number of devices 

(18 IGBTs and 18 diodes). The topology is similar to an AC/DC/AC conversion system using two 

back-to-back VSI converters but without including the bulky capacitors in the DC link. The 

scheme considers a 3-to-2 matrix converter, a current rectifier converter, at the converter input (the 

input stage) and a standard VSI at the converter output (the output stage). The IMC could be seen as 

an extension of early work carried out in the area of developing AC/DC/AC power converters without 

DC link capacitors [2],[4],[6], using either GTO thyristors or IGBT’s to implement unidirectional 

switches. In those cases, the application of PWM strategies generates input current waveforms similar 

to the ones obtained in diode rectifier with smooth DC link current. Hence, the input current 

harmonic content is better than the scheme with a DC link capacitor and input diode converter, but 

low order harmonics, e.g. 5th and 7th order harmonics, are still present. These low order harmonics 

can be eliminated if fully bidirectional switches are used in the input rectifier, as it is the case of the 

IMC, see Fig. 1. In this topology the rectifier provides the DC voltage to the dual-inverter system 

outputs and is usually controlled to operate with unity displacement power factor at the input. The 

output of the IMC consists of two standard VSI’s. Each inverter can produce eight space voltage 

vector locations independent of the other, resulting in a total of 64 voltage vector combinations, 

similar to a three level Neutral Point Clamped (NPC) inverter [13]. The open-end winding machine 

is connected between both VSI outputs. 



 

Fig. 1. IMC with one input and two output stages feeding an open-end winding induction machine. 

The space vectors for inverter 1 are shown in Table 1; the same space vectors are valid for inverter 2 

but with superscript 2. 

Table 1. Switching states of the individual inverter 

States of inverter 1 [𝑆𝐴1 𝑆𝐵1 𝑆𝐶1] 

𝑉1
1 = [1 0 0] 𝑉2

1 = [1 1 0] 𝑉3
1 = [0 1 0] 𝑉4

1 = [0 1 1] 

𝑉5
1 = [0 0 1] 𝑉6

1 = [1 0 1] 𝑉7
1 = [1 1 1] 𝑉8

1 = [0 0 0] 

Let 𝑉𝑖𝑗 = [𝑉𝑖
1𝑉𝑗

2] with 𝑖, 𝑗 = 1 … 8, be the phase voltage vector combination of the dual-inverter 

output, hence a diagram of the vector locations is shown in Fig. 2 where the availability of redundant 

switching states for some voltage space vectors of the dual-inverter can be noted.  



 

Fig. 2. Alpha-beta space vector locations of the dual-inverter scheme. 

 

3. Modulation for the input stage of the IMC 

The modulation for the input (rectifier) stage of the converter aims to obtain a positive DC link voltage 

in each sampling period and unity displacement factor at the input [7]. Moreover, the duty cycles used 

in the switching pattern should create sinusoidal currents at the converter input. Two different SVM 

strategies can be used in the rectifier [8]Error! Reference source not found. and the possible DC 

link voltage waveforms are shown in Fig. 3. 

  
a) b) 

Fig. 3. a) Maximum DC voltage. b) Reduced DC voltage. 



In order to obtain unity input displacement factor, the current reference vector is aligned with the 

vector corresponding to the converter input voltage. Hence three phase signals, corresponding to the 

converter input voltages, are used in the modulation strategies for the input rectifier. 

3.1. Modulation strategy for maximum DC voltage 

To maximize the DC link voltage, the sectors defined in Fig. 4 are considered, where 𝑖𝑟𝑒𝑓 is the 

current reference vector. It can be noted in Fig. 4a that in each sector there is one positive phase 

voltage and two negative phase voltages, or vice versa. The operation relies on keeping the upper (or 

lower) switch corresponding to the highest absolute value of the input phase voltages closed and the 

commutating the two lower (or upper) switches corresponding to the other input phase voltages; this 

results in a DC voltage composed of segments of the highest input line-to-line voltages in each sector 

(Fig. 3a). 

  

a) b) 

Fig. 4. a) Sectors defined by the input voltages and b) Locus of sectors and vectors for maximum DC 

voltage. 

Defining the rectifier phase input currents 𝑖𝑖𝑎 , 𝑖𝑖𝑏 and 𝑖𝑖𝑐,  according to Fig. 4b, in Sector I the input 

phase currents in one switching interval are given by: 

 

𝑖𝑖𝑎 = (𝑑𝑎𝑏 + 𝑑𝑎𝑐)𝑖𝐷𝐶 (1) 



𝑖𝑖𝑏 = −𝑑𝑎𝑏𝑖𝐷𝐶 (2) 

𝑖𝑖𝑐 = −𝑑𝑎𝑐𝑖𝐷𝐶 (3) 

 

where 𝑖𝐷𝐶 is the DC link current and 𝑑𝑖𝑗  (𝑖, 𝑗 = 𝑎, 𝑏, 𝑐) are the duty cycles for the input stage devices, 

with the first letter denoting the phase of the upper closed switch and the second letter the phase of 

the lower closed switch. 

From (1)-(3) for Sector I the duty cycles are: 

𝑑𝑎𝑏 + 𝑑𝑎𝑐 =
𝑖𝑖𝑎

𝑖𝐷𝐶
;    𝑑𝑎𝑏 = −

𝑖𝑖𝑏

𝑖𝐷𝐶
;     𝑑𝑎𝑐 = −

𝑖𝑖𝑐

𝑖𝐷𝐶
 (4) 

Because the zero current vectors are not used, the duty cycles need to satisfy the following 

relationship: 

𝑑𝑎𝑏 + 𝑑𝑎𝑐 = 1 (5) 

which implies, from eq. (4), that 𝑖𝐷𝐶 = 𝑖𝑎. Then the duty cycles are given by 

𝑑𝑎𝑏 = −
𝑖𝑖𝑏

𝑖𝑖𝑎
;    𝑑𝑎𝑐 = −

𝑖𝑖𝑐

𝑖𝑖𝑎
 (6) 

For unity displacement factor, the reference input currents are in phase with the phase input 

voltages, therefore the duty cycles of eq. (6) can be rewritten as: 

𝑑𝑎𝑏 = −
𝑖𝑖𝑏

𝑖𝑖𝑎
= −

cos(𝜃 − 120°)

cos(𝜃)
⟹ 𝑑𝑎𝑏 =

sin(30° − 𝜃)

cos(𝜃)
 (7) 

𝑑𝑎𝑐 = −
𝑖𝑖𝑐

𝑖𝑖𝑎
= −

cos(𝜃 + 120°)

cos(𝜃)
⟹ 𝑑𝑎𝑐 =

sin(150° − 𝜃)

cos(𝜃)
 (8) 

 

with 𝜃 = 2𝜋𝑓, where 𝑓 = 50 𝐻𝑧 is the supply frequency. Considering the sector angle of the 

reference vector 𝜃𝑟𝑒𝑓, and defining 𝑑𝑎𝑏 = 𝑑𝛾
𝑅 and 𝑑𝑎𝑐 = 𝑑𝛿

𝑅 then [10]Error! Reference source not 

found.: 

𝑑𝛾
𝑅 =

sin(60° − 𝜃𝑟𝑒𝑓)

sin(60° − 𝜃𝑟𝑒𝑓) + sin(𝜃𝑟𝑒𝑓)
 , 𝑑𝛿

𝑅 =
sin(𝜃𝑟𝑒𝑓)

sin(60° − 𝜃𝑟𝑒𝑓) + sin(𝜃𝑟𝑒𝑓)
 (9) 

and defining 



𝑑𝛾 = sin(60° − 𝜃𝑟𝑒𝑓) , 𝑑𝛿 = sin(𝜃𝑟𝑒𝑓) (10) 

eq. (9) can be rewritten as: 

𝑑𝛾
𝑅 =

𝑑𝛾

𝑑𝛾 + 𝑑𝛿
 , 𝑑𝛿

𝑅 =
𝑑𝛿

𝑑𝛾 + 𝑑𝛿
 (11) 

 

This result in a variable average DC voltage in each sampling time, given by:  

�̅�𝐷𝐶 =
√3

2

𝑉𝑙𝑖𝑛𝑒,𝑖𝑛

𝑑𝛾 + 𝑑𝛿
 (12) 

where 𝑉𝑙𝑖𝑛𝑒,𝑖𝑛 is the RMS line-to-line input voltage. 

Further details about this modulation strategy can be found in [7], [10]. 

 

 

3.2. Modulation strategy for reduced DC voltage 

If a reduced DC link voltage is required, the sectors defined in Fig. 5 should be considered. As can 

be seen in Fig. 5a, in each sector there is a positive voltage, a negative voltage and a voltage changing 

from positive to negative, or vice versa. In this case, in contrast to the modulation for maximum DC 

voltage, there are commutations in both the upper and lower switches of the converter in each sector. 

The result is a DC voltage composed of segments of the lower input line-to-line voltages (Fig. 3b). 

  

a) b) 

Fig. 5. a) Sectors defined by the input voltages and b) Locus of sectors and vectors for reduced DC 

voltage. 



According to Fig. 5b, in Sector I the input phase currents in one switching interval are given by: 

𝑖𝑖𝑎 = 𝑑𝑎𝑏𝑖𝐷𝐶 (13) 

𝑖𝑖𝑏 = (𝑑𝑏𝑐 − 𝑑𝑎𝑏)𝑖𝐷𝐶 (14) 

𝑖𝑖𝑐 = −𝑑𝑏𝑐𝑖𝐷𝐶 (15) 

 

Considering (13)-(15), the duty cycles for Sector I are: 

𝑑𝑏𝑐 − 𝑑𝑎𝑏 =
𝑖𝑖𝑏

𝑖𝐷𝐶
;     𝑑𝑎𝑏 =

𝑖𝑖𝑎

𝑖𝐷𝐶
;     𝑑𝑏𝑐 = −

𝑖𝑖𝑐

𝑖𝐷𝐶
 (16) 

Moreover, as the zero current vectors are again not used: 

𝑑𝑎𝑏 + 𝑑𝑏𝑐 = 1 ⟹ 𝑑𝑏𝑐 = 1 − 𝑑𝑎𝑏 ⟹ 𝑖𝑖𝑏 = (1 − 2𝑑𝑎𝑏)𝑖𝐷𝐶 (17) 

and with (16) and (17), the DC current can be obtained: 

𝑖𝑖𝑏 = (1 − 2𝑑𝑎𝑏)𝑖𝐷𝐶 ⟹ 𝑖𝑏 = 𝑖𝐷𝐶 − 2𝑑𝑎𝑏𝑖𝐷𝐶 (18) 

𝑖𝐷𝐶 = 2𝑖𝑖𝑎 + 𝑖𝑖𝑏 = 𝑖𝑖𝑎 − 𝑖𝑖𝑐 = 𝑖𝑖𝑎𝑐 (19) 

Then, the duty cycles for Sector I are: 

𝑑𝑎𝑏 =
𝑖𝑖𝑎

𝑖𝑖𝑎𝑐
;     𝑑𝑏𝑐 = −

𝑖𝑖𝑐

𝑖𝑖𝑎𝑐
 (20) 

To obtain unity displacement factor at the converter input, (20) can be rewritten as: 

𝑑𝑎𝑏 =
𝑖𝑖𝑎

𝑖𝑖𝑎𝑐
⟹ 𝑑𝑎𝑏 =

cos(𝜃)

cos(𝜃) − cos(𝜃 + 120°)
 (21) 

𝑑𝑏𝑐 = −
𝑖𝑖𝑐

𝑖𝑖𝑎𝑐
⟹ 𝑑𝑏𝑐 = −

cos(𝜃 + 120°)

cos(𝜃) − cos(𝜃 + 120°)
 (22) 

Considering the reference vector angle 𝜃𝑟𝑒𝑓, then defining  𝑑𝑎𝑏 = 𝑑𝛾
𝑅 and 𝑑𝑏𝑐 = 𝑑𝛿

𝑅 then: 

𝑑𝛾
𝑅 =

cos(𝜃𝑟𝑒𝑓)

cos(𝜃𝑟𝑒𝑓) + cos(60° − 𝜃𝑟𝑒𝑓)
 , 𝑑𝛿

𝑅 =
cos(60° − 𝜃𝑟𝑒𝑓)

cos(𝜃𝑟𝑒𝑓) + cos(60° − 𝜃𝑟𝑒𝑓)
 (23) 

 

and defining 

𝑑𝛾 = cos(𝜃𝑟𝑒𝑓) , 𝑑𝛿 = cos(60° − 𝜃𝑟𝑒𝑓) (24) 

the duty cycles 𝑑𝛾
𝑅 and 𝑑𝛿

𝑅 are given by (11). 

In this case the variable average DC voltage is given by [7], [10]: 



�̅�𝐷𝐶 =
1

2

𝑉𝑙𝑖𝑛𝑒,𝑖𝑛

𝑑𝛾 + 𝑑𝛿
 (25) 

Further information about this modulation strategy can be found in [7], [10]. 

Fig. 6a shows a transition from reduced DC voltage to maximum DC voltage and Fig. 6b shows the 

opposite situation. 

 

Fig. 6. Transition between both rectifier modulation strategies. 

 

The rectifier SVM for reduced DC link voltage decreases the voltage gain by √3. Thus, the transition 

between reduced and maximum DC link voltage should take place when the output voltage reference 

is higher than 
1.5

√3
⋅ 𝑉𝑝ℎ, 𝑖𝑛𝑝𝑢𝑡 = 0.866 ⋅ 𝑉𝑝ℎ, 𝑖𝑛𝑝𝑢𝑡, where 𝑉𝑝ℎ, 𝑖𝑛𝑝𝑢𝑡 is the converter input phase 

voltage. Further details about the modulations for the input stage can be found in [7], [10]. 

 

4. Modulation for the output stages of the IMC 

In an open-ended winding machine fed by two independent and isolated voltage sources there will be 

no zero sequence current circulation; however, further hardware is needed which increases the cost 

and volume of the drive. On the other hand, the topology proposed in this paper could produce the 

circulation of zero sequence currents because of zero sequence voltages applied to the machine phase 

winding. However, zero sequence voltages can be eliminated or reduced by using a suitable 

modulation strategy. 



In general, the zero sequence voltage at the machine terminals can be defined as: 

𝑣𝑧𝑠 =
𝑣𝐴1𝐴2 + 𝑣𝐵1𝐵2 + 𝑣𝐶1𝐶2

3
 (26) 

where 𝑣𝐴1𝐴2, 𝑣𝐵1𝐵2 and 𝑣𝐶1𝐶2 are the instantaneous machine phase voltages. Since the output phase 

voltage 𝑣𝑝ℎ,𝑜 can be obtained as: 

𝑣𝑝ℎ,𝑜𝑘 = 𝑣𝐷𝐶(𝑆𝑘1 − 𝑆𝑘2)  with 𝑘 = 𝐴, 𝐵, 𝐶 (27) 

where 𝑆𝑘1 and 𝑆𝑘2 (𝑘 = 𝐴, 𝐵, 𝐶) are the phase switching functions of inverter 1 and inverter 2, 

respectively, and 𝑣𝐷𝐶 is the DC link voltage, the output zero sequence voltage can be expressed as: 

𝑣𝑧𝑠 =
1

3
∑ 𝑣𝑝ℎ,𝑜𝑘

𝑘=𝐴,𝐵,𝐶

=
𝑣𝐷𝐶

3
∑ (𝑆𝑘1 − 𝑆𝑘2)

𝑘=𝐴,𝐵,𝐶

 (28) 

Thus, in order to make 𝑣𝑧𝑠 = 0, the following relationship must be satisfied: 

∑ 𝑆𝑘1

𝑘=𝐴,𝐵,𝐶

= ∑ 𝑆𝑘2

𝑘=𝐴,𝐵,𝐶

 (29) 

 

Therefore, in order to eliminate the instantaneous zero sequence voltage in the load is necessary and 

sufficient to have the same number of upper (or lower) switches closed on both output inverters at 

every switching period. 

The dual-inverter topology can produce 64 space voltage vectors locations. It can be found that there 

are two different but totally equivalent sets of active vectors which do not produce zero sequence 

voltages [11]; these sets are given in Table 2 where 𝑉𝑖𝑗 = [𝑆𝐴𝑝1 𝑆𝐵𝑝1 𝑆𝐶𝑝1 𝑆𝐴𝑝2 𝑆𝐵𝑝2 𝑆𝐶𝑝2] with 𝑖, 𝑗 =

1 … 8, is a space vector combination of the dual inverter.  

 

Table 2. Sets of active vectors which do not produce zero sequence voltage 

Set 1 Set 2 

𝑉15 = [1 0 0 0 0 1]         𝑉51 = [0 0 1 1 0 0] 𝑉24 = [1 1 0 0 1 1]         𝑉42 = [0 1 1 1 1 0] 



𝑉35 = [0 1 0 0 0 1]         𝑉53 = [0 0 1 0 1 0] 𝑉26 = [1 1 0 1 0 1]         𝑉62 = [1 0 1 1 1 0] 

𝑉31 = [0 1 0 1 0 0]         𝑉13 = [1 0 0 0 1 0] 𝑉46 = [0 1 1 1 0 1]         𝑉64 = [1 0 1 0 1 1] 

A representation of the locus formed by the space vectors producing null 𝑣𝑧𝑠 is shown in Fig. 7 where 

it can be seen that the hexagon is divided into six sectors and among the eight null vectors available, 

only six are finally used (three null vectors per set) in order to reduce the commutations in a period 

[12]. Moreover the null vectors should be mapped depending on the sector information [12]; the 

mapping is shown in Table 3. 

Table 3. Mapping of zero vectors 

Sector I II III IV V VI 

Set 1 zero vectors 𝑉11 𝑉55 𝑉33 𝑉11 𝑉55 𝑉33 

Set 2 zero vectors 𝑉44 𝑉22 𝑉66 𝑉44 𝑉22 𝑉66 

 

 

Fig. 7. Locus of vectors producing null zero sequence voltage. 

The duty cycles for the output stages are calculated using standard SVM as [7], [10]: 



𝑑𝛼 = 𝑚(𝑡) sin(𝜋
3⁄ − 𝜃𝑟𝑒𝑓,𝑜) , 𝑑𝛽 = 𝑚(𝑡) sin(𝜃𝑟𝑒𝑓,𝑜) and 𝑑0 = 1 − 𝑑𝛼 − 𝑑𝛽  (30) 

where 𝜃𝑟𝑒𝑓,𝑜 is the angle of the output reference voltage space vector and 𝑚(𝑡) is a variable 

modulation index, because of the variable average DC voltage,  given by: 

𝑚(𝑡) =
�̂�𝑜

�̅�𝐷𝐶

 (31) 

with �̂�𝑜 the peak value of the output reference voltage and �̅�𝐷𝐶 the average value of the DC link 

voltage (see (12) and (25)). Therefore, the eq. (31) can be rewritten as: 

𝑚(𝑡) =
�̂�𝑜

𝑘𝑉𝑙𝑖𝑛𝑒,𝑖𝑛
(𝑑𝛾 + 𝑑𝛿) (32) 

where 𝑘 is √3 2⁄  or 1 2⁄  depending on the modulation used for the input rectifier. Defining a constant 

modulation index 𝑚𝑜 as: 

𝑚𝑜 =
�̂�𝑜

𝑘𝑉𝑙𝑖𝑛𝑒,𝑖𝑛
        0 ≤ 𝑚𝑜 ≤ 1 (33) 

The duty cycles for the output stages result in: 

𝑑𝛼 = 𝑚𝑜(𝑑𝛾 + 𝑑𝛿) sin(𝜋
3⁄ − 𝜃𝑟𝑒𝑓,𝑜) (34) 

𝑑𝛽 = 𝑚𝑜(𝑑𝛾 + 𝑑𝛿) sin(𝜃𝑟𝑒𝑓,𝑜) (35) 

𝑑0 = 1 − 𝑑𝛼 − 𝑑𝛽  (36) 

To obtain a correct balance of the input currents and the output voltages in a switching period, the 

modulation pattern should produce all combinations of the rectification and the inversion switching 

states [7], resulting in the following duty cycles for the active vectors: 

𝑑𝛼𝛾 = 𝑑𝛼𝑑𝛾
𝑅  ,  𝑑𝛽𝛾 = 𝑑𝛽𝑑𝛾

𝑅 , 𝑑𝛼𝛿 = 𝑑𝛼𝑑𝛿
𝑅  ,  𝑑𝛽𝛿 = 𝑑𝛽𝑑𝛿

𝑅 (37) 

 

The total zero vector duty cycle is: 

𝑑0 = 1 − 𝑑𝛼 − 𝑑𝛽  (38) 

 
and the combined zero vector duty cycles: 

𝑑0𝛾 = 𝑑0𝑑𝛾
𝑅  ,  𝑑0𝛿 = 𝑑0𝑑𝛿

𝑅 (39) 



 

The duty cycles are the same for both output stages of the power converter and considering the vectors 

of Set 1 (see Tables 2 and 3), the switching sequence of each sector is given by Table 4.  

Table 4. Mapping of zero vectors 

 Sector I Sector II 

 𝑑𝛾
𝑅 𝑑𝛿

𝑅 𝑑𝛾
𝑅 𝑑𝛿

𝑅 

 𝑑0𝛾

2
 𝑑𝛼𝛾 𝑑𝛽𝛾 

𝑑0𝛾

2
 

𝑑0𝛿

2
 𝑑𝛽𝛿 𝑑𝛼𝛿 

𝑑0𝛿

2
 

𝑑0𝛾

2
 𝑑𝛼𝛾 𝑑𝛽𝛾 

𝑑0𝛾

2
 

𝑑0𝛿

2
 𝑑𝛽𝛿 𝑑𝛼𝛿 

𝑑0𝛿

2
 

INV

1 
𝑉1

1 𝑉1
1 𝑉1

1 𝑉1
1 𝑉1

1 𝑉1
1 𝑉1

1 𝑉1
1 𝑉5

1 𝑉1
1 𝑉3

1 𝑉5
1 𝑉5

1 𝑉3
1 𝑉1

1 𝑉5
1 

INV

2 
𝑉1

2 𝑉3
2 𝑉5

2 𝑉1
2 𝑉1

2 𝑉5
2 𝑉3

2 𝑉1
2 𝑉5

2 𝑉5
2 𝑉5

2 𝑉5
2 𝑉5

2 𝑉5
2 𝑉5

2 𝑉5
2 

 Sector III Sector IV 

 𝑑𝛾
𝑅 𝑑𝛿

𝑅 𝑑𝛾
𝑅 𝑑𝛿

𝑅 

 𝑑0𝛾

2
 𝑑𝛼𝛾 𝑑𝛽𝛾 

𝑑0𝛾

2
 

𝑑0𝛿

2
 𝑑𝛽𝛿 𝑑𝛼𝛿 

𝑑0𝛿

2
 

𝑑0𝛾

2
 𝑑𝛼𝛾 𝑑𝛽𝛾 

𝑑0𝛾

2
 

𝑑0𝛿

2
 𝑑𝛽𝛿 𝑑𝛼𝛿 

𝑑0𝛿

2
 

INV

1 
𝑉3

1 𝑉3
1 𝑉3

1 𝑉3
1 𝑉3

1 𝑉3
1 𝑉3

1 𝑉3
1 𝑉1

1 𝑉3
1 𝑉5

1 𝑉1
1 𝑉1

1 𝑉5
1 𝑉3

1 𝑉1
1 

INV

2 
𝑉3

2 𝑉5
2 𝑉1

2 𝑉3
2 𝑉3

2 𝑉1
2 𝑉5

2 𝑉3
2 𝑉1

2 𝑉1
2 𝑉1

2 𝑉1
2 𝑉1

2 𝑉1
2 𝑉1

2 𝑉1
2 

 Sector V Sector VI 

 𝑑𝛾
𝑅 𝑑𝛿

𝑅 𝑑𝛾
𝑅 𝑑𝛿

𝑅 

 𝑑0𝛾

2
 𝑑𝛼𝛾 𝑑𝛽𝛾 

𝑑0𝛾

2
 

𝑑0𝛿

2
 𝑑𝛽𝛿 𝑑𝛼𝛿 

𝑑0𝛿

2
 

𝑑0𝛾

2
 𝑑𝛼𝛾 𝑑𝛽𝛾 

𝑑0𝛾

2
 

𝑑0𝛿

2
 𝑑𝛽𝛿 𝑑𝛼𝛿 

𝑑0𝛿

2
 

INV

1 
𝑉5

1 𝑉5
1 𝑉5

1 𝑉5
1 𝑉5

1 𝑉5
1 𝑉5

1 𝑉5
1 𝑉3

1 𝑉5
1 𝑉1

1 𝑉3
1 𝑉3

1 𝑉1
1 𝑉5

1 𝑉3
1 

INV

2 
𝑉5

2 𝑉1
2 𝑉3

2 𝑉5
2 𝑉5

2 𝑉3
2 𝑉1

2 𝑉5
2 𝑉3

2 𝑉3
2 𝑉3

2 𝑉3
2 𝑉3

2 𝑉3
2 𝑉3

2 𝑉3
2 

 

It can be noted in Table 4 that in each sector one inverter keeps clamped in a switching state while 

the other inverter commutates. This allows reducing the switching losses of the IMC output stages. 

On the other hand it is worth stressing that the input stage has zero current soft switching for almost 

negligible input stage switching losses. 



 

5. Simulation results 

The modulation strategies proposed have been simulated using PSim/Matlab. The simulation has been 

performed for an open-end winding induction machine fed by a two-output IMC with open loop V/f 

control strategy. Table 5 shows the simulation parameters and Fig. 8 shows the modulation and 

control system.  

 

Fig. 8. Modulation and control system. 
 

The modulation index 𝑚𝑜 is limited to avoid going into overmodulation in the output stages. In this 

condition the output phase voltage achieved across the windings can be at most 1.5 times the supply 

phase voltage (220 V RMS). A flow diagram of the simulation scheme is shown in Fig. 9. 

Table 5. Simulation Parameters 

Variables Description Value Variables Description Value 

𝑉𝑠 Phase source voltage 220 V 𝑅𝑠 Stator resistance 0.8 Ω 

𝑓 Source frequency 50 Hz 𝑅𝑟 Rotor resistance 1.0 Ω 

𝐶𝑓 Input filter capacitance 12 µF 𝐿𝑠 Stator self inductance 0.100 H 

𝐿𝑓 Input filter inductance 0.5 mH 𝐿𝑟 Rotor self inductance 0.100 H 

𝑓𝑠 Switching frequency 10 kHz 𝐿𝑚 Magnetizing inductance 0.075 H 

𝑃𝑚 Machine power 5 kW    



 

Fig. 9. Flow diagram of the simulation scheme. 
 

The performance of the system is verified for reference output frequencies of 25 Hz (Figs. 10 - 12) 

and 50 Hz (Figs. 13 - 15); the corresponding voltage references are 165 V and 330 V. Fig. 10 shows 

the phase-𝑎 voltage (top) and machine currents (bottom). 



 
Fig. 10. Machine phase voltage (top) and currents (bottom) for reduced DC voltage. 

 

The reduced DC link voltage and its frequency spectrum are shown in Fig. 11 top and bottom, 

respectively. 

 
Fig. 11. Reduced DC voltage (top) and its frequency spectrum (bottom). 

 

Fig. 12 (top) shows the input source currents. A distortion occurring every 60° (when a rectifier sector 

change takes place) can be appreciated; this distortion can be reduced by increasing the input filter 

damping. Fig. 12 (bottom) shows the input phase voltage and current where the unity displacement 

factor operation can be noted. 



 
Fig. 12. Input currents (top) and input phase voltage and current (bottom) for reduced DC voltage. 

 

The phase-𝑎 voltage (top) and machine currents (bottom) for the rectifier producing maximum DC 

voltage are shown in Fig. 13 (top). 

 
Fig. 13. Machine phase voltage (top) and currents (bottom) for maximum DC voltage. 

 

The maximum DC voltage is shown in Fig. 14 along with its frequency spectrum. A lower harmonic 

distortion can be appreciated in comparison with the spectrum shown in Fig. 11 (bottom) for reduced 

DC voltage. 



 
Fig. 14. Maximum DC voltage (top) and its frequency spectrum (bottom). 

 

The input currents are shown in Fig. 15 (top). The distortion occurring every 60° is lower than when 

operating with reduced DC voltage. The input displacement factor is unity as can be seen in Fig. 15 

(bottom). 

 
Fig. 15. Input currents (top) and input phase voltage and current (bottom) for maximum DC voltage. 

 

Regarding the input filter of the power converter and the 𝐿𝑓 − 𝐶𝑓 parameters given in Table 5, the 

cut-off frequency is given by: 



𝑓𝑐 =
1

2𝜋√𝐿𝑓𝐶𝑓

=
1

2𝜋√0.5 ⋅ 10−3 ⋅ 12 ⋅ 10−6
= 2055 𝐻𝑧 (40) 

 

Therefore, as the switching frequency of the power converter is 10 kHz, the high order harmonics of 

the rectifier input current shown in Fig. 16 (top - green waveform) are appropriately filtered out, as 

can be noted from the supply current shown in Fig. 16 (bottom). The filter capacitor voltage is also 

shown in Fig. 16 (top – blue waveform). 

 
Fig. 16. Rectifier input current and filter capacitor voltage (top). Source current (bottom). 

 

Finally, Fig. 17 shows the zero sequence voltage which is eliminated for both rectifier modulation 

strategies, because it depends only on the modulation for the output inverters (see section 4). 

 
Fig. 17. Zero sequence voltage. 

6. Experimental results 

Preliminary experimental results for open-loop operation have been obtained using the system shown 



in Fig. 18. A six-pole induction machine rated at 2 kW is used. A DSP board, based on the 

TMS320C6713 processor, is used as the control platform. The calculation of duty cycles is carried 

out on the DSP among several other tasks. An interface board, based on an FPGA, is used to 

implement the modulation strategies and data acquisition. Communication between the DSP and a 

PC is achieved using a DSK6713HPI (Host Port Interface) daughter card. The converter input stage 

uses SK60GM123 modules and the output stages use SK35GD126 modules. The switching frequency 

and the sampling frequency of input voltages, is 10 kHz. Voltages and currents have been measured 

using a Yokowaga DL850 ScopeCorder, using four two channel, 12 bit, high speed 100Ms/s modules 

for voltage measurements and two 12 bit, two channel, 10Ms/s modules for current measurements. 

The experimental setup parameters are shown in Table 6. 

 

 
Fig. 18. Experimental system. 

Table 6. Experimental Parameters 

Variables Description Value 

𝑉𝑠 Phase source voltage 90 V 

𝑓 Source frequency 50 Hz 

𝐶𝑓 Input filter capacitance 6 µF 

𝐿𝑓 Input filter inductance 0.5 mH 

𝑓𝑠 Switching frequency 10 kHz 

𝑃𝑚 Machine power 2 kW 

A transition between reduced and maximum DC link voltage is shown in Fig. 19 (top). The 

corresponding output phase voltage is shown in Fig. 19 (bottom).  



 
Fig. 19. DC link voltage (top) and output phase voltage (bottom) for a transition between both rectifier 

modulation strategies. 

For 50 Hz operation, the rectifier is modulated to obtain maximum DC voltage. In this case the 

voltages of the three machine windings are shown in Fig. 20 while Fig. 21 shows the zero sequence 

voltage produced (calculated by (26)). As can be noted, the zero sequence voltage is not exactly zero 

but this is probably due to the measurement procedure because not all of the channels are sampled at 

the same time and because in the simulation system the switches are considered ideal. 

 

Fig. 20. Machine phase voltages. Scales: 200 V/div, 5 ms/div. 



 

Fig. 21. Zero sequence voltage. 

The converter output currents (machine phase currents) are shown in Fig. 22 resulting in similar 

waveforms compared to the simulation results (see Fig. 13). 

 

Fig. 22. Machine currents. Scales: 5 A/div, 5 ms/div. 

The input phase voltage and current are shown in Fig. 23 where the unity displacement factor can be 

noted. In general, these preliminary experimental results are very similar to those obtained via 

simulations. 

 

Fig. 23. Input rectifier voltage and current. 

 



7. Conclusion 

A topology based on indirect matrix converter to drive open-ended winding AC machines have been 

presented. Two modulation strategies have been used for the input rectifier, depending on the output 

voltage requirement. One modulation strategy aims for a maximum positive DC voltage and the other 

modulation strategy aims for a reduced positive DC voltage. Regardless of the modulation strategy 

used for the rectifier, unity displacement power factor operation is achieved at the converter input. 

On the other hand, the output stages are modulated via a space vector modulation strategy which 

eliminates the zero sequence voltage in the load by using only certain voltage vectors. Simulation and 

experimental results have been shown verifying the feasibility of the proposed drive. 
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