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Quantum computers promise to perform computations beyond the reach of modern computers with profound
implications for scientific research. Due to remarkable technological advances, small scale devices are now
becoming available for use. One of the most apparent applications for such a device is the study of complex
many-body quantum systems, where classical computers are unable to deal with the generic exponential com-
plexity of quantum states. Even zero-temperature equilibrium phases of matter and the transitions between them
have yet to be fully classified, with topologically protected phases presenting major difficulties. We construct
and measure a continuously parametrized family of states crossing a symmetry protected topological phase
transition on the IBM Q quantum computers. We present two complementary methods for measuring string
order parameters that reveal the transition, and additionally analyze the effects of noise in the device using
simple error models. The simulation that we perform is easily scalable and is a practical demonstration of the
utility of near-term quantum computers for the study of quantum phases of matter and their transitions.
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There are now many approaches being taken to realize
universal quantum computers [1], with numerous academic
research groups, companies, and governments across the
world devoting resources to each. Amongst the most advanced
are devices based on trapped ions [2], localized spins in dia-
mond [3] or silicon [4], and superconducting circuits [5,6].
While each has its advantages—such as coherence times,
efficient readout, or gate speeds and fidelities—the latter is
fast becoming the most adopted approach. Efforts by D-Wave,
Google, IBM, and Rigetti, for example, all use superconduct-
ing circuits based on Josephson junctions.

Quantum computational technology is still in its infancy,
with the state of the art in superconducting qubits consisting
of approximately 100 qubits, 99% two-qubit gate fidelities,
and coherence times of the order of 100 ws [6]. Fault-tolerant
error correction is also currently out of reach, and solutions
for quantum memory and networking are not fully developed.
They are consequently described as noisy intermediate-scale
quantum (NISQ) devices [7]. There are still unanswered ques-
tions about the potential utility of NISQ technology and
whether there are fundamental obstructions to going beyond
this regime. Nevertheless, there has recently been a flurry of
proof-of-principle experiments, along with the recent claim
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of a demonstrable computational advantage using a quan-
tum computer [8,9]. For example, in the realm of quantum
simulation, real quantum devices have been used to find the
ground state of small molecules relevant for quantum chem-
istry [10,11], to measure multiqubit quantum entanglement
[12,13], and to simulate nonequilibrium quantum dynamics
[14,15]. This list is far from exhaustive and we do not intend
to review the rapid progress of the last decade.

As realized at the very inception of quantum comput-
ing [16], the study of complex many-body quantum systems
could benefit tremendously from this new technology. Gener-
ically, these systems require the storage and manipulation
of an exponentially large number of parameters on a clas-
sical computer. By storing and manipulating the quantum
state directly on a quantum computer, it may be possible to
reach areas of condensed matter physics that are currently
intractable. As a relevant example, there does not yet exist a
complete classification of topological phases of matter [17].
The most interesting and least understood phases occur in
two or three dimensions and host exotic non-Abelian anyonic
quasiparticles [18], and as a result our most powerful numer-
ical techniques begin to break down. Most notably, quantum
Monte Carlo suffers from the sign problem, and dimension-
ality is a problem for tensor network based methods due to
increased entanglement and less efficient contraction schemes
when compared with one dimension. On a quantum computer
we can avoid classically storing the quantum state, perform
sign-problem free computations, and work directly with two-
dimensional quantum circuits, potentially sidestepping some
of the issues plaguing current numerical techniques. This
approach has recently been successfully demonstrated using
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both digital quantum computers [19] and quantum simulators
[20].

In this Letter we demonstrate how quantum computers can
be used to simulate symmetry protected topological (SPT)
phases and the transitions between them. This Letter is struc-
tured as follows. In Sec. I we introduce symmetry protected
topological phases and the concrete models we will consider.
Using connections to matrix product states, we discuss how
we can simulate the ground states of these models exactly in
the thermodynamic limit on a quantum computer in Sec. T A.
We then introduce the two methods we use in Sec. II, and
show experimental results from the IBM quantum computers
[21]. In Sec. III we then analyze three simple error models to
understand the observed experimental results and the differ-
ences between the two methods. And finally we close with a
discussion in Sec. IV.

I. SETUP

Here, we use the IBM quantum computers to study a SPT
phase of matter [22,23]. An SPT phase is one that, as long
as certain symmetries are present, is not adiabatically con-
nected to a trivial product state. SPTs cannot be understood
in the framework of local order parameters and spontaneous
symmetry breaking. Instead they are distinguished by non-
local string order parameters [24-26]. We consider infinite
one-dimensional (1D) spin-% chains described by the three
parameter Hamiltonian
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This Hamiltonian is symmetric under global spin flips gener-
ated by [ [, 6/ as well as time reversal (complex conjugation).
Due to these symmetries the model has a Z, x Z SPT phase,
as well as a trivial and a symmetry-broken phase. The phase
diagram is shown in Fig. 1 [27,28].

We focus on a one-dimensional path through this phase
diagram, corresponding to the black curve in Fig. 1,
parametrized as g.. = 2(1 — ¢%), g« = (1 +g)%, and g.,. =
(g — 1)?, with tuning parameter g [29]. This path continu-
ously interpolates between the cluster Hamiltonian Hyxy =
43,6764, 65, for g=—1 and the trivial paramagnet with
Hamiltonian Hy = —4 > ;6" for g=1. The transition be-
tween the trivial and the SPT phase occurs at the tricritical
point between the three phases at g = 0.

The nontrivial SPT phase can be distinguished using string
order parameters [31], which are nonlocal observables of
macroscopic length /. In the limit / — oo, the string order
parameters are nonzero in one of the two phases and zero in
the other. The string order parameters that we consider are of
the form

k=2
S%g) = <w|éi( I1 6;) Al )
j=i+2
with 0; = 6767, and O = 6] 6¢ defining S?¥(g), and
0; = OA,’c = 1 defining S*. The length of the string, [, is the
distance between the first and last Pauli operator. For §%¥
and ST the shortest such string lengths are [ = 5 and 3, re-
spectively. Along our path parametrized by g, the string order
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FIG. 1. Phase diagram for the Z, x Z! symmetric Hamilto-
nian in Eq. (1). The green phase is the topologically trivial phase
containing the paramagnetic product state, the blue phase is the
symmetry-broken phase containing the ferromagnetic ground state
of the Ising model, and the orange phase is the SPT phase containing
the cluster state. The black curve corresponds to the one-dimensional
path with tuning parameter g described in the main text.
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parameter SZY (g) [resp. S1(g)] is zero for g > 0 (g < 0) and
equal to 4|g|/(1 + |g|)* for g < 0 (g > 0). The chosen path
has the nice property that the string order parameters are
independent of the length of the string and correspond exactly
to the values obtained in the thermodynamic limit [ — oo.
This property only holds along the black line in Fig. 1 and
away from this line we would generically need a macroscopic
length [ to sharply differentiate the phases.

A. Infinite state as a finite quantum circuit

The ground state of the infinite system can be constructed
iteratively by a quantum circuit shown schematically in
Fig. 2(a). We can understand this via a connection to infinite
matrix product states [32], as outlined in the Supplemental
Material [30]. Any observable with finite connected support
can equivalently be measured using the finite quantum circuit
in Fig. 2(b) [33]. That is, any measurement of the qubits—
excluding the unphysical first and last qubits—is identical to
the corresponding measurement of the infinite chain. In par-
ticular, we measure the same energy density £ = —2(g*> + 1)
and values for the string order parameters. Note that this
representation of the ground state is exact and in the thermo-
dynamic limit.

We arrive at the finite circuit in Fig. 2(b) by first viewing
a measurement as sandwiching an operator between the quan-
tum circuit (the ket) and the Hermitian conjugate circuit (the
bra) as shown in Fig. 3(a). Away from the observable that we
are measuring we find circuit elements of the form shown in
Fig. 3(b). Below the measured operator these will all cancel
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FIG. 2. Quantum circuit construction of the states. (a) Iterative construction of the ground state on an infinite chain. (b) Equivalent finite
quantum circuit for measuring observables with finite connected support. Red caps indicate that the end qubits are unphysical and should not
be measured. (U) and (U1) are the circuits for the two-qubit gates U and Uj, respectively. X is the Pauli-X gate, and the single qubit gates

R, W, and V are specified in the Supplemental Material [30].

due to unitarity. While we cannot do this for the gates above
the measurement, we can construct the gate U, as a fixed point
of the iterative circuit. More explicitly, we can reinterpret
the circuit in Fig. 3(b) as a transfer matrix Tigg (aa)- The
expectation value of the operator in the thermodynamic limit
is then determined by the fixed points of the transfer matrix,
similar to the thermodynamic treatment of the classical 1D
Ising model. Similarly, we can consider the circuit in Fig. 3(c)
as a vector V(qq). The unitary U is chosen such that Vi is
the dominant right eigenvector of T(gg @’y With eigenvalue
1, i.e., the fixed-point vector under repeated application of
the transfer matrix. See Supplemental Material [30] for more
details. An alternative way to state the cancellation of the
unitary gates below the measurement is that the dominant
left eigenvector of the transfer matrix corresponds to the
identity.

II. RESULTS

We will consider two methods for measuring the string
order parameters on the IBM quantum computers: direct mea-
surement and interferometry. In the former we rotate all of

(a), . ()
10) 0“7 T
0) 0 - s #1710
10) 10)
|0) 10) (c)
|0) 0) o) - )
: sl
0 0 0)1 ta oA - [0
i —S g G v

FIG. 3. Elements of the quantum circuit construction. (a) Ex-
pectation value of an observable is equivalent to sandwiching the
operator (black box) between the state and its conjugate. For the
infinite system the corresponding circuit contains a repeating element
(highlighted in gray). (b) The repeated circuit element away from
the measured observable when computing expectation values. This
circuit element can be interpreted as a transfer matrix (see main text).
(c) Corresponding fixed-point vector as a quantum circuit.

the relevant qubits to the correct basis and then measure all
qubits simultaneously. From these measurements we are able
to reconstruct the expectation value of Pauli strings, which
allows us to measure the energy and string order parameters.
In the latter interferometry experiments, we will instead use
an additional ancilla qubit which we will entangle with the
qubits that we want to measure the string order parameter on.
By measuring only this ancilla qubit at the end we can also ex-
tract the string order parameter. Details of the interferometry
circuits are given in Sec. II B and the Supplemental Material
[30]. Direct measurement requires a shallower circuit and so
is less susceptible to gate errors and decoherence. However,
interferometry only requires the measurement of a single qubit
in contrast to the direct measurement of many, and so will
be impacted less by measurement error. We will compare
the accuracy of these two methods due to the competition of
different sources of error on current devices.

For our simulations we used the 27 qubit IBM Q device
codenamed toronto on 25 October 2021, which allows the
implementation of a universal gate set consisting of arbitrary
single qubit rotations and controlled-NOT (CNOT) entangling
gates between connected qubits. The decomposition of the
circuit shown in Fig. 2 into this gate set is given in the
methods section. The spins in our system are mapped to the
physical qubits of the quantum computer, with the basis states
{I1) =10), ) =[1)}, and we control the devices using the
PYTHON qiskit API [34]. To select our subset of N qubits we
use a custom procedure described in Ref. [14], which max-
imizes the average CNOT fidelity, while limiting the readout
error and coherence time for the qubits. When using the direct
method, we also perform error mitigation on the raw data
from the machine using methods provided in qiskit [34], to
reduce the impact of readout errors, which we outline in the
Supplemental Material [30]. We perform 8192 runs for each
circuit and omit error bars in our figures since the statistical
error is not significant.

A. Direct measurement

Figure 4 shows the energy density of the state as mea-
sured on the IBM device compared with the analytic value,

& = —2(¢* + 1). We measure the local energies and average
over the central qubits excluding the boundary qubits (i.e.,i =
2,...,N — 3), and show the results measured on subsystems
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FIG. 4. Average energy density. We measure the local energy
of the state using number of qubits N =5, 6,7, 8, 9. The energy is
averaged over the central sites excluding the end qubits. The data
from the IBM devices are compared with the analytic result.

of N =135,...,9 qubits. Despite the discrepancy in the abso-
lute value, the energy obtained from the quantum computer
follows nicely the exact functional form indicating proximity
to the target state. The difference between the experimental
and the exact result can predominantly be attributed to de-
phasing and measurement error. The former accounts for the
change in shape, with a dip around g = 0, since it impacts the
(67) and (6 “])‘H& * ) expectation values but not (A]“ZH)

Furthermore, we expect the amount of dephasing to scale
with the circuit depth and so with N. A demonstration of
the effect of dephasing on the energy density is shown in
the Supplemental Material [30]. The measurement error on
the other hand does not scale with N and accounts for the
slight asymmetry between g < 0 and g > 0, due to the various
lengths of the terms in the Hamiltonian.

Next we show the measurements of the two string order
parameters in Fig. 5 for lengths [ =5, 6,7 for S%¥(g), and
1=3,...,7 for S*(g), and compare with the analytic results.
Especially for the smallest string lengths, we see qualitative
agreement between the results from the quantum computer
and the exact results. It appears that for small enough sizes
we can well approximate the errors in the device by a con-
stant scaling factor. Importantly, the order parameters are only
nonzero in one of the two phases, and tend to zero at the phase
transition g = 0. However, beyond a certain string length,
[ Z 6, this information is lost and there is no clear transition
point.

As we increase the string length in Fig. 5, the accuracy
of the results quickly diminishes, even more so than was ob-
served in Fig. 4. This is due to the fact that we are measuring
nonlocal operators and both the number of qubits and the
length of the operator are increasing. For chains of length
N =9 (I =7) we are no longer able to detect the transition,
demonstrating the difficulty of constructing and measuring
long-range string order in the quantum state due to the cur-
rent limitations of the quantum computer. Nevertheless, the
combination of the measurements of the energy density and
the string order parameters confirms that we are able to ap-
proximately construct the target states with nontrivial string
order on a real quantum computer.
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FIG. 5. Identification of the phase transition using direct mea-
surement. (a) Results of the string order parameter S?Y (g) of length
[ =5,6,7, simulated using number of qubits N =7, 8,9, respec-
tively. (b) St(g) of length [ = 3,4, 5,6, 7, corresponding to N =
5,6,7,8,9. We compare with the analytic results.

B. Interferometry experiment

We now consider an alternative method to measure the
string order parameters on the quantum computer. This
method is motivated by Ramsey- or Mach-Zender-type inter-
ferometry experiments and is known as a Hadamard test in
quantum computing. The circuit diagram is given in Fig. 6.
The basic idea is to use an ancilla qubit prepared in an equal
weight superposition using a Hadamard gate. We then use a
controlled operation that implements the Pauli string $© asso-
ciated with our string order parameter if the ancilla is in the
|1) state. Finally, we apply a Hadamard gate and measure only
this ancilla qubit. The expectation value of the ancilla qubit
gives the real part of (y|SC|v), which since the Pauli string
is Hermitian is equivalent to our string order parameters. We
give more details of this method and a decomposition of the
circuit into two-qubit gates in the Supplemental Material [30].

In Fig. 7 we show the results from the IBM quantum
computer for the interferometry experiments where we see a
significant improvement over the results shown in Fig. 5. The
quantitative accuracy is improved for all string lengths and
a far reduced dependence on the length is observed. In fact,
the measured values do not seem to decrease monotonically
with increasing string length. This suggests that the fluctua-
tions between these different runs is comparable to or larger
than the increased error from the deeper circuit. Importantly
the qualitative behavior, including the location of the phase
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FIG. 6. Interferometry circuit diagram. The quantum circuit used
for the interferometry method for measuring string order parameters.
The top ancilla qubit is used to perform a controlled unitary that
implements the relevant Pauli string in the string order parameter.
Measurement of the ancilla qubit is equivalent to the measurement
of the string order parameter. Explicit decomposition into elementary
gates is provided in the Supplemental Material [30].

transition, is clearly visible for both string order parameters
for all string lengths /.

III. ERROR MODELING

In our results from the IBM quantum computers there was
a stark contrast in the quality of results obtained by the two
different methods. While one used shallow circuits and mea-
sured many qubits, the other measured only one qubit at
the cost of deeper circuits. Therefore the two methods are
impacted differently by the various sources of errors in these
quantum devices. In this section we use simple models to
analyze the impact of three different sources of errors: mea-
surement error, unitary gate errors, and decoherence. In Fig. 8
we plot the relative error in the string order parameter against
the length of the string order parameter and the relevant error
rate. The relative error is computed at g = 0.5 for ST and
g = —0.5 for 7.

A. Measurement error

First, let us consider the measurement error. We use a
simple model for independent bit flip errors, where during
the measurement process there is a probability € € [0, 1] that
a qubit is flipped. To simulate this process we consider the
pure state |1/) produced by the circuit and construct a vector
containing the probabilities of measuring each bit string, i.e.,
pi = |(i|¥)]?, where |i) is a computational basis state. We then
construct an error matrix M., the elements of which are given
by

({IM|j) = €™ (1 — NN, A3)

where N is the total number of qubits and »j;; is the number
of bit flips between |i) and |j). As an explicit example, let
|i) = [010011) and |j) = [110010), then N = 6 and N;; = 2.
We then apply this matrix to our probability vector to get
the new probabilities taking into account measurement error,
pi=> j[Mg],- jp;j. Finally, we can evaluate the string order
parameters from these updated probabilities p;. Despite the
simplicity of this measurement error model, a similar model
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FIG. 7. Identification of the phase transition using interferom-
etry. (a) Results of the string order parameter S?Y(g) of length
l =5,6,7, simulated using number of qubits N =7, 8,9, respec-
tively. (b) St(g) of length [ = 3,4, 5,6, 7, corresponding to N =
5,6,7,8,9. We compare with the analytic results.

is routinely used to perform effective error mitigation and used
by ourselves as explained in the Supplemental Material [30].

The results from the measurement error model are shown
in Figs. 8(a) and 8(b). The first thing to note is that the relative
error of the direct method increases with the length of the
string order parameter, but does not for the interferometry
method. This is because in the latter we are only ever mea-
suring a single qubit, and so the probability of a measurement
error is simply given by €. In contrast, when measuring multi-
ple qubits, errors in any of these qubits affect the string order
parameter. Furthermore, this means the direct method is also
significantly more sensitive to increasing the probability of bit
flip errors, as shown in Fig. 8(b). For the IBM device that we
used, the average readout error corresponded to approximately
€ = 0.03. Our simulations show that this alone could account
for approximately a 30% error in the string order parameter
for [ =5 for the direct method, with even larger errors for
l>35.

B. Unitary gate error

The second type of error that we will consider is unitary
gate errors. These might correspond to imperfectly calibrated
gates or drift in the device that means the intended unitary is
not implemented perfectly. For this simulation we assume that
single qubit gates are implemented perfectly, but the entan-
gling CNOT gates are subject to random unitary perturbations.
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FIG. 8. Relative error for simple error models. Numerical simulations for three simple error models: (a, b) measurement errors as described
in Sec. III A, (c, d) unitary gate errors as described in Sec. III B, and (e, f) decoherence due to the polarizing channel as described in Sec. III C.
Subfigures (a), (c), and (e) show the dependence of the relative error on string length with bit flip probability 0.03, error rate 0.05, and
decoherence time 100 us, respectively. Subfigures (b), (d), and (f) show the dependence on the relevant error rate for the model for string
length I = 5. Solid symbols correspond to the relative error of $?¥ (g = —0.5), and hollow symbols correspond to S*(g = 0.5). Data simulated

using the interferometry method are labeled “int.” in the legend.

This will be done in the following way:
4)

where H = (M + M")/2 and M has complex matrix elements
drawn from a normal random distribution, and € controls the
error rate. Here exp and log refer to matrix exponential and
logarithm, respectively. In our simulations we average over
100 realizations of the random gates.

As shown, in Fig. 8(c), the error for both methods now
increases as a function of the string length. Furthermore, the
interferometry method is now more sensitive to this type of
error due to the increased number of gates in the circuit.
Howeyver, the difference between the two is much less drastic
than in the case of measurement errors. Unfortunately, we are
not able to quantify the amount of unitary gate error in the
IBM quantum computers since it is difficult to disentangle
unitary gate errors from other decoherent sources of error.

CNOT — exp[log(CNOT) + ieH],

C. Decoherence

Despite the remarkable amount of isolation achieved to
realize current quantum computers, these devices are not per-
fectly closed systems. As a result, the qubits interact with
the environment and will be eventually become decoherent.
There are many forms of decoherence that happen in a realistic
device but for simplicity we focus only on the depolarizing
channel. Furthermore, while the decoherence is in reality
happening throughout the implementation of the circuit, as
well as state preparation and readout, we will apply the depo-
larizing channel at once, immediately prior to measurement.
While this is certainly an approximation of reality, this model
has also been used to effectively mitigate errors on quantum

computers [35], which verifies its approximate validity on
current devices.

Concretely, following the application of our quantum cir-
cuit we will be in the pure state |) and then the depolarizing
channel will result in the mixed state represented by the den-
sity matrix

1
p=62—N+(1—6)|1/f)(1ﬁ|- ®
The parameter € controls the amount to which the pure state is
mixed with a completely mixed density matrix. The parameter
€ = (1 — e /T), where ¢ is the total time of the circuit and T
is the time scale for decoherence. Due to an order of magni-
tude difference in time scales, we assume single qubit gates
are instantaneous whereas CNOT gates are implemented in
425 ns, the average for the IBM quantum computer we used.
The total time is then given by the gate time multiplied by
the number of asynchronous CNOT gates. The corresponding
decoherence time for the device was approximately 100 us.

The error due to this depolarizing channel appears to scale
approximately linearly with the string length /, as shown in
Fig. 8(e). This corresponds to the linear increase in circuit
depth with /. However, the difference between the direct and
interferometry methods is small. This is because these meth-
ods only differ by two asynchronous layers of CNOT gates.
The rest of the additional CNOT gates can be done in parallel
with the gates common to both methods. Additionally, the
circuit for ST measured at g = 0.5 has one additional CNOT
gate compared with S%X at g = —0.5, the effect of which can
also be seen in this figure. In Fig. 8(f) we plot the relative
error as a function of the decoherence time, which shows a
characteristic exponential behavior.
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IV. DISCUSSION

Above we have focused on a particular line through the
phase diagram in Fig. 1, which has an especially efficient
construction of the ground states. This enabled an exact rep-
resentation within the limitations of existing devices. In this
Letter we have considered a particularly simple path, but
our approach is general and potentially provides a genuine
advantage to using NISQ devices. In fact, all matrix product
states can be constructed in a similar way [33,36] and can be
variationally optimized on a quantum computer [33]. Such
variational solvers have already been demonstrated in the
setting of small molecules [10,11] using variational quantum
eigensolvers [37].

It is still an open and interesting problem to find optimal
Ansatz circuits for variational optimization. A recent work has
shown that sequential quantum circuit Ansdtze—similar to the
ones used in this Letter—are efficient “sparse” representations
for some quantum ground states and in simulating nonequi-
librium dynamics [38]. By directly using the connectivity of
the quantum computers it may be possible to go beyond what
is accessible with classical numerics in two dimensions with
shallow depth (polynomial in system size) quantum circuits.
In particular, it is often numerically expensive to compute
correlators in higher-dimensional tensor networks. Represent-
ing these as quantum circuits [39] will permit considerable
speedup in their manipulation and measurement—with a po-
tential exponential advantage in certain circumstances. As
a concrete example, there exists a simple representation of
topologically ordered string-net models [40] in terms of tensor
networks [41,42], that nevertheless remains difficult to deal
with numerically.

We demonstrated experimentally on the IBM quantum
computers two alternative methods for measuring nonlocal
string order parameters. While direct measurement of multiple
qubits was highly sensitive to increased string length, the
interferometric method gave consistent qualitative agreement
to the exact results. By analyzing three simple error models we
identified readout errors as those that dominated our results,
and so strongly favored the interferometric approach which

required measurement of a single qubit. It is possible that in
other quantum computer technologies the extent of measure-
ment and gate errors (either coherent or decoherent) would be
reversed and in that case the direct method might be preferred.
It is clear that in the NISQ era it is important to understand the
sources of error of a particular device and tailor our approach
accordingly.

Beyond SPT phases, where we know how to construct the
order parameters, we need to find efficient ways of detecting
and differentiating different phases. Recent work proposes
quantum-hybrid algorithms based on ideas from machine
learning and renormalization group [43,44]. These algorithms
are scalable and practical to implement on near-term devices.
The combination of machine learning tools and quantum hard-
ware is potentially very powerful with many applications [45].

In this Letter we have distinguished two topologically in-
equivalent phases and identified the transition between them
using a real quantum device. We compared two compli-
mentary methods and analyzed their relative accuracy using
simple error models. Despite the infancy of the current tech-
nology, our Letter clearly demonstrates that near-term NISQ
devices can be used as practical tools for the study of con-
densed matter physics.
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