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ABSTRACT 1 

Background: Obesity is increasing in parallel with greater all day food availability. The 2 

latter may promote meal irregularity, dysregulation of energy balance and poor metabolic 3 

health. 4 

Objective: To investigate the effect of meal irregularity on the thermic effect of food (TEF), 5 

lipid levels, carbohydrate metabolism, subjective appetite and gut hormones in healthy 6 

women. 7 

Design: 11 normal-weight women (18–40y) were recruited to a randomized crossover trial 8 

with two, 14-day isoenergetic diet periods (identical foods provided/ free-living), separated 9 

by a 14-day habitual diet wash-out period. In period 1, participants followed a regular 10 

(6meals/day) or an irregular meal pattern (3-9meals/day) and in period 2, the alternative meal 11 

pattern. Before and after each period, when fasting and for 3h following a test drink, 12 

measurements were made of energy expenditure, circulating glucose, lipids (fasting only), 13 

insulin, GLP-1, PYY and ghrelin. An ad libitum test meal was offered. Subjective appetite 14 

ratings were assessed fasted, following the test drink, following the ad libitum meal and 15 

during the intervention. Continuous interstitial glucose monitoring (CGM) was undertaken 16 

for 3 consecutive days during each intervention and ambulatory activity pattern was recorded 17 

(AEEE). 18 

Results: Regularity was associated with greater TEF (P<0.05) and a lower incremental area 19 

under the curve (iAUC) for glucose following the test drink (over 3h) and, for some identical 20 

meals on the two interventions (over 90min) (Day 7: post-breakfast; Day 9: post-lunch and 21 

dinner). There was no difference between-treatments for test drink gut hormone response. A 22 

time effect for fasting GLP-1, fasting PYY, PYY responses and hunger rating responses to 23 

the test drink (P<0.05) was noted. Lower hunger and higher fullness ratings were seen, pre 24 

and post meal, during the regular period, whilst free living. 25 
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Conclusion: Meal regularity appears to be associated with greater TEF and lower glucose 26 

responses, which may favour weight management, and metabolic health. 27 

Key words: normal-weight women, meal regularity, thermic effect of food, metabolism, 28 

appetite.  29 
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INTRODUCTION    30 

Obesity, an abnormally large accumulation of adipose tissue, occurs as a result of long term 31 

positive energy balance, and is associated with impaired metabolic function and poor health 32 

(1). A rapid increase in obesity prevalence over recent decades has occurred concurrently 33 

with greater availability of food requiring minimal preparation, inside and outside the home, 34 

and throughout the day. This environment offers greater individual choice with respect to 35 

time of eating, and potentially facilitates greater inter-daily variation in meal pattern. Meal 36 

pattern research, initiated in the 1960’s, was based on the premise that meal pattern is a stable 37 

characteristic for an individual, with inter-daily repetition of, for example, meal frequency (2-38 

5). Few studies have evaluated the impact of meal pattern irregularity (i.e. between day 39 

variations) on energy metabolism and health in adults.  40 

We have previously undertaken14-day feeding studies comparing a regular meal pattern with 41 

an irregular meal pattern in normal-weight and obese participants (6-8). The thermic effect of 42 

food (TEF), in response to a test drink, in normal-weight and obese women was significantly 43 

lower following an irregular meal pattern compared with regular (6, 8). In addition, irregular 44 

meal pattern was associated with a lower fasting insulin sensitivity (7), a greater insulin 45 

response to a test meal (7, 8) and higher fasting levels of total and LDL cholesterol (7, 8). 46 

These results were consistent with a negative association between irregular meal pattern and 47 

metabolic health found in observational studies (9, 10).   48 

Food intake in our intervention studies was self-selected and the obese participants, 49 

interestingly, reported a lower energy intake during the regular period (8). Differences in 50 

subjective appetite might have mediated this with the potential involvement of gut hormones 51 

associated with appetite (11-14). These however were not measured. 52 

The present study aims to compare the impact of 14 days of more highly controlled regular 53 

and irregular eating (all food provided) on TEF, metabolic, appetitive and gut hormone 54 
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responses to a test drink and ad libitum intake of a test meal. The term ‘meal’ was used for 55 

both prescribed eating incidents at traditional ‘meal times’, and those that occurred at 56 

traditional ‘snack times’. Measures were made during the free-living intervention periods of 57 

physical activity (AEEE), continuous interstitial glucose monitoring (CGM) and subjective 58 

appetite.  59 

SUBJECTS AND METHODS 60 

Participants  61 

The study was conducted at David Greenfield Human Physiology Unit, School of Life 62 

Sciences, Queen’s Medical Centre, University of Nottingham between January 2013 and July 63 

2013. The study was approved by the University of Nottingham Faculty of Medicine and 64 

Health Sciences Research Ethics Committee (J14082012 BMS). Participants were recruited 65 

from the student and staff population of the University of Nottingham via poster 66 

advertisement. Inclusion criteria for participants were: normal weight women (BMI 18.5 and 67 

25 kg/m2), aged 18-40 years, non-smoker, non-high alcohol consumers (< 3 units/day), no 68 

history of serious disease or currently taking any medications other than oral contraceptives, 69 

not pregnant/lactating and with regular menstrual cycles, not dieting/seeking to lose weight 70 

and weight stable during the last 3 months (self-reported weight change < ± 2 kg). Exclusion 71 

criteria were: participants with symptoms of clinical depression (defined by a score > 10 on 72 

the Beck Depression Inventory (15)), with eating disorders (defined by a score > 20 on the 73 

EAT- 26 (16)), with an allergy or intolerance to any of the foods provided during the study. 74 

Of the 19 healthy normal-weight participants who responded to the advertisement 11 were 75 

recruited to the study (Figure 1). These 11 participants were the ones that met the study 76 

requirements. Values that were outside the inclusion criteria resulted in exclusion of four and 77 

two subjects respectively for BMI and EAT- 26 score. Two women were ineligible because 78 

they were anaemic. The remaining 11 participants gave written consent, and then 5 79 
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participants were scheduled to start with the regular meal pattern and 6 others with the 80 

irregular one. Blood sampling could not be performed on one participant due to problems 81 

associated with venous cannulation. Thus data from 10 participants were available for the 82 

intention-to-treat blood analysis. Two subjects were excluded from the analysis of CGM data 83 

because inadequate data were obtained. Informed, written consent was obtained from all 84 

participants after the experimental protocol had been described to them in writing and orally. 85 

The study is registered at clinical Trials.gov with the identification number: NCT02052076. 86 

Screening    87 

All potential participants attended a screening visit in order to establish that they met the 88 

inclusion criteria for the study. Height was measured to the nearest 0.1 cm using a 89 

stadiometer (Seca, Germany). Body weight was measured using an electronic scale to the 90 

nearest 0.1 kg (Seca, Germany) whilst participants were wearing light clothing with no shoes 91 

and with an empty bladder. BMI was calculated from their height and weight as kg/m2. A 92 

blood sample was taken for routine tests to confirm their general health. 93 

Eligible participants then were asked to complete a weighed 7-day food diary which was used 94 

to characterize their habitual diet. They were instructed to consume their normal diet and 95 

participate in their usual level of activity before the study. 96 

Study design 97 

The study followed a randomized crossover design with two, 14-day intervention periods, 98 

separated by a wash-out period of 14 days. Participants consumed their habitual diet during 99 

the wash out period which was included to avoid interaction between the two interventions. 100 

The randomization scheme was generated using the Second Generator Plan from 101 

randomization.com (17) before the study began. Participants were assigned to the 102 

randomization scheme in the order of recruitment. The study investigator generated the 103 

randomization scheme, enrolled participants, and assigned participants to interventions. 104 
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Participants were free-living except that during each intervention period they were required to 105 

consume food provided by the experimenter. Participants attended the laboratory pre and post 106 

each intervention period, for a total of 4 visits. Each laboratory visit lasted up to 5 h. In order 107 

to avoid the potential impact on outcome measures of the stage in the menstrual cycle (18-108 

20), participants started each intervention period during the early phase of their menstrual 109 

cycle (days 1-7). 110 

Dietary intervention periods  111 

Each participant was provided with, free of charge, all their food during each of the 112 

intervention periods. An individual had identical foods during each of the intervention 113 

periods and differences between participant food provision were minimised, but were 114 

sometimes necessary to meet the different energy requirements of participants. The food was 115 

supplied in a 4 day cycle of menus consisting of a variety of items commonly consumed in 116 

the British diet. The menu was designed to cover participants’ energy requirement for weight 117 

maintenance (± 100 kcal). Menus were designed for 1900 kcal/day, 2050 kcal/day and 2350 118 

kcal/day to meet the different estimated energy requirements of participants. Energy 119 

requirements were based on the Oxford-Henry equations (21) multiplied by physical activity 120 

level. This equation was chosen following the precedent of the calculation of the DRV for 121 

energy by the Scientific Advisory Committee on Nutrition (22). Physical activity was 122 

estimated by using the International Physical Activity Questionnaire (IPAQ) (23). The level 123 

ascribed by the IPAQ was then translated to a PAL level using the Committee on Medical 124 

Aspects of Food Policy (COMA) classifications (24) (IPAQ score low = non active, moderate 125 

= moderately active, high = very active ) and taking into account  occupational activity which 126 

was classified according to COMA as light, moderate or heavy. 127 

The macronutrient composition of the diet, as a percentage of total energy for the day, was 128 

approximately 50 % carbohydrates, 35 % fat and 15 % protein. These macronutrient 129 
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percentages were based on the Report of the Panel on Dietary Reference Values of COMA 130 

(24).  131 

Participants were reassured that the amount of food provided was designed to ensure a stable 132 

body weight over the course of the study. All participants declared an intention to consume 133 

the entire amount of food supplied. However, they were asked to record any left-over food in 134 

the diary provided. Participants were instructed to avoid alcohol consumption, limit caffeine-135 

containing drinks to two cups of tea per day (without sugar/milk). They were advised not to 136 

change physical activity patterns during the study. 137 

Following the design of previous studies in our laboratory (6-8), the number of meals during 138 

the regular meal pattern was 6 meals/day which was based upon three ‘meals’ providing 139 

approximately 70 % of energy requirements (breakfast, lunch and dinner ) and three ‘snacks’ 140 

(mid-morning, afternoon and evening snack) providing a total of approximately 30 % of  141 

energy requirements (Supplemental Table 1). 142 

The number of meals (including eating incidences labelled as snacks on the menu) during the 143 

irregular meal pattern varied from 3 to 9 meals/day. The average was 6 meals/day during the 144 

14-day period (i.e. 7, 4, 9, 3, 5, 8, 6, 5, 9, 8, 3, 4, 7, 6 meals/day). Participants were asked to 145 

eat their meals at specific times between 8:00 am and 9:00 pm, during both interventions, to 146 

remove the potentially confounding impact of the time period over which food was 147 

consumed. The only deviation from this instruction was that when they had 3 meals/day, 148 

during the irregular period, their last meal was at 6:00 pm (instead of 9:00 pm) as it was 149 

anticipated that this was when they would consume a meal with others in their household. 150 

Measurements made during the intervention periods 151 

Energy expenditure assessment 152 

Participants wore a SenseWear™ armband (SWA, BodyMedia Inc, Pittsburgh, PA, USA) to 153 

obtain an ambulatory estimate of their energy expenditure (AEEE) continuously during the 154 
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intervention periods. The armband was worn over the left triceps muscle, halfway between 155 

the acromion process of the scapula and the olecranon process of ulna. Participants were 156 

instructed to wear it continuously, including while sleeping and to remove it only for brief 157 

periods for bathing, showering or swimming. 158 

Energy expenditure data were derived from, a skin temperature sensor, a near body 159 

temperature sensor, a galvanic skin response sensor, a heat flux sensor, and accelerometer 160 

(25). These data were used in combination with demographic characteristics including age, 161 

sex, weight and height, to estimate energy expenditure using a proprietary equation 162 

developed by the manufacturer (SenseWear Software, version 7) which was not published. 163 

Continuous Glucose monitoring (CGM)  164 

CGM (Medtronic Minimed, Northridge, USA) provided continuous glucose profiles for up to 165 

72 h. Subcutaneous interstitial fluid glucose concentrations were measured every 10 seconds 166 

and the average glucose value for each 5 min period was stored (up to 288 measurements 167 

daily).  168 

The CGM was placed subcutaneously over the participant’s anterior abdominal wall on day 6 169 

and removed on day 10 of each intervention period. Finger prick glucose readings were taken 170 

four times a day, by the participants, using a portable monitor (Accu-Chek Aviva System, 171 

Roche Diagnostics, Switzerland) to calibrate the CGM. A 24 h contact number was available 172 

for any inquiries or if any problems arose. Data from CGM were downloaded and glucose 173 

profiles were evaluated based on data collected on day 7 (6 meals/day in both regular and 174 

irregular periods), day 8 (6 meals/day vs. 5 meals/day in regular and irregular periods 175 

respectively) and day 9 (6 meals/day vs. 9 meals/day in regular and irregular periods 176 

respectively). Data were analysed per 24 h, during the day (7:00–midnight) and during the 177 

night (midnight-7:00) with respect to 24 h mean, max, min and iAUC for glucose for each 178 

time period.  179 
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On day 7 (6 meals/day in both regular and irregular interventions) postprandial iAUC for 90 180 

min was analysed following each meal (breakfast, mid-morning snack, lunch, afternoon 181 

snack, dinner and evening snack). However on day 8 (6 meals/day vs 5 meals/day in regular 182 

and irregular interventions respectively) analysis was restricted to the points in the day when 183 

participants consumed identical meals on the two interventions (breakfast, mid-morning 184 

snack and evening snack).The afternoon snack was omitted during the irregular period and 185 

the food distributed between lunch and dinner. On day 9 (6 meal/day vs. 9 meals/day in 186 

regular and irregular periods respectively), analysis similarly was restricted to lunch, dinner 187 

and evening snack. The breakfast was divided into two meals during the irregular period. The 188 

mid-morning and afternoon snacks were also divided into two small meals in order to achieve 189 

9 meals/day. 190 

Intra-day glycemic variability was computed by an approach described by McDonnell et al 191 

(2005) specifically for CGM data, known as continuous overlapping net glycemic action 192 

(CONGA-n) (26). CONGA-n is calculated as the standard deviation of the summed 193 

differences in glucose concentration between current observation and the observation n hours 194 

previous. CONGA-1 was calculated in the morning (current observation from 9:00-10:00) 195 

and night (current observation from 22:00-23:00). CONGA-1 indicated intra-day glycemic 196 

variability based on one hour time periods.   197 

Appetite assessment 198 

Subjective appetite ratings were assessed by using paper based visual analogue scales (VAS) 199 

with words anchored at each end of a 100-mm horizontal line that expressed the most 200 

positive and the most negative rating for a question (Supplemental Figure 1). The questions 201 

were in the form ‘How (rating) do you feel?’ and the ratings were ‘hungry’, ‘satisfied’, ‘full’, 202 

‘how much of a desire to eat?’ and ‘how much do you think you can eat?’ (27). 203 
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Participants were provided with a booklet in which to record subjective appetite before and 204 

after each single meal on days 7 and 14 during both intervention periods, when they were 205 

consuming 6 meals/day on each intervention.  206 

Laboratory visit protocol and procedures 207 

Participants were asked to attend the laboratory at 8:00 am after a minimum 12 h overnight 208 

fast and were required to take no exercise other than walking related to carrying out their 209 

normal activities of daily living, for 48 h before the laboratory visit. Participants consumed 6 210 

meals/day on the day prior to the final laboratory visit on both interventions in order to 211 

eliminate an acute effect of the meal frequency on the day immediately preceding the 212 

laboratory visit. Once baseline measurements were completed, participants were served a test 213 

drink at approximately 9:00 am. Further measurements were then taken over a 3 h period, and 214 

then an ad libitum test lunch was given at 12:30 pm. Subjective appetite ratings were 215 

measured using VAS before and over a 1 h period after the ad libitum test meal  216 

Anthropometric measurements   217 

Immediately after arrival, participants were weighed on an electronic scale (Seca, Germany) 218 

to the nearest 0.1 kg with an empty bladder, wearing similar light clothes on each visit and 219 

without shoes. Waist circumference was measured to the nearest 0.5 cm in a horizontal plane 220 

at a point midway between the lower margin of the last rib and the top of the iliac crest using 221 

a stretch‐resistant tape, while the participant was standing with feet about 25–30 cm apart 222 

(28). Hip circumference was measured to the nearest 0.5 cm in a horizontal plane at the point 223 

yielding the maximum circumference over the buttocks (28). Skinfold thickness 224 

measurements were made by the same investigator, in triplicate, at four sites (triceps, biceps, 225 

subscapular and suprailiac) in order to assess participants’ body composition (29). 226 

Blood sampling  227 
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Following the anthropometric measurements, participants rested in a semi-supine position in 228 

a temperature-controlled (23-24 °C) room for a minimum of 20 min. Then a 20 G cannula 229 

(Venflon) was inserted into a dorsal hand vein under local anaesthetic (1 % lignocaine: 230 

B.Braun Melsungen AG. Melsungen, Germany) for subsequent blood sampling. The hand 231 

was placed into a hot air-warmed, ventilated perspex box (50–55 ºC) to allow arterialised 232 

venous blood sampling (30). Blood samples were drawn from a 3-way tap, the first 2 mL of 233 

each sample was discarded to avoid contamination with the saline (Baxter Healthcare Ltd., 234 

Thetford, UK) used to maintain patency. 235 

Two blood samples were taken with a 5 min interval just before ingestion of the test drink to 236 

assess the mean of fasting serum total, HDL, LDL-cholesterol, triacylglycerol, blood glucose, 237 

serum insulin, plasma glucagon-like peptide-1 (GLP-1), plasma Peptide YY (PYY), and 238 

plasma ghrelin. After the test drink ingestion, blood samples were taken every 15 min for 239 

glucose and every 30 min for 3 h to assess all the markers mentioned above except lipids, for 240 

which only a fasting measurement was made.  241 

Blood was dispensed into serum separating tubes (allowed to clot for 30 min at room 242 

temperature before centrifugation) and EDTA tubes. EDTA tubes containing either 20 μl 243 

dipeptidyl peptidase IV (DPP-IV) inhibitor (Millipore, Billerica, MA, USA) for GLP-1 244 

measurement or 50 μl aprotinin (Nordic Pharma, Reading, UK) for PYY and ghrelin 245 

measurements. All samples were centrifuged (5702 R, Eppendorf, Germany) for 10min at 246 

3000 r.p.m at 4 ºC. The supernatant was transferred into plastic tubes and kept at -80 ºC until 247 

further analysis. 248 

Blood analysis  249 

The analyses were carried out at the University of Nottingham. Serum total, HDL, LDL-250 

cholesterol and triacylglycerol concentrations were quantified by an enzymatic photometric 251 

method (HORIBA ABX, Montpellier, France). Blood glucose was measured immediately 252 
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using a HemoCue analyser (AB, Angelholm, Sweden). Serum insulin concentrations were 253 

measured with commercially available radioimmunoassays (Millipore, Billerica, MA, USA). 254 

Fasting insulin sensitivity was calculated using the homeostatic model assessment (HOMA 255 

model) (31). Plasma GLP-1 concentrations were measured using an ELISA kit (Linco 256 

Research, St Charles, MO, USA). Plasma PYY and ghrelin concentrations were measured 257 

with commercially available radioimmuno assays (Millipore, Billerica, MA, USA). 258 

Test drink consumption 259 

The standardized test drink (vanilla flavour milkshake) was served at room temperature in an 260 

open glass as a breakfast. Participants were instructed to drink it over a period of 10 min. The 261 

test drink provided 10 kcal/kg body weight and comprised 50 % of energy as carbohydrate, 262 

35 % as fat, and 15 % as protein. All participants consumed all of the test drink. The mean 263 

energy provided by the test drink was 584.3 ± 51.8 kcal which provided a mean of 27.9 ± 264 

1.1% of the estimated energy requirement. 265 

The test drink contained skimmed milk (Sainsbury’s, London, UK), Build-up (Nestle SA, 266 

Lausanne, Switzerland), Polycal (Nutricia Clinical Care, Trowbridge, UK) and double cream 267 

(Sainsbury’s, London, UK). 268 

Energy expenditure measurement 269 

Indirect calorimetry (GEM system; Europa Scientific Ltd, England) was used to determine 270 

REE and TEF by measuring the volume of oxygen uptake and carbon dioxide expired. An 271 

open-circuit flow-through canopy, with a mass flow meter, mixing chamber and a vacuum 272 

pump, was used to draw room air over the participants’ face at a rate of 50-60 l/min. This is 273 

considered to be the most convenient way for measuring energy expenditure in human studies 274 

at rest (32). The system was connected to a computer, and data from the mass flow meter and 275 

gas analysers were used to calculate the VO2 and VCO2 using the software provided by the 276 

manufacturer. The indirect calorimetry system was turned on for half an hour prior to use, to 277 
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warm up. Two cylinders of pressurised gas of known composition were used to calibrate the 278 

gas analysers in the indirect calorimetry system before the start of the experiment. REE was 279 

measured in the fasted state for 20 min. TEF was then measured for periods of 15 min at 30 280 

min intervals during the 3 h following the milkshake consumption. During the measurements, 281 

participants rested on the bed and relaxed but were not permitted to sleep. In the intervals 282 

between the measurements, they also rested on the bed, but they were allowed to read. Room 283 

air was measured at the start and both before and after each 15 min measurement period. 284 

Ad libitum test meal  285 

A pasta-based test meal (providing 167 kcal/100 g with 13, 34 and 53 % energy provided by 286 

protein, fat and carbohydrate, respectively) was served at lunchtime to assess ad libitum food 287 

intake. This meal had a homogeneous nature, so energy intake could be assessed from the 288 

weight of food consumed. The meal consisted of pasta (Sainsbury's, London, UK: 125 g 289 

cooked in 800 ml boiling water on full power in a microwave (900 W) for 13 min- stirred mid 290 

period). The pasta was then drained, cooled rapidly using cold water and then mixed with 291 

cheddar cheese (Sainsbury's: 40 g), olive oil (Sainsbury's: 15 g), and tomato and basil pasta 292 

sauce (Dolmio, Mars food, UK: 170 g; macronutrient composition of sauce in Supplemental 293 

Table 2). The mixture was then chilled until required and heated in the microwave for 2 min 294 

before being served to the participants. Participants were given portions of ~500 g and 295 

instructed to consume as much as they wanted until they felt ‘comfortably full’. The plate of 296 

pasta was continually topped up, when it was approximately ¾ empty. This ensured that there 297 

was always ample hot food available to participants and they were not cued to stop eating by 298 

having emptied their plate. Any left-over was removed and energy intake was calculated from 299 

the weight of food consumed. Duration and speed (g/min) of eating were also calculated. 300 

Subjective appetite ratings   301 

Participants completed the VAS for subjective appetite ratings just before, after and then 302 
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every 30 min after consumption of the test drink for 3 h. Further VAS were completed before 303 

and immediately after consuming the lunch test meal, and then at 15, 30, 45 and 60 min. The 304 

VAS were as described above. To avoid participants’ response to each set of VAS being 305 

biased by their responses to the previous set each paper sheet was taken from the participant 306 

before the next one was provided. During this period of time, participants were asked to stay 307 

in the laboratory, but they were free to read.  308 

Statistical analyses 309 

SPSS software (version 21 for windows; SPSS) was used for data entry and analysis. All data 310 

are presented as means± standard deviation (SD), unless otherwise stated. Data were tested 311 

for normality with the Kolmogorov-Smirnov test to inform whether parametric or non-312 

parametric analysis should be used.  313 

Values for the incremental area under the curve (iAUC) of the TEF, postprandial glucose, 314 

insulin, appetite ratings and gut hormone responses were calculated using differences from 315 

the baseline.  Values above baseline were considered positive, and below baseline negative. 316 

The area above or below baseline was calculated using the trapezoid rule.    317 

Comparisons of the baseline data at the pre intervention visit were made using Student’s 318 

paired t test (two-tailed) as were measurements of energy intake, AEEE, VAS and CGM 319 

during the intervention period.   320 

Two-way repeated measure ANOVAs (Factor 1: meal pattern, regular and irregular meal 321 

pattern; Factor 2: visit - pre and post each 14-day intervention) were conducted to assess the 322 

impact of the 14-day meal pattern intervention on a range of dependant variables (e.g. weight, 323 

iAUC for TEF, weight of pasta consumed). Where an interaction was identified, simple main 324 

effects were explored by pairwise comparisons.  Where no interaction was identified, but 325 

significant main effects were found, pairwise comparisons were made for the effect of meal 326 
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pattern or the effect of visit. Differences were considered significant at P < 0.05 for all 327 

statistical tests.  328 

Results obtained from a previous study (6) indicated that the iAUC TEF after a regular meal 329 

pattern was 0.74 ± 0.37 kJ/min and after an irregular meal pattern was 0.39 ± 0.26 kJ/min. 330 

Therefore, with a cross-over design, eleven participants in each group would be required to 331 

detect a difference in TEF (~ 0.35 kJ/min) with the power of 80 % at the significance level of 332 

0.05. 333 

TEF (kcal/min) over 3 h (following the test drink), as assessed by indirect calorimetry, was 334 

the primary outcome for comparison between the two intervention periods. Responses for 335 

lipids, glucose, insulin, gut hormones, subjective appetite ratings and ad libitum food intake 336 

of the test meal were considered as secondary outcomes.   337 

RESULTS 338 

In this study, the effect of meal irregularity on thermic effect of food (TEF), lipid 339 

concentrations, carbohydrate metabolism, subjective appetite and gut hormones were 340 

investigated in 11 healthy normal-weight women. Participants undertook either a regular 341 

meal pattern (14 days, 6 meals/day) an irregular meal pattern (14 days,varying from 3 to 9 342 

meals/day) or in a randomised crossover design, separated by a 14-day wash out period. 343 

Participants attended the laboratory after an overnight fast at the start and end of each 344 

intervention period. 345 

Anthropometric measurements 346 

There were no significant differences in bodyweight, body composition, or other 347 

anthropometric measurements at the pre intervention visits or across the study visits (Table 348 

1). 349 

Energy Intake   350 
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Self-reported daily energy intake before the start of the study (2081 ± 214 kcal/day) was 351 

similar to the estimated energy requirement for weight maintenance (2104 ± 204 kcal/day). 352 

However self-reported carbohydrate percentage (47 ± 4.1 %) was significantly lower and 353 

self-reported fat percentage (38 ± 3.7 %) was significantly higher compared with the 354 

consumed intervention diet  (53 ± 0.2 % carbohydrate and 33 ± 0.6 % fat) (paired T-test, p < 355 

0.01). There were no significant differences in the protein percentage between the self-356 

reported and the prescribed diet (14 ± 2.5 vs 14 ± 0.4 % respectively). 357 

During the study, food intake was designed to be the same by type, and amount in each 358 

intervention period, hence provide the same amount of energy and have the same 359 

macronutrient composition. The food intake diaries completed to check compliance showed 360 

that 98 ± 6 % and 100 ± 2 % of the energy given was consumed in the regular and irregular 361 

intervention periods respectively indicating good compliance. There were no significant 362 

differences in energy intake between the two intervention periods (2043 ± 248 kcal/day 363 

regular vs. 2098 ± 195 kcal/day irregular intervention period) as intended by the design of the 364 

study. The composition of consumed foods also did not differ significantly between the two 365 

intervention periods being (53 ± 0.9 % carbohydrate, 14 ± 0.4 % protein and 33 ± 0.8 % fat in 366 

regular and 53 ± 0.3 % carbohydrate; 14 ± 0.5 % protein and 33 ± 0.7 % fat in irregular 367 

intervention period). 368 

Free-living energy expenditure 369 

On average, the SWA device was worn 96.8 ± 5.5 and 95.1 ± 7.7 % of the regular and 370 

irregular intervention periods respectively. There were no significant differences between 371 

mean values of AEEE during the intervention period for both regular and irregular meal 372 

pattern (2241± 360 kcal/day and 2305 ± 399 kcal/day for regular and irregular intervention 373 

periods respectively). There were no significant differences between the mean of the physical 374 

activity level during the regular and irregular intervention period (1.60 ± 0.2 and 1.64 ± 0.2 375 
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METs for regular and irregular intervention periods respectively). In both conditions the 376 

estimated energy expenditure was approximately 200 kcal greater than the prescribed energy 377 

requirement. 378 

Free-living CGM 379 

For the nine participants for whom CGM data were available, analyses (mean, max, min, 380 

CONGA-1 and iAUC) were done for each meal pattern on day 7 (6 meals consumed in both 381 

intervention periods), day 8 (6 meals and 5 meals consumed in regular and irregular period 382 

respectively), and day 9 (6 meals and 9 meals consumed in regular and irregular period 383 

respectively) (Table 2). Twenty-four hour mean, max, min and iAUC for glucose 384 

concentrations showed no significant differences between the two intervention periods. There 385 

were also no significant differences in the day period and the night period between the two 386 

intervention periods for these variables. CONGA-1 with current observation period 9:00 to 387 

10:00 and 22:00 to 23:00 also showed no significant differences between the two intervention 388 

periods. 389 

On day 7 of the intervention (6 meals/day both interventions), there was a significantly higher 390 

glucose concentration for the postprandial (breakfast +90 min) iAUC analysis (Table 2) in the 391 

irregular meal pattern intervention compared with the regular meal pattern intervention 392 

(paired T-test, p < 0.05). On day 9 (6 meals v 9 meals), for the meals that were identical on 393 

the two interventions,  postprandial (lunch +90 min) and (dinner +90 min) iAUC analysis 394 

showed a similar difference in that the iAUC in the irregular intervention was significantly 395 

higher compared with the regular intervention (paired T-test, p < 0.05). No significant 396 

differences were seen in the other postprandial iAUC analysis.  397 

Energy expenditure (indirect calorimetry data) 398 

Fasting REE was not significantly different at the pre intervention visits. There was also no 399 

meal pattern by visit interaction, or main effect of meal pattern or visit for fasting REE (1167 400 
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± 134, 1207 ± 89, 1183 ± 171 and 1188 ± 149 kcal/day in pre, post regular and pre, post 401 

irregular visits respectively).    402 

REE increased above the fasting values, after the test drink, at all visits.  The overall TEF for 403 

the 3 h postprandial period is shown in Figure 2. There was no significant difference in 404 

overall 3 h TEF at the pre intervention visits. There was a significant meal pattern by visit 405 

interaction for the 3 h TEF (ANOVA; p < 0.05). TEF post regular visit was increased 406 

significantly compared with pre regular visit (paired T-test p < 0.01) unlike in the irregular 407 

visits, where there was no significant difference between pre and post intervention visits. TEF 408 

post regular visit was 11.1 ± 15.8 kcal higher than post irregular visit (paired T-test p < 0.05).  409 

Blood variables 410 

There were no significant differences at the pre intervention visits for all blood variables.   411 

Lipids  412 

The results for fasting serum total, LDL, HDL-cholesterol, serum triglycerides are shown in 413 

Table 3. There were no significant interactions for meal pattern by visit or main effects of 414 

meal pattern or visit in fasting serum total, LDL, HDL-cholesterol, serum triglycerides. 415 

Glucose 416 

No significant meal pattern by visit interaction or main effects of meal pattern or visit were 417 

observed in fasting blood glucose across the study (Table 3). Blood glucose responses to the 418 

test drink reached a maximum level 30 and 45 min after the test drink and remained above 419 

fasting levels at the last sampling time-point (180 min after the test drink) in all visits. The 420 

peak values (Table 3) did not show a significant interaction for meal pattern by visit or main 421 

effects for these two factors. Blood glucose iAUC response to the test drink (Figure 3) 422 

showed a significant interaction between meal pattern and visit (ANOVA; p < 0.05). A larger 423 

area was seen at the post irregular visit compared with post regular visit (p < 0.05). Post 424 

irregular visit, blood glucose iAUC was significantly higher than pre irregular visit (p < 425 
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0.05), unlike in the regular intervention, where there was no significant difference between 426 

pre and post regular visits.  427 

Insulin 428 

Table 3 shows fasting serum insulin in all visits. There were no significant interactions for 429 

meal pattern by visit or main effects of meal pattern or visit. Serum insulin concentrations 430 

increased rapidly from 15 min after consuming the test drink in all visits. Following peak 431 

values, concentrations declined to some extent but remained above fasting values for the 432 

reminder of the sampling period. The peak values of insulin (Table 3) did not show a 433 

significant meal pattern by visit interaction or main effects of meal pattern or visit. There was 434 

no significant interaction between meal pattern and visit on iAUC for serum insulin nor were 435 

there significant main effects for meal pattern or visit (5826.2 ± 2150.5 mIU/L in 3h pre 436 

regular visit, 5719.4 ± 3326.6 mIU/L in 3 h post regular visit, 5842.6 ± 3775.2 mIU/L in 3 h 437 

pre irregular visit and 5268.9 ± 2248.0 mIU/L in 3 h post irregular visit).  438 

GLP-1   439 

There was no significant interaction for meal pattern by visit or main effect of meal pattern 440 

for fasting plasma GLP-1 concentrations (Table 3). However, a significant main effect of 441 

visit was observed (ANOVA, p < 0.05). Mean fasting plasma GLP-1 concentrations 442 

decreased by approximately 16 % and 20 % post regular and irregular visits respectively 443 

compared with pre intervention visits. Following consumption of the test drink, plasma GLP-444 

1 concentrations increased in all visits. iAUC for plasma GLP-1 concentrations (Figure 4), 445 

showed no significant interaction between meal pattern and visits, or main effects for meal 446 

pattern or visit. 447 

PYY 448 

No significant meal pattern by visit interaction or main effects of meal pattern were observed 449 

in fasting plasma PYY concentrations (Table 3). However, there was a significant main effect 450 
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of visit (ANOVA, p < 0.05). Mean fasting plasma PYY concentrations decreased about 9 % 451 

and 23 % post regular and irregular visits respectively compared with pre intervention visits. 452 

Plasma PYY concentrations increased rapidly above the fasting values after consuming the 453 

test drink and remained at a plateau until the last sampling time point in all visits. iAUC for 454 

the 3 h postprandial period in all visits (Figure 4) showed no significant interaction between 455 

meal pattern and visit or main effect for meal pattern. However, there was a significant main 456 

effect of visit (ANOVA, p < 0.05). Mean iAUC for plasma PYY concentrations increased by 457 

approximately 57 % post regular compared with pre regular visit, and by 70 % post irregular 458 

compared with pre irregular visit. 459 

Ghrelin 460 

No significant meal pattern by visit interaction or main effects of meal pattern or visit were 461 

observed in fasting plasma ghrelin (Table 3). Following consumption of the test drink, 462 

plasma ghrelin concentrations declined in all visits. iAUC for plasma ghrelin (Figure 4) 463 

showed no significant interaction between meal pattern and visits, or main effects for meal 464 

pattern or visit. 465 

Subjective appetite ratings 466 

Responses to the test drink 467 

There were no significant differences between the pre intervention visits for any of the iAUC 468 

for subjective appetite ratings collected in the fasting state (Supplemental Table 3). There 469 

was also no meal pattern by visit interaction, or main effect of meal pattern or visit for fasting 470 

VAS ratings (Supplemental Table 3). The assessments of subjective hunger for the 3 h 471 

postprandial period in all visits showed no significant interaction between meal pattern and 472 

visit or main effect for meal pattern, but a significant main effect of visit (ANOVA, p < 0.05) 473 

was found. Mean hunger ratings decreased by 195 % and 104 % post regular and irregular 474 

visits respectively compared with pre intervention visits (Supplemental Table 3). The 475 
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response for the other VAS ratings showed no significant differences between the 476 

intervention periods (Supplemental Table 3). 477 

Responses to the ad libitum test meal 478 

The response (for hunger, fullness, satiety, desire to eat and prospective food consumption) 479 

for the 1 h postprandial period in all visits showed no significant interaction between meal 480 

pattern and visit or main effect for meal pattern or visits (Supplemental Table 3). 481 

Responses to the meal pattern during the intervention  482 

Subjective appetite ratings were assessed pre and post meals during day 7 and 14, when 6 483 

meals/day were consumed in both regular and irregular intervention periods. On day 7, there 484 

were no significant differences between mean pre meal ratings (average of the 6 pre-meal 485 

ratings on the day) (Table 4). However, mean post meal ratings for hunger and fullness 486 

showed significant differences between the interventions. Higher post meal ratings for hunger 487 

and lower for fullness (paired T- test, p < 0.01) were observed in irregular compared with the 488 

regular intervention period (Table 4).  489 

On day 14 (the final day of intervention), the ratings of pre meals hunger was significantly 490 

greater in irregular compared with regular intervention period (Table 5, paired T- test, p < 491 

0.05,). Furthermore, the ratings of post meal hunger were significantly greater in the irregular 492 

period (Table 5, paired T- test, p < 0.05). There were no significant differences in the pre and 493 

post meal values for the other VAS appetite ratings.   494 

Intake at the ad libitum test meal 495 

There was no significant difference between participants’ energy intake at the ad libitum test 496 

meal pre intervention visits. There was no meal pattern by visit interaction or main effect of 497 

meal pattern or visit for participants’ energy intake across the study visits (778.8 ± 272.8, 498 

745.7 ± 214.7, 722.4 ± 324.0 and 764.3 ± 246.6 kcal in pre and post regular and irregular 499 

visits respectively). 500 
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The duration of eating and speed of consuming the ad libitum test meal were not significantly 501 

different pre intervention visits. The duration of eating did not show a significant interaction 502 

between the meal pattern and visit or main effect of meal pattern or visit (9.6 ± 3.9, 9.8 ± 3.8, 503 

9.5 ± 3.1 and 9.1 ± 2.3 min in pre and post regular and irregular visits respectively). Speed of 504 

eating also showed the same result (51.1 ± 13.2, 47.9 ± 10.1, 45.1 ± 13.4 and 50.6 ± 11.1 505 

g/min in pre and post regular and irregular visits respectively). 506 

DISCUSSION  507 

The aim of this study was to investigate the metabolic, endocrine and appetite related effects 508 

of a regular compared with an irregular meal pattern, in healthy normal-weight women 509 

consuming identical, isoenergetic diets and undertaking comparable activity.  We also 510 

assessed activity using AEEE, continuous interstitial glucose monitoring (CGM) and appetite 511 

in the free-living state.   512 

No differences were found in body weight between the two interventions, suggesting that the 513 

aim to match intake and activity were met. With the regular meal pattern, TEF was greater, 514 

whilst post prandial glucose response was smaller both in response to a test drink, and in 515 

response to some identical meals, whilst free-living. No differences were found in fasting 516 

lipid values. PYY showed a greater postprandial response after both interventions, 517 

concurrently with anticipated differences in hunger and fullness. Pre and post appetite ratings 518 

during the regular intervention suggested greater fullness and reduced hunger.     519 

The differences in TEF are compatible with our previous findings (6, 8).  Compensation in 520 

other components of energy expenditure might explain the similar body weights seen after 521 

the two interventions, despite differences in TEF. However, there was no difference in REE, 522 

and although the estimate of ambulatory energy expenditure made using the SWA device has 523 

limitations, for example, the absence of published validated equations for this population 524 

group and inconsistent findings when compared with indirect calorimetry (25, 33-35), it gives 525 

 The American Journal of Clinical Nutrition AJCN/2015/125401 Version 3



25 
 

 

an indication of comparable activity patterns. The short duration of the study is a more likely 526 

explanation, as over a longer time period, the greater TEF with a regular meal pattern, if 527 

repeated at all meals and in the longer term, could have beneficial effects on weight control. 528 

The range of published values for the TEF of diets containing comparable macronutrient 529 

composition makes estimating the expected TEF from the test drink problematic (36).  530 

However using a generally accepted figure for TEF of 10 % of total energy consumed, and a 531 

mean test drink dose of 584 kcal, a TEF of approximately 60 kcal might be expected. The 532 

smaller values seen (over 3 h) may reflect that the full metabolic rate response had not 533 

occurred in 3h. It has been estimated that weight gain in 90 percent of the adult population 534 

could be prevented by reducing positive energy balance by 100 kcal/day (37) and Brown et 535 

al. found that over 5 years a 10 kcal/day excess in energy intake resulted in a 0.5 kg gain in 536 

weight per year (38). Future work should assess energy expenditure over 24 h, in order to 537 

capture the full response to each meal, and the accumulative effect of more than one meal in 538 

the day.  539 

Insulin resistance has been shown to be associated with blunted TEF (39-41), and may 540 

contribute to the differences we have seen. In this study, a lower postprandial glucose 541 

response to the test meal was seen after the regular compared with the irregular meal pattern. 542 

In our previous studies (7, 8), there was no difference in glucose response, but a greater post 543 

prandial insulin response was seen after the irregular meal pattern period. Both of these 544 

patterns of  results are consistent with the regular meal pattern resulting in greater insulin 545 

sensitivity. The novel addition to the present study of continuous interstitial glucose 546 

measurements on three days during the intervention periods (each preceded by the same last 547 

meal on the previous day) further corroborates reduced insulin sensitivity with an irregular 548 

pattern. Day 7 allowed direct comparison of six meals per day and showed a beneficial 549 

response to breakfast with regular eating.  On Day 8 however, despite having several 550 
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identical meals, no differences were found, perhaps because of an acute effect of the 551 

preceding day being identical for both patterns (6 meals per day). On Day 9, for those meals 552 

that were identical, a beneficial reduction in post prandial response at lunch and dinner (but 553 

not the night snack) was seen for the regular pattern. Further work is needed to establish 554 

whether, under laboratory conditions, a comparable difference in blood glucose response 555 

occurs throughout the day, how quickly differences are seen in response to dietary 556 

differences, and whether the differences are sustained over a longer time period.       557 

Fasting Triglyceride and HDL cholesterol concentrations showed no significant differences 558 

between the two meal patterns in the present study, in agreement with previous studies in 559 

normal-weight and obese women (7, 8). However previously differences were found between 560 

fasting total and LDL cholesterol (7) in contrast to this study. This is perhaps because the 561 

food intake was better controlled in this study. The participants in the current study were 562 

similar to those in the previous study with respect to age, BMI and body fat, however their 563 

ethnicity may have been different, possibly resulting in differences in sensitivity to meal 564 

pattern.   565 

Greater post-meal ratings for hunger and lower ratings of fullness on day 7 (6 meals/day on 566 

both interventions), during the irregular meal pattern period suggest a reduction in the 567 

satiation experienced. Additionally, greater pre and post-meal ratings for hunger were 568 

observed on the final day of the irregular meal pattern when again 6 meals were consumed in 569 

both interventions, suggesting that by the end of the study satiety was reduced as well. 570 

However there was no difference by intervention for subjective appetite in response to the 571 

test meal (although there was a time effect), or the pasta meal. The energy intake of pasta 572 

consumed at the ad libitum test meal in the laboratory was decreased by 4 % post regular visit 573 

and increased by 6 % post irregular visit.  This did not reach significance, possibly because 574 

the study was insufficiently powered for this secondary outcome.  575 
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Whilst no meal pattern effect was found for fasting plasma GLP-1 and PYY concentrations, a 576 

main effect of time was seen, and in response to the test meal for PYY. The explanation for 577 

these differences, in common with the time effect reported above for subjective appetite, may 578 

be the differences in composition of habitual diet and the intervention diet. The 7 day food 579 

record would suggest that the habitual diet contained a lower percentage of carbohydrate and 580 

a higher percentage of fat. In addition, on day 14, before the final visit, the number of meals 581 

and amount of food was the same on both occasions, in contrast to the first visits when the 582 

habitual diet was consumed the preceding day. The stage in the menstrual cycle was also 583 

different as the study started in the early phase of the follicular phase, which may have 584 

impacted on appetite (42, 43) and GLP-1 (42). The differences observed in PYY in response 585 

to the test drink were consistent with the differences in VAS hunger responses, confirming 586 

the inverse relationship between PYY and subjective hunger (44). Given, that the differences 587 

in subjective appetite noted whilst free-living in this study, might offer an explanation for the 588 

higher energy intake previously  noted in obese participants eating ad libitum while following 589 

an irregular meal pattern (8), this aspect warrants further work, with a larger sample size. As 590 

demonstrated with respect to TEF, small differences in energy intake, sustained over the long 591 

term, can have a major impact on weight regulation. It is also of interest that associations 592 

have been found between TEF and satiety (45) suggesting that there may be some inter-593 

relation between differences in subjective appetite, and the blunted TEF measured in this 594 

study. 595 

In conclusion, the results of this study show that a regular meal pattern compared with an 596 

irregular meal pattern results in greater TEF, greater insulin sensitivity, and potentially 597 

beneficial subjective appetite changes.  These desirable effects could support weight control 598 

and metabolic health, in the general population. Future studies should include overweight and 599 
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obese participants, with and without type II diabetes, and should include 24 hour 600 

measurement, and longer term interventions.   601 
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TABLE 1. Participants’ characteristics over the study 1 

 
Regular meal pattern Irregular meal pattern 

Pre Post Pre Post 

Body weight (kg) 58.7 ± 6.1 58.3 ± 6.2 58.6 ± 6.6 58.2 ± 6.1 

BMI (kg/m2) 22.0 ± 2.0 21.8 ± 1.9 21.9 ± 1.9 21.8 ± 2.0 

Body fat (%) 22.2 ± 3.0 22.1 ± 3.6 22.3 ± 3.5 22.7 ± 3.8 

Waist (cm) 69.5 ± 5.5 69.5 ± 5.1 70.5 ± 5.7 69.9 ± 5.1 

Waist/hip 0.7 ± 0.6 0.7 ± 0.6 0.7 ± 0.6 0.7 ± 0.6 
1 mean ± SD, n=11.   

There were no significant differences in the characteristics of the ten participants across the 

study comparing a regular and irregular meal pattern (Two-way ANOVA).  
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TABLE 2. Analyses of the CGM data compared between the two meal pattern interventions 1 

Glucose  

(mmol/L) 

Regular meal pattern Irregular meal pattern 

Day 7 

6 meals 

Day 8 

6 meals 

Day 9 

6 meals 

Day 7 

6 meals 

Day 8 

5 meals 

Day 9 

9 meals 

Fasting  4.7±0.8 4.9±0.4 4.9±0.4 5.0±0.6 4.9±0.6 5.1±0.4 

Mean 24 h 5.2±0.5 5.3±0.4 5.4±0.6 5.2±0.4 5.2±0.4 5.5±0.3 

Mean day h 2  5.3±0.7 5.4±0.5 5.5±0.5 5.3±0.4 5.3±0.4 5.6±0.3 

Mean night h 2 4.9±0.3 5.2±0.6 5.2±0.8 4.9±0.6 5.0±0.4 5.1±0.5 

Max 3 24 h 7.1±1.0 7.1±1.4 7.9±1.5 7.5±1.4 7.2±0.8 7.9±1.2 

Max day h 7.1±1.0 7.1±1.4 7.9±1.5 7.5±1.3 7.2±0.8 7.9±1.2 

Max night h  5.5±0.4 5.8±0.8 5.9±0.7 5.8±1.0 5.5±0.5 5.8±0.6 

Min 3 24 h 4.1±0.8 4.3±0.5 4.1±0.5 3.8±0.4 3.9±0.5 4.1±0.5 

Min day h  4.1±0.8 4.3±0.5 4.1±0.6 4.3±0.4 4.1±0.6 4.3±0.4 

Min night h  4.5±0.4 4.7±0.6 4.8±0.8 4.2±0.6 4.4±0.6 4.5±0.6 

iAUC 24h 566.9±935.2 464.8±756.9 625.7±633.4 473.2±760.0 659.3±834.9 969.0±808.8 

iAUC day h  553.3±723.0 376.7±610.4 515.0±591.7 500.8±547.1 629.9±637.6 850.5±685.5 

iAUC night h  -95.0±226.8 -74.1±169.4 -186.4±209.8 -69.5±138.4 -75.5±199.7 -136.2±145.9 

CONGA-1 3 

(9:00-10:00) 
0.67±0.6 0.68±0.4 1.13±0.8 1.14±0.7 0.59±0.3 0.72±0.3 

CONGA-1 

(22:00-23:00) 
0.38±0.22 0.36±0.1 0.60±0.4 0.32±0.2 0.32±0.2 0.52±0.2 

iAUC 3-breakfast 
+90 

50.3±54.4 4 56.3±52.0 - 95.7±70.8 4 66.6±42.2 - 

iAUC-mid-
morning snack 
+90 

25.3±29.3 29.9±40.4 - 31.8±42.3 43.2±25.9 - 

iAUC-lunch 
+90  

34.6±40.0 - 51.4±43.9 5 21.5±45.0 - 102.8±74.7 5 

iAUC-afternoon 
snack +90 

36.8±61.0 - - 41.7±43.1 - - 

iAUC-dinner 
+90 

46.0±58.9 - 50.5±43.3 6 56.3±53.0 - 90.3±54.7 6 

iAUC-night 
snack +90 

17.2±21.7 25.3±26.7 9.4±45.0 35.7±32.1 21.3±33.0 23.1±21.9 
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1 mean ± SD, n=9.  

2 Day h (7:00-midnight), Night h (midnight-7:00).  

3 Max (maximum), Min (minimum), CONGA-1 (continuous overall net glycemic action), 

iAUC (incremental area under the curve). 
4, 5, 6 There were significant differences in iAUC-breakfast + 90 on day 7,  iAUC-lunch + 90 

iAUC-dinner + 90 on day 9, between the regular and irregular intervention periods (paired T-

test, p < 0.05).  

No significant differences were observed in the other measurements (paired T-test). 
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TABLE 3. Fasting blood measurements and peak postprandial glucose and insulin 

concentrations over the study comparing regular and irregular meal pattern 1 

 
 Regular meal pattern Irregular meal pattern 

Pre Post Pre Post 

Total cholesterol 
(mmol/L) 

4.22 ± 1.13 4.34 ± 1.07 4.14 ± 1.25 4.15 ± 0.92 

LDL (mmol/L) 2.48 ± 1.01 2.60 ± 1.04 2.44 ± 0.97 2.48 ± 0.82 

HDL (mmol/L) 1.41 ± 0.21 1.39 ± 0.23 1.31 ± 0.30 1.31 ± 0.24 

Triglycerides (mmol/L) 0.74 ± 0.23 0.80 ± 0.31 0.81 ± 0.55 0.83 ± 0.32 

Glucose (mmol/L) 4.6 ± 0.40 4.4 ± 0.24 4.5 ± 0.52 4.3 ± 0.55 

Insulin (mIU/L) 9.64 ± 2.87 8.97 ± 2.55 10.28 ± 4.14 8.52 ± 2.95 

HOMA-IR 1.98 ± 0.96 1.77 ± 0.52 2.04 ± 0.91 1.60 ± 0.57 

Glucose Peak (mmol/L) 7.4 ± 0.57 6.7 ± 0.65 6.8 ± 0.55 6.9 ± 0.80 

Insulin peak (mIU/L) 83.1 ± 46.49 83.1 ± 54.94 103.8 ± 78.41 71.6 ± 32.25 

GLP-1 (pmol/L) 2 3.70 ± 2.66 3.12 ± 2.63 3.95 ± 3.05 3.16 ± 2.67 

PYY (pg/mL) 3 103.46 ± 25.80 94.20 ± 21.11 
117.31 ± 

41.20 
90.10 ± 19.51 

Ghrelin (pg/mL) 1012.5 ± 174.3 1017.9 ± 177.2 985.9 ± 227.4 1041.3 ± 208.0 
 1 mean ± SD, n=10. 

 2 There was a significant main effect of visit on fasting plasma GLP-1 concentrations (Two-

way ANOVA, p < 0.05). 

 3 There was a significant main effect of visit on fasting plasma PYY concentrations (Two-

way ANOVA, p < 0.05).  

There were no significant differences in fasting serum lipids, blood glucose, serum insulin, 

HOMA-IR and plasma ghrelin concentrations across the study comparing regular and 

irregular meal pattern (Two-way ANOVA). 
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TABLE 4. Comparison of mean appetite ratings (all day points combined) on day 7 (6 meals 

per day) of regular and irregular meal patterns 1 

 
Regular meal pattern Irregular meal pattern 

Pre meals Post meals Pre meals Post meals 

Hunger (mm) 46.5± 10.2 14.5± 7.0 2 48.8± 10.0 23.4 ±6.0 2 

Satiety (mm) 42.2± 12.0 74.9 ±5.1 40.4± 13.1 74.6 ±5.8 

Fullness (mm) 39.5± 12.2 80.6 ±4.4 3 40.2± 13.0 73.6 ±5.3 3 

Desire to eat (mm) 51.8± 10.2 22.3 ±7.1 49.6± 9.8 26.0 ±6.0 

Prospective food 
consumption (mm) 
 

56.5± 7.7 24.9 ±8.3 54.4± 8.3 29.9 ±8.1 

1 mean ± SD, n=11.  

2 There was a significant difference in post meals hunger ratings between the regular and 

irregular intervention periods (paired T-test, p < 0.05).  

3 There was a significant difference in post meals fullness ratings between the two 

intervention periods (paired T-test, p < 0.05).  

No significant differences were observed in the other VAS ratings between the two 

intervention periods (paired T-test).
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TABLE 5. Comparison of mean appetite ratings (all day points combined) on day 14 (6 

meals per day) of regular and irregular meal patterns 1 

 
Regular meal pattern Irregular meal pattern 

Pre meals Post meals Pre meals Post meals 

Hunger (mm) 51.0± 11.5 2 18.9± 4.5 3 58.0± 8.7 2 22.8± 5.0 3 

Satiety (mm) 40.7± 7.4 77.2± 2.6 44.0± 13.3 75.3± 4.7 

Fullness (mm) 44.6± 13.1 75.6± 3.5 37.2± 9.0 76.0± 3.6 

Desire to eat (mm) 51.3± 11.9 26.5± 4.3 58.2± 5.9 24.9± 3.9 

Prospective food 
consumption (mm) 
 

58.6± 9.3 30.9± 4.5 55.6± 9.3 27.9± 3.3 

  1 mean ± SD, n=11.  

2 There was a significant difference in pre meals hunger ratings between the regular and 

irregular intervention periods (paired T-test, p < 0.05).  

3 There was a significant difference in post meals hunger ratings between the two intervention 

periods (paired T-test, p < 0.05).  

No significant differences were observed in the other VAS ratings between the two 

intervention periods (paired T-test). 
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FIGURE 1. Study participant flow diagram. 

FIGURE 2.  Mean (± SEM) iAUC for TEF in eleven healthy women in the visits pre and 

post regular and irregular meal pattern, measured by the trapezoidal method.  

* There was a significant meal pattern by visit interaction between the regular and irregular 

meal pattern periods (Two-way ANOVA, p < 0.05). iAUC for TEF was significantly higher 

post-regular compared with post-irregular meal pattern (p < 0.05). iAUC for TEF was 

significantly higher post-regular compared with pre-regular meal pattern (p < 0.05). There 

was no significant difference for TEF iAUC between pre-irregular and post-irregular 

intervention visits. 

FIGURE 3.  Mean iAUC for (± SEM) blood glucose concentration in ten healthy women in 

the visits pre and post regular and irregular intervention period, measured by the trapezoidal 

method. 

* There was a significant meal pattern by visit interaction between the regular and irregular 

meal pattern periods (Two-way ANOVA, p < 0.05). iAUC for blood glucose concentration 

was significantly lower post-regular compared with post-irregular meal pattern (p < 0.05). 

iAUC for blood glucose concentration was significantly higher post-irregular compared with 

pre-irregular meal pattern (p < 0.05). 

FIGURE 4. Mean (± SEM) iAUC plasma GLP-1, PYY and ghrelin concentrations in ten 

healthy women in the visits pre and post regular and irregular meal pattern, measured by the 

trapezoidal method. A significant main effect of visit was observed for iAUC plasma PYY 

(Two-way ANOVA, p < 0.05). 
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