
Optimal Design of Uptime-Guarantee Contracts under

IGFR Valuations and Convex Costs

Behzad Hezarkhani∗

Nottingham University Business School, University of Nottingham,
Jubilee Campus, Nottingham, NG8 1BB, UK

Abstract

An uptime-guarantee contract commits a service provider to maintain the
functionality of a customer’s equipment at least for certain fraction of working
time during a contracted period. This paper addresses the optimal design
of uptime-guarantee contracts for the service provider when the customer’s
valuation of a contract with a given guaranteed uptime level has an Increasing
Generalized Failure Rate (IGFR) distribution. We first consider the case
where the service provider proposes only one contract and characterize the
optimal contract in terms of price as well as guaranteed uptime level assuming
that the service provider’s cost function is convex. In the second part, the
case where the service provider offers a menu of contracts is considered. Given
the guaranteed uptime levels of different contracts in the menu, we calculate
the corresponding optimal prices. We also give the necessary and sufficient
conditions for the existence of optimal contract menus with positive expected
profits.

Keywords: Revenue management, Pricing, Game theory, Maintenance,
Contracts, Servitization

1. Introduction

In many industries, the steady execution of value added activities depends
on uninterrupted performance of sophisticated equipment whose maintenance
must be outsourced. The imperfect reliability of critical equipment threatens
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the revenue stream of their owners. To hedge the risk of break downs, owners
would be willing to pay premiums for services which increase the reliability
of their equipment. On the other hand, faced by saturated markets and fierce
competition, many traditional core manufacturing companies are reinventing
their services as key sources of revenue (Sawhney et al., 2003). When man-
aged correctly, maintenance contracts can leverage customers’ requirements
for more reliable equipment and service providers’ revenue diversification
strategies.

A standard quality control indicator for determining the effectiveness of a
maintenance service contract is the equipment’s uptime, that is, the fraction
of time that the device will be operational and ready to use (Chan, 2003). An
uptime-guarantee contract commits a service provider to maintain function-
ality of some equipment at least for certain fraction of working time during
a contracted period. In this sense, an uptime-guarantee contract is a spe-
cial form of performance-based contracts (see Selviaridis and Wynstra (2015)
for a review). This paper addresses the optimal design of uptime-guarantee
maintenance contracts.

This study is particularly motivated by the contracting practices in the
high-tech medical equipment industry such as medical imaging devices. The
annual maintenance service cost for a medical imaging device can be as much
as 8.5 percent of the initial purchase cost and it has become a key competi-
tive factor among different manufacturers (Sferrella, 2012). Not surprisingly,
specific patterns of servitization can be observed among the manufactur-
ers of medical technology (Schröter and Lay, 2014). Van Brunschot (2015)
gives a detailed report on a major European manufacturer’s attempts to sys-
tematically overhaul its uptime-guarantee contracts. Although contractual
commitments on uptime are quite common with medical equipment (Man-
cino and Siachos, 2007), the research into maintenance service contracts in
the health care sector is still in its infancy stages (Cruz and Rincon, 2012).

Among all the terms and conditions of an uptime-guarantee contract,
we focus on two main features: the guaranteed uptime level and the price.
The service provider’s goal in designing an uptime-guarantee contract is to
maximize his (expected) profit. While charging too high a price deters the
customer from purchasing the contract, too low a price leaves the service
provider at loss. The key to the optimal design of such contracts is un-
derstanding a customer’s valuation of a contract which is the basis for her
decision to purchase the contract or rely solely on corrective maintenance.
The customer’s valuation is considered to involve two terms: (a) expected
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utilization time, i.e., the amount of time that the customer can make use of
the equipment given its uptime level, and (b) unit revenue rate, i.e., the rev-
enue obtained by utilizing the equipment for a unit of time. In many cases,
including our motivating scenario, the service provider has a very good under-
standing of the customer’s utilization function—in light of standard warranty
periods where the performance of the equipment is constantly monitored by
the service provider. However, in almost all real life situations the service
provider does not have the exact information about the customers’ unit rev-
enue rates. We assume that the service provider knows the distribution of the
customer’s unit revenue rate. As a technical requirement for tractability we
assume that the customer’s unit revenue has an Increasing Generalized Fail-
ure Rate (IGFR) distribution function. Many well-known distribution func-
tions satisfy the IGFR condition, e.g., exponential, normal, logistic, Weibull,
gamma, beta, Cauchy, etc. (Banciu and Mirchandani, 2013). The IGFR dis-
tribution assumption is common in supply chain revenue management and
pricing literature (Lariviere, 2006).

In the first part of this paper, we consider the case where the service
provider offers a single contract to the customer. We focus on contracts which
are interesting from the perspective of both parties. That is, we search for a
contract that has a positive chance of being purchased by the customer and
generates a positive profit for the service provider. As we show, the existence
of such a contract can be ensured by enforcing a condition on the guaranteed
uptime level. We then develop closed-form formulas for the optimal price as
well as the optimal guaranteed uptime level. In doing so we assume that the
service provider’s cost function for providing contracts with different uptime
levels is convex, that is, guaranteeing higher uptime levels are increasingly
costly.

The second part of the paper extends the analysis to situations where
the service provider offers menus of contracts. A contract menu enables the
service provider to extract more profit from a customer with high valuation
without risking the potential profit that can be obtained from a customer
with low valuation. Given the guaranteed uptime levels of the contracts in a
menu, we optimize their corresponding prices to maximize the expected profit
from the contract menu. We provide the necessary and sufficient conditions
on the guaranteed uptime levels that ensure the existence of optimal contract
menus with positive expected profits.

The rest of this paper is organized as follows. Section 2 overviews the
previous relevant studies in the literature. Section 3 outlines the elements
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of our mathematical model. The design of singular contracts is discussed in
Section 4. The analysis of contract menus is carried out in Section 5. Section
6 concludes the paper. All proofs are presented in the appendix.

2. Literature Review

We overview the literature on maintenance contracts. A number of pa-
pers in this domain focus on either customer’ or service providers’ decision
problems. In a multi-criteria decision making framework, de Almeida (2001)
investigates a customer’s optimal choice from a given set of contracts by in-
corporating their risks, costs, and other consequences on the performance of
equipment. Wang (2010) emphasizes on the interplay between inspections
and repair services. Assuming fix contract prices, he analyzes the relation-
ship between an equipment owner’s choice of contract and inspection intervals
offered by a service provider.

Several papers in the literature study the design of optimal service con-
tracts drawing upon the Stackelberg game while making the critical assump-
tion that all information is commonly known by the parties involved. Murthy
and Yeung (1995) discuss the optimal strategies for a customer and a service
provider with two types of maintenance services: pre-planned and immediate.
The optimal contract prices are calculated based on the customer’s unit rev-
enue rate of workable equipment time. Murthy and Asgharizadeh (1999) and
Ashgarizadeh and Murthy (2000) study the optimal decisions of one or more
equipment owners and a service provider in terms of right choices of contract,
contract prices, and service channels. Rinsaka and Sandoh (2006) extend the
work of Murthy and Asgharizadeh (1999) to the time after the initial war-
ranty period. Within a multi-stage decision making framework, Hartman
and Laksana (2009) examine the optimal strategies for equipment owners
with regards to the types of extended warranty contracts as well as pricing
policies. They show that by offering multiple contracts a service provider
can dramatically increase its profit. Tong et al. (2014) discuss the pricing
strategies for a provider of two-dimensional warranty contracts. Esmaeili
et al. (2014) study the choices of various attributes in a three-level warranty
service contract among a manufacturer, a service provider and a customer.
Gallego et al. (2014) analyze the residual value extended warranty contracts
where a customer would receive a bonus if no claims are maid during the
term of contract. They study the pricing problems associated with single
and menu contracts for strategic customers with different risk attitudes.
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Although the Stackelberg game is the most common approach taken in
the literature, few authors use cooperative and/or bargaining games to study
the design of maintenance contracts. Hamidi et al. (2014) analyze a two-
player cooperative game with an equipment owner, who announces the time
of replacement of a part, and a service provider, who chooses the order time of
the part. Jackson and Pascual (2008) consider a negotiation scenario where
contract prices, preventive maintenance intervals, and response times are
set to equally divide the profits between an equipment owner and a service
provider.

Another stream of research underlines the fact that interacting parties
may not be fully aware of each other’s attributes. Taking into account the in-
deterministic nature of customers’ attitude to risk, Huber and Spinler (2012)
formulate a model which allows a service provider to manage his revenue
by setting the prices of full-service or on-call maintenance contracts. They
give a closed-form formula for the service provider’s optimal contract prices
under the assumption that the customer’s attitude toward risk is uniformly
distributed. Huber and Spinler (2014) extend the latter model to account
for learning, optimized maintenance, and information asymmetry between
customers and service providers. In an alternative setting where customers
design the maintenance contracts, Kim et al. (2010) introduce contractual
structures that mitigate service providers’ moral hazards associated with
their capacity investments. Zeng and Dror (2015) extend the analysis of this
problem in several directions.

Another approach to managing the relationship between customers and
service providers seeks to coordinate the parties’ efforts to optimize the
system-wide profit—as opposed to focusing on either customers’ or service
providers’ decision making problems. Within a deterministic framework,
Tarakci et al. (2006a) and Tarakci et al. (2006b) analyze several mecha-
nisms, including a pricing scheme for maintenance contracts, to ensure that
the optimal intervals for preventive maintenance from the perspectives of
both service provider and equipment owner coincide. Tseng and Yeh (2013)
extend the single processor case discussed in Tarakci et al. (2006a) for risk-
averse customers.

Instead of relying on game theory to analyze the interactions between
agents involved, some authors build models that use demand elasticity to
capture the effects of contracts with different terms and conditions on ser-
vice providers’ profit. Drawing upon a non-linear deterministic demand func-
tion for approximating customers’ sensitivity to contract price and delivery
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time, So and Song (1998) propose a model to analyze pricing, delivery time
guarantee and capacity expansion decisions of a service provider. In a holis-
tic approach to optimize contract prices and uptime levels, as well as the
network of maintenance facilities and personnel, Lieckens et al. (2015) use a
multinomial logit model to estimate the probabilities of the customers choos-
ing among full-service, on-call, or no-contract options. They obtain contract
choice probabilities indirectly as functions of customer’s price elasticity and
downtime sensitivity.

3. Model

The basic situation consists of a service provider (he) who offers an
uptime-guarantee contract to a customer (she) for a specific piece of equip-
ment over a period of time. A guaranteed uptime-level, d ∈ (0, 1], represents
the minimum fraction of time in the contracted period that the equipment
must be operational. An uptime-guarantee contract t charges a price p for
providing the services that guarantee an uptime level d and is denoted with
the pair t = (p, d). Without purchasing an uptime-guarantee contract and
relying on corrective maintenance services of the service provider only, the
customer’s equipment has an expected uptime level of d0. Naturally, the
guaranteed uptime level of the contract must be higher than the base uptime
level, i.e., d ∈ (d0, 1].

The service provider incurs different types of costs, such as preventive and
corrective maintenance costs as well as default penalties, to uphold a contract.
We consolidate such costs and let cd be the expected cost of the contract with
uptime level d. Guaranteeing higher uptime levels generates higher costs.
We assume that the cost function cd is increasing and twice differentiable on
d. The expected cost associated with the corrective maintenance services is
denoted by c0.

The customer has a certain valuation for having the equipment in work-
able conditions. We model the customer’s valuation as a function of two
elements. The first element λd is the expected utilization time of the equip-
ment at uptime level d during the period of contract, that is, the expected
time that the equipment actively generates revenue. The second element is
the unit revenue rate v, i.e., the revenue that the customer obtains if she
utilizes the equipment for one unit of time. The customer’s valuation of a
contract with uptime level d as a function of her unit revenue is denoted by
νd(v) = vλd.
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As the uptime level of the equipment increases, the customer can utilize
it further. However, the equipment may not be utilized whenever it is func-
tional. Thus we assume that λd is an increasing and concave function of d.
The service provider knows the utilization function of the customer—such
information is usually obtained during the preliminary warranty period. The
unit revenue rate, however, is the private knowledge of the customer. Al-
though the service provider is unaware of the exact customer’s unit revenue
rate, he knowns its probability distribution. We assume that the customer’s
unit revenue rate posses a density function f with its support on V = [0, vmax]
and is differentiable at all interior points of V . The probability distribution
is denoted with F and its complement with F . Furthermore, we assume
that the customer’s unit revenue has an Increasing Generalized Failure Rate
(IGFR) distribution.

3.1. IGFR distributions

A probability distribution F satisfies the IGFR condition if xf(x)/F (x)
is non-decreasing (or weakly increasing) everywhere in its support such that
F (x) < 1 (Lariviere, 2006). The family of IGFR distributions includes ex-
ponential, normal, log-normal, logistic, Weibull, gamma, beta, Cauchy, etc.
(Banciu and Mirchandani, 2013). The following lemma presents a technical
property of IGFR distribution functions which is used later in this paper.

Lemma 1. Let F be an IGFR distribution. Define G(x) = F (x)−(x−a)f(x)
with a > 0 and suppose x∗ = G−1(0) exists such that x∗ > a. We have
dG(x)/dx|x∗ < 0.

Lemma 1 shows that for IGFR distributions, the critical point of the
function G occurring after a is a maximum.

4. Singular Contracts

In this section we study the situation where the service provider offers a
single contract to the customer. We start by stating the customer’s utility
as well as the service provider’s profit functions. Afterwards, we draw upon
a Stackelberg game to combine these two functions in order to tackle the
contract design problem.
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4.1. The customer’s utility

Before purchasing an uptime-guarantee contract, the rational customer
compares her profit under the contract with that in situation of operating
without a contract and relying on corrective maintenance. We define the
utility function of the customer under the choice of contract t = (p, d) as the
additional profit obtained from purchasing t, that is,

u(v, t) = νd(v)− p− (ν0(v)− c0)

= v(λd − λ0)− (p− c0), (1)

where ν0 and λ0 represent the respective values at uptime level d0. The
customer would certainly purchase t if it results in a positive utility, i.e.,
u(v, t) > 0. Hence, a customer with unit revenue rate v purchases t whenever
v > v0 = (p − c0)/(λd − λ0). In case v = v0, which implies u(v, t) = 0,
purchasing the contract has no additional benefit so the customer may or
may not purchase t.

4.2. The service provider’s profit

The service provider can expect two outcomes by offering contract t.
Either the customer rejects the contact or she purchases it. If the contract
is not purchased then the profit of zero would be obtained by the service
provider. Otherwise, the service provider obtains the profit of p− cd.

4.3. Singular contract design problem

To tackle the contract design problem, the service provider’s profit and
the customer’s utility must be considered simultaneously. This situation
can be handled by a Stackelberg game where the service provider, acting as
the leader, proposes the contract in anticipation of the optimal response of
the customer. The expected profit of the risk-neutral service provider upon
offering contract t is the associated profit multiplied by the probability of the
customer’s unit revenue be such that she purchases the contract:

Π(t) = (p− cd)Pr{v|t is purchased}. (2)

Since the customer purchases the contract whenever v > v0, the prob-
ability of contract being purchased is F (v0). Note that with a continuous
probability function the customer’s choice at v = v0 is irrelevant. By incor-
porating the customer’s optimal choice into the service provider’s problem,
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his expected profit can be denoted as follows:

Π(t) =

{
(p− cd)F

(
p−c0
λd−λ0

)
if 0 ≤ p−c0

λd−λ0
< vmax

0 if p−c0
λd−λ0

≥ vmax

. (3)

4.4. Desirable contracts

Not all possible contracts are worth considering. For example, if the
contract is such that v0 ≥ vmax, there is zero chance that the customer
purchases it and accordingly the service provider’s profit would be zero. The
essential condition for a contract, defined below, reflects the requirement
that an offered contract must have a positive chance of being purchased, i.e.,
Pr{v|t is purchased} > 0.

Definition 1. A contract t = (p, d) is essential if (p− c0)/(λd− λ0) < vmax.

The service provider must also ensure that the offered contract generates
profit. Therefore, a contract is only worthwhile to offer if it is profitable.

Definition 2. A contract t = (p, d) is profitable if p− cd > 0.

Since c > c0, profitability of a contract also means that v0 > 0. Therefore
with an essential and profitable contract the service provider’s profit in (3)
boils down to:

Π(t) = (p− cd)F
(
p− c0

λd − λ0

)
. (4)

4.5. Admissible uptime levels

We introduce an important condition for uptime levels.

Definition 3. An uptime level d is admissible if (cd− c0)/(λd− λ0) < vmax.

For the customer who purchases a contract with uptime level d, the value
(cd−c0)/(λd−λ0) is the lowest unit revenue which leaves the service provider
with no loss. The admissibility condition on uptime levels is required to
ensure that an essential and profitable contract can be found.

Lemma 2. A necessary condition for the existence of an essential and prof-
itable contract with guaranteed uptime level d is that d be an admissible uptime
level.
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4.6. Optimal prices

Suppose that the uptime level is fixed to d. In order to obtain the optimal
price we solve the following program:

max
p

(p− cd)F
(
p− c0

λd − λ0

)
(5)

s.t.
p− c0

λd − λ0

< vmax (6)

p− cd > 0 (7)

In the above program, constraint (6) ensures that the selected price together
with d yield an essential contract. Constraint (7) ascertains that t = (p, d)
is a profitable contract. When these two constraints are met, the program
maximizes the service provider’s expected profit considering the customer’s
optimal response.

The objective function is not necessarily concave. However, the main
result of this section obtains a unique solution for this program.

Theorem 1. Let d ∈ (d0, 1] be an admissible guaranteed uptime level. There
exists a unique price, p∗, such that essential and profitable contract t∗d =
(p∗, d) maximizes the service provider’s expected profit considering the cus-
tomer’s optimal response. The optimal price satisfies:

F

(
p∗ − c0

λd − λ0

)
=
p∗ − cd
λd − λ0

f

(
p∗ − c0

λd − λ0

)
. (8)

Theorem 1 shows that if d is admissible, one can find a unique optimal
price such that the corresponding contract is essential and profitable. Equa-
tion (8) is the first order condition for the relaxed program. Hence, the
constraints in the above program are never binding.

In conjunction with Lemma 2, which introduces the admissibility of an
uptime level as a necessary condition for the existence of an essential and
profitable contract, Theorem 1 enables us to present the last result of this
section without a formal proof.

Corollary 1. Let d ∈ (d0, 1]. A unique essential and profitable contract with
the highest expected profit for the service provider exists if and only if d is an
admissible uptime level.
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4.7. Optimal contracts

In this section we address the problem of finding the best combination of
guaranteed uptime level and price for the service provider. Using Corollary
1, the underlying program for finding the optimal contract can be written as

max
p,d

(p− cd)F
(
p− c0

λd − λ0

)
(9)

s.t.
cd − c0

λd − λ0

< vmax (10)

d ∈ (d0, 1] (11)

In the above program, constraint (10) ensures the admissibility of the selected
uptime level while constraint (11) obtains a feasible guaranteed uptime level
for the contract. Once these constraints are met, maximizing the objective
function attains an essential and profitable contract.

A challenging aspect of the above program is that the feasible region is
not necessarily a convex set. However, in case cd is convex—which implies
that the rate of growth of costs associated with providing contracts which
higher uptime levels is increasing—the feasible region is a convex set. The
next lemma demonstrates this.

Lemma 3. Assume that cd is a convex function. Either every uptime level
d ∈ (0, 1] is admissible, or there exists a limit uptime level d̂ ∈ (0, 1] such
that every d ∈ (0, d̂) is admissible and every d ∈ [d̂, 1] is not admissible.

To check the existence of limit uptime level d̂ it is sufficient to test if d = 1
is admissible or not. Admissibility of d = 1 implies that the limit uptime
level does not exist while the opposite manifests the existence of d̂. The main
result of this section characterizes the unique optimal contract under convex
costs.

Theorem 2. Assume that cd is a convex function. If any admissible uptime
level exists in (d0, 1], then a unique essential and profitable contract t∗ =
(p∗, d∗) exists that maximizes the service provider’s expected profit considering
the customer’s optimal response. The optimal contract is obtained via the
following conditions:
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(i) In case d = 1 is not admissible: the unique optimal contract satisfies

F

(
c
′

d∗

λ
′
d∗

)
=

(
c
′

d∗

λ
′
d∗
− cd∗ − c0

λd∗ − λ0

)
f

(
c
′

d∗

λ
′
d∗

)
, (12)

p∗ =
c
′

d∗

λ
′
d∗

(λd∗ − λ0) + c0 (13)

where c
′

d and λ
′

d are the first derivatives of cd and λd.

(ii) In case d = 1 is admissible: if (12) has a solution then (12) and (13)
together yield the unique optimal contact. Otherwise, the unique opti-
mal contract has the guaranteed uptime level d∗ = 1 with the optimal
price corresponding to this uptime level obtained from (8).

Theorem 2 includes several observations. First, it gives a condition for the
existence of optimal contracts in terms of limit uptime level d̂. If d̂ ≤ d0 offer-
ing an uptime-guarantee contract does not make sense for the service provider
since no profitable and essential contract can be found. When d̂ > d0, Theo-
rem 2 determines the unique optimal contract. In case the limit uptime level
d̂ exists, i.e., when d = 1 is not admissible, the optimal uptime level is the
solution to condition (12) and the optimal price is obtained from (13). In
case the limit uptime level does not exist, i.e., d = 1 is admissible, the opti-
mal contract either happens at the critical point, which satisfies conditions
(12) and (13), or in case Π(p, d) does not have a critical point, it happens at
the extreme uptime level of 1.

5. Contract Menus

In this section we extend our analysis to study situations where the service
provider offers a collection of contracts, i.e., a contract menu. The service
provider’s incentive for doing so is to take advantage of different possible
types of the customer to get the most out of a high-valuation customer who
is willing to pay more to purchase contracts with higher guaranteed uptime
levels while avoiding the risk of losing a low-valuation customer.

Formally, a contract menu is a non-empty set of singular contracts de-
noted by t = {t1, ..., tm}. We refer to m as the menu’s size. We assume
hereafter that the indices of contracts in the menu are arranged accord-
ing to increasing order of their uptime levels, i.e., for k = 1, ...,m − 1 we
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have dk < dk+1. The (ordered) vector of uptime levels is denoted with
d = (d1, ..., dm). Naturally, we require that d1 > d0 and dm ≤ 1. To compare
the choice of different contracts with the choice of no contract, we define
the dummy contract t0 = (p0, d0) with p0 = c0 and let t+ = t ∪ t0 be the
augmented contract menu.

The optimal design of contract menus is more complicated than that
of singular contracts since (a) the customer’s optimal choice in this case is
less straightforward, and (b) the service provider’s optimization problem has
more variables that should be simultaneously optimized.

5.1. The customer’s utility

In line with equation (1), the utility of contract tk ∈ t+ to the customer
with unit revenue v can be formulated as u(v, tk) = v(λdk − λ0)− (pk − c0).
Contract tk is an optimal choice for the customer if u(v, tk) ≥ u(v, tk′ ) for all
tk′ ∈ t+. In case there are multiple optimal contracts, the customer chooses
randomly among them.

The customer’s utility functions associated with every pair of distinct
contracts intersect at a single point. Hence, we can find a threshold for each
pair of contracts such that the customer’s preference over the pair changes
at the threshold. For tk, tk′ ∈ t+ such that k < k

′
we define the pivot of k

and k
′

by

vk,k′ =
pk′ − pk
λd

k
′ − λdk

. (14)

The customer with unit revenue rate v prefers tk′ to tk whenever v > vk,k′

since u(v, tk′ ) > u(v, tk). tk would be chosen over tk′ , i.e. u(v, tk′ ) < u(v, tk),
whenever v < vk,k′ . In case v = vk,k′ , we have u(v, tk′ ) = u(v, tk) which im-
plies that the customer is indifferent between tk and tk′ and chooses randomly
between the two contracts.

5.2. The service provider’s profit

The profit to the service provider when the customer purchases contract
tk = (pk, dk) ∈ t+ is pk − cdk . We assume hereafter that cd is convex, that is,
the rate of growth of costs associated with providing contracts which higher
uptime levels is increasing.
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5.3. Contract menu design problem

Similar to the case of singular contracts, we can express the expected
profit of the service provider, while taking into account the customer’s opti-
mal response, in terms of the probabilities of unit revenue rates:

Π(t) =
m∑
k=1

(pk − cdk)Pr{v|tk is purchased}. (15)

5.4. Desirable contract menus

We extend the notions of essential and profitable contracts to contract
menus. For a contract menu to be essential, every contract in the menu
must have a positive chance of being purchased by the customer so that no
contract is redundant.

Definition 4. A contract menu t of size m ≥ 1 is essential if for every
k = 1, ...,m, it holds that Pr{v|tk is purchased} > 0.

Note that in order to have Pr{v|tk is purchased} > 0 there must exists
v ∈ V such that for all tk′ ∈ t+ we have u(v, tk) ≥ u(v, tk′ ). On the other
hand, with a continuous distribution the probability of the customer’s unit
revenue having a single value is zero. Therefore, in order for a contract menu
to be essential, every contract in the menu must be an optimal choice for
the customer over a non-empty interval (i.e., an interval with non-identical
extreme points) of unit revenue rates. Thus essential contract menus can be
defined in an alternative way.

Definition 4
′
. A contract menu t of size m ≥ 1 is essential if and only if

for every k = 1, ...,m there exists a non-empty interval Vk ⊆ V such that for
all v ∈ Vk we have u(v, tk) ≥ u(v, tk′ ) for every k

′
= 0, ...,m.

Due to their importance in the rest of our analysis, we provide a com-
plete characterization of essential contract menus of size two and larger. For
singular contracts such a characterization is already given in Definition 1.

Lemma 4. A contract menu t of size m ≥ 2 is essential, if and only if the
following conditions hold: (i) v0,1 < v1,2 < ... < vm−1,m, (ii) v1,2 > 0, (iii)
vm−1,m < vmax.
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Figure 1: Acceptance regions of an essential contract menu of size 3

The first condition in Lemma 4 requires that the pivots of consecutive
contracts be ordered consecutively. The second condition prescribes that the
pivot of first two contracts be situated in positive real numbers. Finally, the
third condition necessitates that the pivot of last two contracts happens prior
to the upper bound of the customer’s unit revenue. The proof of Lemma 4
immediately establishes the following observation regarding essential contract
menus which we provide without a formal proof.

Corollary 2. An essential contract menu t of size m ≥ 2 generates m
non-empty intervals V1 = [max{0, v0,1}, v1,2], Vk = [vk−1,k, vk,k+1] for k =
2, ...,m− 1, and Vm = [vm−1,m, vmax] such that for the customer with v ∈ Vk,
k = 1, ...,m, an optimal choice of contract is tk. The choice of tk is uniquely
optimal when v is an interior point of Vk.

As the result of Corollary 2, with an essential contract menu the optimal
choice of the customer depends on the position of her unit revenue rate with
respect to m non-empty acceptance regions of the contract menu. Figure 1
illustrates this for an essential contract menu of size 3. This figure shows the
customer’s utility function under three different contracts for different unit
revenue rates. For a customer with v < v0,1, all contracts in the menu have
negative utilities so her best choice is not to buy any contract. For a customer
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with v ∈ V1, u(v, t1) is positive and larger than u(v, t2) and u(v, t3) so t1 is
the best choice. With similar arguments it can be seen that the customer’s
best choices of contracts in regions V2 and V3 are t2 and t3 respectively.

The service provider has sufficient incentives to offer a contract menu if
it is profitable. Offering multiple contracts by the service provider is only
reasonable if contracts with higher guaranteed uptime levels result in more
profit for him. Otherwise, the contracts with higher guaranteed uptime levels
cannibalize the profits of those with lower uptime levels.

Definition 5. A contract menu t of size m ≥ 2 is profitable if (a) every
contract tk ∈ t is profitable, and (b) for every tk, tk′ ∈ t+ such that k

′
> k it

holds that pk′ − cdk′ > pk − cdk .

Thus, a contract menu is profitable if the price of every singular contract
in it is greater than the corresponding cost, and contracts with higher uptime
levels generate more profits than the contracts with lower uptime levels.

We formulate the expected profit of the service provider specifically for
essential and profitable contract menus. Using Corollary 2 and the fact that
for a profitable contract menu it holds that v0,1 > 0, it can be seen that the
probability of a contract being purchased is equal to the probability that the
unit revenue rate falls within the corresponding acceptance region. There-
fore, we have Pr{v|tk is purchased} = Pr{vk−1,k < v < vk,k+1} = F (vk,k+1)−
F (vk−1,k) for k = 1, ...,m− 1 and Pr{v|tm is purchased} = F (vm−1,m). Sub-
sequently, for the essential and profitable contract menu t of size m ≥ 2, (15)
can be written as

Π(t) =
m−1∑
k=1

(pk − cdk) [F (vk,k+1)− F (vk−1,k)] + (pm − cdm)F (vm−1,m). (16)

5.5. Admissible uptime vectors

We extend the notion of admissible uptime levels to admissible uptime
vectors.

Definition 6. An (ordered) uptime vector d = (d1, ..., dm) is admissible if
(cdm − cdm−1)/(λdm − λdm−1) < vmax.

The admissibility condition for an uptime vector is expressed as an in-
equality for the pair of contracts with the highest uptime levels in the menu.
Similar to the case of singular contracts, the possibility of having essential
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and profitable contract menus depends on the admissibility of guaranteed
uptime vectors.

Lemma 5. A necessary condition for the existence of an essential and prof-
itable contract menu with uptime vector d is that d be an admissible uptime
vector.

5.6. Optimal pricing of contract menus

In this section we assume that the service provider has already fixed the
guaranteed uptime vector to d and focus on the problem of finding the opti-
mal prices of the menu, i.e., p. The following program yields the prices of an
essential and profitable contract menu that maximize the service provider’s
expected profit incorporating the customer’s optimal response while keeping
the conditions of essential and profitable contract menus in place:

max
p

m−1∑
k=1

(pk − cdk)

[
F

(
pk+1 − pk
λdk+1

− λdk

)
− F

(
pk − pk−1

λdk − λdk−1

)]
+(pm − cm)F

(
pm − pm−1

λdm − λdm−1

)
(17)

s.t.
pk+1 − pk
λdk+1

− λdk
>

pk − pk−1

λdk − λdk−1

∀k = 1, ...,m− 1 (18)

pm − pm−1

λdm − λdm−1

< vmax (19)

pk − cdk > pk−1 − cdk−1
∀k = 1, ...,m (20)

The group of constraints in (20) ascertains that the obtained contract menu
is profitable. The groups of constraints in (18) and (19) correspond to the
necessary and sufficient conditions of essential contract menus in Lemma 4—
in particular conditions (i) and (iii) respectively. Condition (ii) in Lemma 4
is implied by constraint (20) for k = 2.

As a technical comment, it should be noted that our method is slightly
different from that in classic contract design literature which draws upon
incentive compatibility constraints to ensure that the service provider takes
into account the customer’s optimal response (see for example Laffont and
Martimort (2002)). As the result of Corollary 2 which characterizes the cus-
tomer’s best choice in essential menus, the objective function in (17) already
incorporates the customer’s optimal response so additional constraints for
incentive compatibility are not needed.
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To solve the non-concave constrained optimization program above, we
first focus on the relaxed program and investigate its possible critical points
using multi-variable calculus.

Lemma 6. Let d be an admissible uptime vector. The following system yields
the unique critical point of (17). Set p∗0 = c0 and for k = 1, ...,m:

F

(
p∗k − p∗k−1

λdk − λdk−1

)
=
p∗k − cdk − p∗k−1 + cdk−1

λdk − λdk−1

f

(
p∗k − p∗k−1

λdk − λdk−1

)
. (21)

For k = 1, equation (21) reduces to (8). For k = 2, ...,m, the values of p∗k
can be obtained recursively. The next observation establishes the fact that
price vector p∗ corresponding to the critical point of Π(t) obtained in (21)
satisfies the constraints in the original optimization program.

Lemma 7. The vector of prices obtained via implicit equations in (21) upon
existence satisfies the constraints in (18)–(20).

So far we have found a unique critical point of Π(t) which is also a feasible
point for our optimization program. What remains to establish is that the
critical point is in fact a maximum. This is proven in the main result of this
section regarding the optimal prices of uptime-guarantee contract menus.

Theorem 3. Given an admissible uptime vector d, the system of equations
in (21) obtains the unique vector of prices which results in the highest ex-
pected profit for the service provider among all essential and profitable con-
tract menus with uptime vector d.

Theorem 3 establishes the fact that for every admissible guaranteed up-
time vector, a unique vector of optimal prices exists. On the other hand,
Lemma 5 asserts that the admissibility of a guaranteed uptime vector is
necessary for having an essential and profitable contract menu. The final
conclusion, which we provide without a formal proof, follows immediately.

Corollary 3. Let d be an uptime vector with d1 > d0 and dm ≤ 1. A unique
essential and profitable contract menu with the highest expected profit for the
service provider exists if and only if d is an admissible uptime vector.

Although we have solved the pricing problem of the contract menus with
given uptime vectors, we still need to comment on the problem of finding
optimal guaranteed uptime vectors. The latter problem is considerably more
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Figure 2: Expected profit of contract menus in Example 1

complicated than that in the case of singular contracts. Nevertheless, if the
size of the menu is small and the possible uptime levels are chosen from a
finite set—which is a rather reasonable assumption in practical scenarios—
one can enumerate all possible combinations of contracts and find the most
profitable. We finish the paper with a numerical example which calculates
the optimal contract menus with maximum size three.

Example 1. Assume that the customer’s unit revenue v is distributed uni-
formly between 0 and 1000000. Without a contract the expected uptime of the
equipment is %80, i.e. d0 = 0.80. We normalize the preventive maintenance
costs to zero and let cd = 300000(λd−λ0)2. The optimal choice of guaranteed
uptime level for a singular contract is d∗1 = 0.91. Accordingly, the optimal
singular contract has the expected profit of 12345. By offering a menu of two
contracts, our numerical calculations indicate that the optimal contract menu
consists of t∗1 = (50700, 0.86) and t∗2 = (90350, 0.93), with the expected profit
of 13322. With a contract menu of size three, the service provider can capture
the expected profit of 13597 when offering the optimal menu with contracts
t∗1 = (22400, 0.84), t∗2 = (57150, 0.89), and t∗3 = (99400, 0.94). 4

Figure 2 depicts the expected profits of optimal contract menus in Ex-
ample 1. Each rectangle corresponds to the expected profit of a specific
contract. As illustrated in this figure, offering additional contracts will in-
crease the expected profit of the service provider (as long as the guaranteed
uptime vector remains admissible). The underlying reason is that by includ-
ing more contracts in a menu, the service provider can better target different
customer types in terms of possible unit revenue rates.

19



6. Concluding Remarks

In this paper we examined the profit maximization problem for a service
provider who offers uptime-guarantee maintenance contracts. The novelty of
our analysis is to take into consideration the fact that the service provider
does not have complete information on the customer’s actual valuation for
contracts with different guaranteed uptime levels. We determined the unique
optimal contract as well as the unique vector of optimal prices for menus of
contracts for the service provider to offer. As the service provider increases
size of the menu, he can expect higher profits. The reason is that offer-
ing more contracts in a menu enables the service provider to better target
the customer’s possible valuation and charge proportionally higher prices for
contracts with higher uptime levels. Finding the optimal guaranteed uptime
vectors for contract menus is a complex problem. However, when the number
of feasible uptime levels are finite and the size of the menu is not too large,
enumeration techniques can be used to find close to optimal uptime vectors.
The latter is a practical solution, especially since managing contract menus
which include large number of contracts is complicated and expensive. Find-
ing the optimal uptime vectors analytically remains an intriguing question
for future research.
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I am also grateful to the associate editor and three anonymous referees whose
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Appendix

Proof of Lemma 1. By IGFR assumption, xf(x)/F (x) is non-decreasing so

dxf(x)

F (x)

dx
=
f(x)

F (x)
+
xdf(x)

dx

F (x)
+ x

f 2(x)

F
2
(x)
≥ 0.

Equivalently, we have,

−df(x)

dx
≤ f(x)

F (x) + xf(x)

xF (x)
.
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Multiplying both sides by x − a, assuming x > a, and subtracting 2f(x)
yields

−2f(x)−(x−a)
df(x)

dx
=
dG(x)

dx
≤ f(x)

−2xF (x) + (x− a)F (x) + x(x− a)f(x)

xF (x)
.

If x∗ = G−1(0) exists such that x∗ > a, then it must be that (x∗− a)f(x∗) =
F (x∗). Thus, last inequality obtains

dG(x)

dx

∣∣∣∣
x=x∗

≤ f(x∗)
−2x∗F (x∗) + (x∗ − a)F (x∗) + x∗F (x∗)

x∗F (x∗)
= f(x∗)

−a
x∗
.

Since f(x) > 0 for all x ∈ V we conclude that dG(x)/dx|x∗ < 0.

Proof of Lemma 2. Suppose the contrary, that is, (cd − c0)/(λd − λ0) ≥
vmax and there exists a profitable and essential contract t = (p, d). The
profitability of (p, d) implies that p > cd which in turn results in having
(p − c0)/(λd − λ0) > (cd − c0)/(λd − λ0). By the contrary assumption we
conclude that (p − c0)/(λd − λ0) > vmax. However, the latter contradicts
t being essential. Therefore, to have an essential and profitable contract d
must be admissible.

Proof of Theorem 1. Consider the relaxation of the program in (5)-(7). The
first derivative of the objective function in (5) with respect to p can be
written as F (x) − (x − a)f (x), where x = (p − c0)/(λd − λ0) and a =
(cd−c0)/(λd−λ0). The critical point, upon existence, happens wherever two
functions xf (x) /F (x) and x/(x− a) intersect such that x > 0. The IGFR
assumption implies that xf(x)/F (x) is non-decreasing for every x ∈ V such
that F (x) > 0. Due to properties of distribution functions we know that
xf(x) is bounded and we can find x ∈ V such that F (x) is arbitrary close
to zero. Thus xf(x)/F (x) has the range [0,∞). On the other hand, the
function x/(x− a) is strictly decreasing for x > a and has the range (1,∞).
Note that with an admissible d it is the case that a < vmax. Thus, there must
exist a unique a < x∗ < vmax such that x∗f(x∗)/F (x∗) = x∗/(x∗ − a) which
implies that F (x∗)− (x∗−a)f (x∗) = 0. By lemma 1 it follows that x∗ is the
unique maximum.

To complete the proof, we show that constraints (6) and (7) are satisfied
at x∗. Since x∗ < vmax we have (p∗ − c0)/(λd − λ0) < vmax thus (6) holds,
and as x∗ > a we have p∗ − cd > 0 thus (7) holds.
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Proof of Lemma 3. Let d and d
′

be such that d0 < d < d
′ ≤ 1. By convexity

of cd it follows that (cd − c0)/(d− d0) < (cd′ − c0)/(d
′ − d0). By concavity of

λd it must be that (λd − λ0)/(d − d0) > (λd′ − λ0)/(d
′ − d0) which implies

that (d− d0)/(λd − λ0) < (d
′ − d0)/(λd′ − λ0). Therefore we have

cd − c0

λd − λ0

<
cd′ − c0

λd′ − λ0

. (22)

If d is not admissible then (cd − c0)/(λd − λ0) ≥ vmax. In the case inequality
(22) implies that (cd′ − c0)/(λd′ − λ0) > vmax thus if d is not admissible d

′

is not admissible either. On the other hand, if d
′

is admissible, inequality
(22) establishes that d must also be admissible. The claim of the lemma
follows.

Proof of Theorem 2. If an admissible uptime level within (d0, 1] exists, then
the feasible region for uptime levels is non-empty. By Lemma 3, the opti-
mization problem is to maximize Π(p, d) in part by selecting d in non-empty
intervals: (i) (d0, d̂) when d̂ exists (when d = 1 is not admissible), or (ii)
(d0, 1] when d̂ does not exist (when d = 1 is admissible).

Case (i): In this case d̂ ≤ 1 exists. We first show that Π(p, d) has at
least one critical point within (d0, d̂). Since for an essential and profitable
contract we have cd < p < vmax(λd − λ0) + c0, as d → d0 we have p → c0.
Equation (8) obtains that as p → c0 we have Π(p, d) → 0. Thus, Π(p, d)
decreases to zero as d approaches d0. With the same argument it can be seen
that as d→ d̂ we have p→ cd̂ and consequently Π(p, d)→ 0 so Π(p, d) also

decreases to zero as d approaches d̂. Since Π(p, d) is a continuous, bounded,
and positive function everywhere within (d0, d̂) and it approaches zero close
to the boundaries, Π(p, d) has a maximum within (d0, d̂) which must happen
at a critical point.

The conditions for critical points of Π(p, d) are as follows. While the first
order condition with regard to p yields (8), the first order condition with
regard to d yields

c
′

d∗F

(
p− c0

λd∗ − λ0

)
= λ

′

d∗
p− c0

λd∗ − λ0

(p− cd∗)
λd∗ − λ0

f

(
p− c0

λd∗ − λ0

)
︸ ︷︷ ︸ . (23)

At a critical point equations (8) and (23) hold simultaneously. Thus at a
critical point p = p∗ and d = d∗, the last two terms of (23) can be replaced by
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F ((p∗ − c0)/(λd∗ − λ0)) from (8) and (23) simplifies to (p∗−c0)/(λd∗−λ0) =
c
′

d∗/λ
′

d∗ . While the latter can be rewritten as (13), replacing (p∗− c0)/(λd∗ −
λ0) by c

′

d∗/λ
′

d∗ in (8) yields (12).
In the final step we show that the critical point is unique so (12) and

(13) together correspond to a unique maximum. It suffices to show that
(12) has a single solution. Similar to the proof of Theorem 1, let c

′

d/λ
′

d = x
and (cd − c0)/(λd − λ0) = a. Since cd is convex and increasing and λd is
concave and increasing, it is straightforward to see that as d increases, x
increases as well. In order for condition (12) to have a solution, we must
have xf(x)/F (x) = x/(x − a). The function xf(x)/F (x) is positive and
non-decreasing under IGFR assumption. The function x/(x − a) is also
decreasing whenever it is positive. Therefore, the two functions can have at
most one intersection. On the other hand, since we have already established
that Π(p, d) has at least one critical point in (d0, d̂), the last two functions
must intersect exactly once. Thus, condition (12) has a single solution.

Case (ii): The optimization problem is to maximize Π(p, d) over the half-
open interval (d0, 1]. Since Π(p, d) is a continuous, bounded, and positive
function everywhere within (d0, 1], and it approaches zero when d approaches
d0, Π(p, d) must have its maximum either at a critical point within (d0, 1],
which is unique upon existence, or at the boundary value of d = 1.

Proof of Lemma 4. [If part] By Definition 4
′
, we must show that when (i),

(ii), and (iii) hold, for every k = 1, ...,m there exists a non-empty inter-
val Vk ⊆ V such that for every v ∈ Vk we have u(v, tk) ≥ u(v, tk′ ) for
all k

′
= 0, ...,m. Since (i) holds, we can define the non-empty intervals

V̇k = [vk−1,k, vk,k+1] for k = 1, ...,m−2, and V̇m = [vm−1,m,∞). Imposing the
conditions (ii) and (iii) assures that t divides V into the non-empty intervals
V0 = [0,max{0, v0,1}], V1 = [max{0, v0,1}, v1,2], Vk = V̇k for k = 2, ...,m − 1,
and Vm = [vm−1,m, vmax].

Let k ∈ {1, ...,m}. By the definition of vk−1,k we know that u(v, tk) ≥
u(v, tk−1) whenever v ≥ vk−1,k. From condition (i) we can conclude that for
k
′
< k it also holds that that u(v, tk) ≥ u(v, tk′ ) whenever v ≥ vk−1,k. On

the other hand, by definition of vk,k+1 we know that u(v, tk) ≥ u(v, tk+1)
whenever v ≤ vk,k+1. From condition (i) we can conclude that for k

′
> k it

also holds that that u(v, tk) ≥ u(v, tk′ ) whenever v ≤ vk,k+1. Therefore, for
every v ∈ [vk−1,k, vk,k+1] we have u(v, tk) ≥ u(v, tk′ ) for every k

′
= 0, ...,m.

[Only-if part] We show if any of the three conditions fails, the contract
menu would not be essential.
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(i) Consider l, h, k ∈ {0, ...,m} such that l < h < k. Suppose the contrary,
that is, assume t is essential and vh,k ≤ vl,h. We continue in two steps.

(Step I) We show if vh,k ≤ vl,h, then it must be that vh,k ≤ vl,k ≤ vl,h. Let
A = [0, vh,k], B = [vh,k, vl,h], and C = [vl,h, vmax]. Considering the property
of the pivot points we have:

v ∈ A v ∈ B v ∈ C
u(v, th) ≥ u(v, tk) u(v, th) ≤ u(v, tk) u(v, th) ≤ u(v, tk)
u(v, tl) ≥ u(v, th) u(v, tl) ≥ u(v, th) u(v, tl) ≤ u(v, th)

From the above we can deduce that u(v, tl) ≥ u(v, tk) for all v ∈ A, and
u(v, tl) ≤ u(v, tk) for all v ∈ C. Thus, it must be that vl,k ∈ B.

(Step II) We show if vh,k ≤ vl,k ≤ vl,h, then there exists no non-empty
interval such that th is an optimal choice for the customer. Let B1 = [vh,k, vl,k]
and B2 = [vl,k, vl,h]. We have the following cases:

v ∈ A v ∈ B1 v ∈ B2 v ∈ C
u(v, th) ≥ u(v, tk) u(v, th) ≤ u(v, tk) u(v, th) ≤ u(v, tk) u(v, th) ≤ u(v, tk)
u(v, tl) ≥ u(v, th) u(v, tl) ≥ u(v, th) u(v, tl) ≥ u(v, th) u(v, tl) ≤ u(v, th)
u(v, tl) ≥ u(v, th) min{(v, tl), (v, tk)} ≥ u(v, th) min{(v, tl), (v, tk)} ≥ u(v, th) u(v, th) ≤ u(v, tk)

The above table shows that everywhere in V the choice of th results in a
utility for the customer which is at most as high as either tk or tl. Considering
that any two contracts can only have a single point at which their utilities
are equal, we conclude that th is among the optimal choices of the customer
at most at one point in V thus there is no non-empty interval on V where
th is the optimal contract. Hence, t is not an essential contract menu. This
is a contradiction so it must be that vh,k > vl,h. Extending this logic for all
trios of contracts in t obtains the claim for part (i).

(ii) If v1,2 ≤ 0 then the customer with a unit revenue rates in (0, vmax]
prefers t2 to t1. Thus t1 is within the optimal choice set of the customer at
most at a single point v = 0 and not in a non-empty interval in V which
implies that t is not essential. Hence it must be that 0 ≤ v1,2

(iii) If vm−1,m ≥ vmax then the customer with a unit revenue rates in
[0, vmax) prefers tm−1 to tm. Thus contract tm is at most optimal at the
single point vmax which means that t is not essential. Hence it must be that
vm−1,m < vmax.

Proof of Lemma 5. Suppose the contrary, that is, t is an essential and prof-
itable contract menu and d is not admissible, i.e., (cdm − cdm−1)/(λdm −
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λdm−1) ≥ vmax. In order for t to be profitable it must hold that pm − cdm >
pm−1−cdm−1 . This condition can be rewritten as (pm−pm−1)/(λdm−λdm−1) >
(cdm − cdm−1)/(λdm −λdm−1). Thus we get (pm− pm−1)/(λdm −λdm−1) > vmax.
The latter violates condition (iii) in Lemma 4 which must hold for every
essential contract menu. This is a contradiction. Therefore, the claim of the
lemma holds.

Proof of Lemma 6. For k = 1, ...,m−1 the first derivatives of (17) are of the
form:

δΠ
δpk

= F

(
pk+1 − pk
λdk+1

− λdk

)
+
pk+1 − cdk+1

− pk + cdk
λdk+1

− λdk
f

(
pk+1 − pk
λdk+1

− λdk

)
−F

(
pk − pk−1

λdk − λdk−1

)
−
pk − cdk − pk−1 + cdk−1

λdk − λdk−1

f

(
pk − pk−1

λdk − λdk−1

)
and for k = m we have,

δΠ
δpm

= F

(
pm − pm−1

λdm − λdm−1

)
− pm − cm − pm−1 + cm−1

λdm − λdm−1

f

(
pm − pm−1

λdm − λdm−1

)
.

A critical point p∗, upon existence, is a solution to the system of equations
{δΠ/δpk = 0, k = 1, ...,m}. Starting from the last equation and substituting
the corresponding terms backward, the solution to this system of equations
is obtained via the implicit functions expressed in (21).

To complete the proof it suffices to show that p∗ exists and is unique. For
k = 1, ...,m, let xk = (pk+1−pk)/(λdk+1

−λdk) and ak = (cdk+1
−cdk)/(λdk+1

−
λdk). With an admissible d and under the assumption on contract costs,
it is the case that ak < vmax. In this case, similar logic as the proof of
Theorem 1 obtains that there must exist a unique ak < x∗k < vmax such that
F (x∗k)− (x∗k − ak)f (x∗k) = 0.

Proof of Lemma 7. To show (18), fix k ∈ {0, ...,m − 1} and note that by
optimality conditions in (21) we have

f

(
p∗k+1 − p∗k
λdk+1

− λdk

)/
F

(
p∗k+1 − p∗k
λdk+1

− λdk

)
= 1
/( p∗k+1 − p∗k

λdk+1
− λdk

−
cdk+1

− cdk
λdk+1

− λdk

)
,
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and

f

(
p∗k − p∗k−1

λdk − λdk−1

)/
F

(
p∗k − p∗k−1

λdk − λdk−1

)
= 1
/( p∗k − p∗k−1

λdk − λdk−1

−
cdk − cdk−1

λdk − λdk−1

)
.

Suppose the contrary, that is, (p∗k+1− p∗k)/(λdk+1
−λdk) ≤ (p∗k− p∗k−1)/(λdk −

λdk−1
). Then, by IGFR assumption the last two equalities yield

p∗k+1 − p∗k
λdk+1

− λdk
−

p∗k − p∗k−1

λdk − λdk−1

≥
cdk+1

− cdk
λdk+1

− λdk
−
cdk − cdk−1

λdk − λdk−1

Since cd is increasing and convex, it holds that (cdk+1
− cdk)/(dk+1 − dk) >

(cdk−cdk−1
)/(dk−dk−1). Also, by concavity of λd we have (λdk+1

−λdk)/(dk+1−
dk) < (λdk − λdk−1

)/(dk − dk−1). Thus we have (cdk+1
− cdk)/(λdk+1

− λdk) >
(cdk − cdk−1

)/(λdk − λdk−1
) which implies that (p∗k+1 − p∗k)/(λdk+1

− λdk) >
(p∗k − p∗k−1)/(λdk − λdk−1

). This is clearly a contradiction. Therefore, it must
be that vk−1,k < vk,k+1.

To show that (19) holds, note that since p∗ exists, clearly we have (p∗m−
p∗m−1)/(λdm − λdm−1) ≤ vmax, otherwise the cdf would be undefined. It
remains to show that equality does not hold. Considering the optimality
condition in (21), the case (p∗m − p∗m−1)/(λdm − λdm−1) = vmax implies that
f((p∗m − p∗m−1)/(λdm − λdm−1)) = 0. However, this cannot be as f is positive
everywhere on its support.

Finally, we show that the solution satisfies constraint (20), i.e. for k =
1, ...,m−1 we have p∗k+1−cdk+1

> p∗k−cdk . Fix k and consider the optimality
condition in (21). In this case, we would have

F

(
p∗k+1 − p∗k
λdk+1

− λdk

)
= 1−

p∗k+1 − cdk+1
− p∗k + cdk

λdk+1
− λdk

f

(
p∗k+1 − p∗k
λdk+1

− λdk

)
.

Assume the contrary, i.e. p∗k+1 − cdk+1
− p∗k + cdk ≤ 0. Since f(·) > 0 for all

v ∈ V , the last inequality yields F
(
(p∗k+1 − p∗k)/(λdk+1

− λdk)
)
≥ 1 which is

a contradiction since (p∗k+1 − p∗k)/(λdk+1
− λdk) < vmax as shown in the last

step. Thus, for k = 1, ...,m− 1 we have p∗k+1 − cdk+1
> p∗k − cdk .

The following Lemmas are needed to prove Theorem 3.

Lemma 8. Consider an essential contract menu t with m ≥ 2. For k =
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1, ...,m define

bk =
2

λdk+1
− λdk

f

(
pk+1 − pk
λdk+1

− λdk

)
+
pk+1 − cdk+1

− pk + cdk
λdk+1

− λdk

δf
(

pk+1−pk
λdk+1

−λdk

)
δpk+1

.

The Hessian matrix associated with Π(t) is

H =


−b1 − b2 b2 0 0 . . . 0 0

b2 −b2 − b3 b3 0 . . . 0 0
0 b3 −b3 − b4 b4 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . bm −bm

 . (24)

Proof of Lemma 8. For k = 1, ...,m− 1:

δ2Π
δp2k

= − 2

λdk+1
− λdk

f

(
pk+1 − pk
λdk+1

− λdk

)
−
pk+1 − cdk+1

− pk + cdk
λdk+1

− λdk

δf
(

pk+1−pk
λdk+1

−λdk

)
δpk+1

− 2

λdk − λdk−1

f

(
pk − pk−1

λdk − λdk−1

)
−
pk − cdk − pk−1 + cdk−1

λdk − λdk−1

δf
(

pk−pk−1

λdk−λdk−1

)
δpk

,

and for k = 2, ...,m− 1:

δ2Π
δpkδpk−1

=
2

λdk − λdk−1

f

(
pk − pk−1

λdk − λdk−1

)
+
pk − cdk − pk−1 + cdk−1

λdk − λdk−1

δf
(

pk−pk−1

λdk−λdk−1

)
δpk

.

For k = 3, ...,m− 1 and l = 2, ..., k − 1 we have δ2Π/δp2
k−l = 0. Finally,

δ2Π
δp2m

= − 2

λdm − λdm−1

f

(
pm − pm−1

λdm − λdm−1

)
− pm − cm − pm−1 + cm−1

λdm − λdm−1

δf
(

pm−pm−1

λdm−λdm−1

)
δpm

δ2Π
δpmδpm−1

=
2

λdm − λdm−1

f

(
pm − pm−1

λdm − λdm−1

)
+
pm − cm − pm−1 + cm−1

λdm − λdm−1

δf
(

pm−pm−1

λdm−λdm−1

)
δpm

,

and for l = 2, ...,m− 1 we have δ2Π/δp2
m−l = 0. In the above derivations we

use the fact that δf((p2− p1)/(d2−d1))/δp1 = −δf((p2− p1)/(d2−d1))/δp2.
Replacing the terms obtains the Hessian matrix as indicated in (24).
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To show that p∗ is a maximum for Π(t), H should be negative definite
at p∗ (Güler, 2010). A matrix is negative definite if and only if all its lead-
ing principal minors of odd-numbered order are negative and those of even-
numbered order are positive. The k-th order leading principal minor, Dk, is
the determinant of the k-th order principal sub-matrix formed by deleting
the last n− k rows and columns (Güler, 2010).

Lemma 9. The leading principal minors of H in (24) are as follows. For k =
2, ...,m−1, k-th leading principal minor of H is Dk = (−1)k

∑k+1
l=1

∏k+1
j=1 bj/bl.

Also, m-th leading principal minor of H is Dm = (−1)m
∏m

j=1 bj.

Proof of Lemma 9. For k = 2 we have D2 = (−b1 − b2)(−b2 − b3) − b2
2 =

b2b3−b1b3 +b1b2. Thus, the formula works for 2. We use transfinite induction
and suppose that the formula works for all l ≤ k with k = 2, ...,m − 2. We
show that the formula works for k + 1. In order to do so, first note that we
have

Dk+1 =

∣∣∣∣∣∣∣∣∣∣∣

−b1 − b2 b2 . . . 0 0 0 0
...

...
. . .

...
...

...
...

0 0 . . . bk−1 −bk−1 − bk −bk 0
0 0 . . . 0 bk −bk − bk+1 bk+1

0 0 . . . 0 0 bk+1 −bk+1 − bk+2

∣∣∣∣∣∣∣∣∣∣∣
.

According to Laplace expansion, the determinant of a matrix can be obtained
from its minors. Thus

Dk+1 = (−1)2k+1bk+1D+(−1)2k+2(−bk+1−bk+2)Dk = −bk+1D−(bk+1+bk+2)Dk

where

D =

∣∣∣∣∣∣∣∣∣
−b1 − b2 b2 . . . 0 0 0

...
...

. . .
...

...
...

0 0 . . . bk−1 −bk−1 − bk 0
0 0 . . . 0 bk bk+1

∣∣∣∣∣∣∣∣∣ .
The matrix whose determinant is D has a column with only one non-zero
entry. Thus we have D = (−1)2kbk+1Dk−1 = bk+1Dk−1. Therefore, we have
Dk+1 = −b2

k+1Dk−1− (bk+1 +bk+2)Dk. Based on the assumption of induction,

it holds thatDk−1 = (−1)k−1
∑k

l=1

∏k
j=1 bj/bl, andDk = (−1)k

∑k+1
l=1

∏k+1
j=1 bj/bl.
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By substituting the terms we get:

Dk+1 = −b2
k+1(−1)k−1

k∑
l=1

∏k
j=1 bj

bl
− (bk+1 + bk+2)(−1)k

k+1∑
l=1

∏k+1
j=1 bj

bl

= (−1)k−1

[
−b2

k+1

k∑
l=1

∏k
j=1 bj

bl
+ bk+1

k+1∑
l=1

∏k+1
j=1 bj

bl
+

k+1∑
l=1

∏k+2
j=1 bj

bl

]

= (−1)k−1

[∏k+2
j=1 bj

bk+2

+
k+1∑
l=1

∏k+2
j=1 bj

bl

]
= (−1)k+1

k+2∑
l=1

∏k+2
j=1 bj

bl
.

This proves the induction premise in case k ≤ m− 1. To obtain the formula
for case k = m, first note that we have

Dm =

∣∣∣∣∣∣∣∣∣∣∣

−b1 − b2 b2 . . . 0 0 0 0
...

...
. . .

...
...

...
...

0 0 . . . bm−2 −bm−2 − bm−1 −bm−1 0
0 0 . . . 0 bm−1 −bm−1 − bm bm
0 0 . . . 0 0 bm −bm

∣∣∣∣∣∣∣∣∣∣∣
.

Using Laplace expansion, the determinant can be written as

Dm = (−1)2m−1bmD + (−1)2m(−bm)Dm−1 = −bmD − bmDm−1

Similar to the previous case it can be observed that D = bmDm−2 and conse-
quently Dm = −b2

mDm−2 − bmDm−1. Using the assumption of induction we
have

Dk+1 = −b2
m(−1)m−2

m−1∑
l=1

∏m−1
j=1 bj

bl
− bm(−1)m−1

m∑
l=1

∏m
j=1 bj

bl

= (−1)m−2

[
−b2

m

m−1∑
l=1

∏m−1
j=1 bj

bl
+ b2

m

m−1∑
l=1

∏m−1
j=1 bj

bl
+ bm

∏m
j=1 bj

bm

]
= (−1)m

m∏
j=1

bj.

This proves the induction premise in case k = m.

Lemma 10. Let p∗ be the vector of prices obtained via the implicit equations
in (21). The Hessian matrix H associated with Π(t) is negative definite at
p∗.
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Proof. Considering that all equations in (21) hold, from Lemma 1 it can be
inferred that bk > 0 for k = 1, ...,m. Given the formulas of leading principal
minors of H observe that at p∗, for odd k we have Dk < 0 and for even k we
have Dk > 0. Therefore, Π(t) is negative definite at p∗.

Proof of Theorem 3. Lemmas 8, 9, and 10 establish that p∗, upon existence,
is the maximum for Π(t). On the other hand, Lemma 6 indicates that given
an admissible uptime vector, p∗ always exists. This completes the proof.
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