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Abstract—This paper presents a novel Z-source matrix rectifier(ZSMR). To 

overcome the inherent disadvantage that the voltage transfer ratio for traditional 

matrix rectifier cannot be more than 0.866, a Z-source network has been combined 

with the matrix rectifier. The proposed rectifier realizes a voltage-boost function and 

the Z-source network also serves as power storage and guarantees double filtration 

grade at the output of the rectifier. The open-circuit zero state is required to obtain the 

voltage-boost function and ensure the output angle of the current vector to be 

invariant to obtain the expected power factor. In addition, to widely extend the 

voltage transfer ratio of the proposed rectifier, this paper presents the 

switched-inductor matrix rectifier(SL-ZSMR) and tapped-inductor matrix 

rectifier(TL-ZSMR). The corresponding circuit topologies, control strategies and 

operating principles are introduced. Both simulation and experiment results are shown 

to verify the theoretical analysis. 

  Index Terms—Z-source matrix rectifier, voltage-boost function, voltage transfer 

ratio 



 

I. INTRODUCTION 

The matrix rectifier (MR) originated from conventional matrix converter (MC) is a 

new type rectifier. Since the MR is the front-end rectification stage for indirect matrix 

converters, MRs and MCs share some same advantages such as input current with low 

harmonic content [1,8], controllable input power factor [2] and bidirectional energy 

flow [3]. The circuit has some potential applications and has recent attention in the 

field of power electronics [4]-[10]. For the high voltage ac-ac applications, the 

Z-source matrix converter is presented and researched such as the modulation 

strategies [11] and motor drives [12]. 

Similarly, the MR has some disadvantages that have restricted applications in the 

high voltage transfer ratio circumstance such as wind energy system [13] and electric 

vehicle charging system [14]. Since the Z-source network of the Z-source matrix 

rectifier presented by [15-18] serves as the filter at the dc side and does not play a 

voltage-boost role, the Z-source matrix rectifier presented by [15-18] is a 

voltage-buck ac-dc matrix rectifier, which does not satisfy the need for higher voltage 

transfer ratios. So, this paper presents a novel Z-source matrix rectifier (ZSMR) by 

improving the switch position, the switch count and the modulation scheme to realize 

the voltage-boost function. 

 In [19], the Z-source network was first proposed for solving voltage-boost 

problems in the traditional voltage source inverter. Z-source inverters can realize the 

voltage-boost ability through the shoot-through state, which solves the dead zone 

problem and reduces the associated harmonics. In [20-24], improved Z-source 



 

topologies with higher boost ability, reduced device voltage stress and improved the 

output quality are proposed.  

The ZSMR can be constructed by putting a Z-source network between a matrix 

converter and the output filter, in which the position of Z-source network in ZSMR is 

different from that of a Z-source network in [19-24]. Not only does ZSMR reserve the 

original advantages of the MR but also it realizes the voltage-boost feature. At the 

same time, the Z-source network also serves as energy storage component and 

guarantees double filtration grade at the output of the ZSMR.  

To improve the relationship between boost factor and the modulation index of the 

ZSMR, this paper propose to replace the Z-source inductor cell with a 

switched-inductor cell or a tapped-inductor cell. The resulting structures of ZSMR, 

SL-ZSMR and TL-ZSMR are similar to the Z-source inverters in [19, 20, 25]. The 

TL-ZSMR is more compact with its turn ratio freely adjustable to produce the desired 

voltage gain when compared to the ZSMR and SL-ZSMR.  

II. MODULATION STRATEGY AND EXPERIMENTAL PRINCIPLE OF 

PROPOSED MATRIX RECTIFIERS 

The modulation scheme for the traditional matrix rectifier can be achieved with a 

current-type Space Vector Pulse Width Modulation (SVPWM) strategy. As shown in 

Fig.1(a), one period of three-phase sinusoid input current can be divided into six 

sectors with nine switching states (six active states and three short zero states) [2].  
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(a)                               (b) 

Fig.1.(a) Current space vector.(b) Current vector synthesis. 

As shown in Fig.1(b), the input current vector at any direction and amplitude can be 

synthesized by the two nearest adjacent current vectors (Ii and Ii+1, i=1,…6) and one 

of the three zero vectors(I7 , I8, or I9 when both of the upper and lower switches are 

short together). According to the current space vector synthesis theory, the reference 

vector can be expressed as follows: 

                           0 0ref u u v vI d I d I d I  
                          (1) 

ud , vd  and 0d  can be written: 

          

0
0

2
sin( ) sin( ) sin( )

3 3 33

2
sin sin sin

3

1

refu im
u i i i

s u dc

refv im
v i i i

s v dc

u v

s

IT I
d m

T I I

IT I
d m

T I I

T
d d d

T

  
  

  


        





     



   

      (2) 

Where uT  is the operation interval of the starting vector, and vT  is the operation 

interval of the ending vector in the sector. i  is the angle between the reference 

vector and the starting vector, m ( im

dc

I
m

I
 ) is the modulation index and its range is 

between 0 and 1. In the sector 1, the input current refI  can be expressed as follows: 
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According to the equation (3), it is obvious that input reference current changes as the 

balanced three-phase sine law.   

The above description is the modulation method used for traditional MRs, from 

which we can see that the traditional MR is a voltage-buck rectifier. So, to obtain the 

higher voltage-boost ratio, the modulation strategy for MRs should be modified. This 

paper introduces an extra open-circuit zero state forbidden in the matrix rectifier into 

the traditional current space vector control strategy.  

An open-circuit zero state corresponds to the additional zero state different from 

traditional zero states produced by the shoot-though state of top and bottom arms (I7 , 

I8, or I9). The open-circuit zero state is the tenth switching state (I10) where the switch 

S1 is turned on and all the switching devices of the MR should be turned off to ensure 

the energy to flow from the capacitors to the inductors. The open-circuit zero state can 

solve the output open-circuit problem, which destroys the switch devices in a classical 

MR, and gives the Z-source inductor and inductive load current to a conduction path. 

The open-circuit zero state is similar to the shoot-though state in [17-23], and the 

non-open-circuit zero state is similar to nonshoot-though state. 

To combine open-circuit zero state and keep the active states of the matrix rectifier 

unchanged, this paper proposes turning some of the short zero states(I7 , I8, or I9) into 

open-circuit zero states，as shown in Fig.2.(a) (operating at sector 1). Not only does 

the modified modulation strategy realize the voltage-boost feature in the open-circuit 



 

zero state, but also ensure the angle of the output current vector to be invariant to 

obtain the expected power factor.  
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Fig.2. (a) open-circuit zero state inserted into tradition zero.(b) the system structure for the 

experimental ZSMR. 

As shown in Fig.2(b), the ZSMR mainly consists of six parts: three-phase power, 

input filter, matrix rectifier, Z-source network, output filter and load. ZSMR is 

connected to the input voltage through the synchronous transformer. The measured 

input voltage is processed to realize the pass-zero comparison and voltage transform.  

To realize unity input power factor, the modulation algorithm selects the output 

current vector angle to be consistent with the input voltage vector angle, which is 

determined from the measured three-phase voltages. From the calculated current 

vector angle, the output interval of starting vector and ending vector from equation (2) 

can be obtained. Therefore, the switch signals can be obtained and applied to the 

converter.  

III. TOPOLOGY ANALYSIS OF THE PROPOSED MATRIX RECTIFIERS 

A. ZSMR Topology Analysis 

As shown in Fig.3(a), the MR includes twelve switching components which can be 

controlled to realize the chosen modulation scheme. The Z-source network includes 

inductors L1 and L2, capacitors C1 and C2 and a parallel IGBT.  



 

The circuit is similar to Z-source inverters [19] in that the operation states in a 

period are divided into two states: the open-circuit zero state( 10I ) and 

non-open-circuit zero states
1 9( ~ )I I . If the system is in open-circuit zero state, S1 is 

on and Z-source network is disconnected with the MR. The equivalent circuit is 

shown in Fig.3(b). It can be seen that the energy stored in the capacitors transfers to 

the inductors. If the system is in a non-open-circuit zero state, then S1 is off and the 

load is supplied by the MR and the Z-source network. The equivalent circuit is shown 

in Fig.3(c). It can be seen that the energy stored in the capacitors is supplied by matrix 

rectifier. 
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Fig.3. (a) The proposed Z-source matrix rectifier (b) Equivalent circuit of open-circuit zero state (c) 

Equivalent circuit of non-open-circuit zero state 

According to the chosen MR modulation scheme, the average output voltage Veq of 

MR can be expressed as follows [26]: 

0

3
( ) ( ) ( ) cos

2
dc u a b v a c a a im iV d u u d u u d u u mV               (4) 



 

Vim is the amplitude of the input phase voltage and 
i is input power factor angle. 

From (4), we know that the output voltage range of the matrix rectifier can 

be (0 ~1.5) imV . Due to the symmetry of Z-source network, the values of inductances 

and capacitors are usually chosen to be equal, L1 = L2 =L and C1 = C2 = C. Form the 

equivalent circuit, we can obtain the equations for Z-source inductors and capacitors: 

1 2L L LV V V  , 1 2C C CV V V                 (5) 

As shown in Fig.3 (b), it can be shown that: 

L OP CV V  , Ldc OP dcV V                    (6) 

Similarly, we can obtain from Fig.3 (c):  

L NO eq CV V V   , Ldc NO C dc L NOV V V V                   (7) 

Where Veq is the dc-link voltage, and Vdc is the dc output voltage. VLdc-OP and VLdc-NO 

are the filter inductor voltages in the open-circuit zero state and non-open-circuit zero 

state. Similarly, VL-OP and VL-NO are the Z-source inductor voltages.  

The average voltage across the inductor over one switching period should be zero 

in steady state, therefore from (6) and (7) : 

0 1( ) ( ) 0C eq CT V T V V                        (8) 
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Similarly, applying volt-second balance to filter inductor Ldc,  

0 1( ) (2 ) 0dc C eq dcT V T V V V                    (10) 

Where T0 is the interval of the open-circuit zero state, D is the open-circuit duty cycle. 

We can obtain the relationship between Vdc and Veq from (10): 
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Therefore the boost factor Bz can be derived: 
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From (4) and (12), the output voltage can be expressed by: 

                           
3

cos
2

dc im i zV m V B                        (13) 

Where 0 cos 1i  and 0 1m  . M( cos iM m   ) is the modulation index with a value 

range between 0 and 1. So, the output voltage range of the ZSMR 

is (0 0.866) 3z imB V  . The voltage transfer ratio of ZSMR can be obtained: 
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B SL-ZSMR Topology Analysis 

In [20], a SL cell is introduced into the Z-source network to enlarge voltage-boost 

ability. Consequently, the SL-ZSMR is proposed as shown in Fig.4(a). The inductors 

of the Z-source network are replaced by the SL cell, and the other parts have not been 

changed. The top SL cell consists of two inductors (L1 and L3) and three additional 

diodes (D1, D2 and D3). Similarly, the bottom SL cell consists of L2, L4, D4, D5, D6.  
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(b)                                   (c) 

Fig. 4. (a)The proposed switched-inductor Z-source matrix rectifier (b) Equivalent circuit of 

open-circuit zero state (c) Equivalent circuit of non-open-circuit zero state. 

The same states also exist in SL-ZSMR: including the open-circuit zero state and 

non-open-circuit zero states. If switch S1 is on, the proposed SL-ZSMR operates in an 

open-circuit zero state. For the top SL cell, D1 and D2 are on, and D3 is off. L1 and L3 

are charged by C1 in parallel. For the bottom SL cell, D4 and D5 are on, and D6 is off. 

L2 and L4 are charged by C2 in parallel. Its equivalent circuit is shown in Fig.4 (b). It 

can be shown that both the top and bottom SL cells perform the same function, 

absorbing the energy stored in the capacitors. If switch S1 is off, SL-ZSMR operates 

in the non-open-circuit zero state. For the top SL cell, D1 and D2 are off, and D3 is on. 

L1 and L3 are connected in series. D4 and D5 are off, and D6 is on in the bottom SL cell. 

L2 and L4 are connected in series. The equivalent circuit is shown in Fig.4 (c) and the 

energy stored in inductances is transferred to the main circuit. 

For the convenience of mathematical derivation, the values of inductances and 

capacitors are usually chosen to be equal. Therefore the Z-source capacitor voltage is: 

1 2C C CV V V                          (15) 

According to the equivalent circuit in Fig.4 (b), we have 

1 3L OP L OP CV V V   , Ldc OP dcV V               (16) 

Similarly, from the equivalent circuit in Fig.4 (c),  



 

1 3eq C L NO L NOV V V V    , 1 3( )Ldc NO C L NO L NO dcV V V V V            (17) 

Applying the volt-second balance principle to L1, it can be shown that the 

corresponding voltage across L1 during non-open-circuit zero state, VL1-NO, can be 

expressed by: 
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Applying the volt-second balance principle to L3, we have: 

0 1 1( ) 0C eq C L NOT V T V V V                  (19) 

Hence, 
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Applying the volt-second balance principle to Ldc, the following equations can be 

obtained from (16) and (17): 

0 1 1 3( ) ( ) 0dc C L NO L NO dcT V T V V V V                (21) 

This gives the relationship of Vdc and Veq: 
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So, BSL, the boost factor of SL-ZSMR, can be expressed as: 
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Similarly, the voltage transfer ratio of SL-ZSMR can be obtained: 
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C. TL-ZSMR Topology Analysis 

The topology of the TL-ZSMR is shown in Fig.5(a). The TL cells consist of tapped 



 

inductors (L11, L12, L21, L22), four additional diodes (D1, D2, D3 and D4) and two 

capacitors (C1 and C2). The combination of L11-L12-D1-D3 performs the function of the 

top TL cell and the combination of L21-L22-D2-D4 performs the function of the bottom 

TL cell.  
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(b)                                   (c) 

Fig.5. (a)The proposed tapped-inductor Z-source matrix rectifier (b) Equivalent circuit of 

open-circuit zero state (c) Equivalent circuit of non-open-circuit zero state 

If switch S1 is on, then the TL-ZSMR operates in the open-circuit zero state. For the 

top TL cell, D1 is on, and D3 is off. L11 is charged by C1 in parallel. For the bottom TL 

cell, D2 is on, and D4 is off. L21 is charged by C2 in parallel. The equivalent circuit is 

shown in Fig.5 (b). It can be seen that both the top and bottom TL cells perform the 

same function to absorb the energy stored in the capacitors. In the non-open-circuit 

zero state, the S1 is off. For the top cell, D1 is off and D3 are on. L11 and L12 are 

connected in series. For the bottom TL cell, D2 is off, and D4 is on. L21 and L22 are 

connected in series. The equivalent circuit is shown in Fig.5 (c) and the energy stored 



 

in tapped-inductor cells is transferred to the main circuit. The capacitor C1 is charged 

by Veq via the bottom TL cell, hence the capacitor C2 is charged via the top TL cell. 

The inductors and capacitors are usually chosen to be equal.  

1 2C C CV V V                             (25) 

For the TL cells, their turn ratios are also set to be the equal, 2 1/N N N , where N1 

is the number of winding L11 and L21, and N2 is the number of winding L12 and L22. 

With these inductive symbols defined, the expressions relating them can be deduced,  
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Besides the self-inductances, the mutual inductance LM of the TL cells should also 

be considered, since it provides a means for measuring energy coupling efficiency 

within each TL cell. For an ideal TL cell whose coupling coefficient k is 1, LM can be 

simplified to: 

11 12 2(1 )
M

N
L k L L L

N
 


                     (27) 

As for the TL cells, current flowing through L11 as an example is noted to increase 

during open-circuit zero state, and decrease during non-open-circuit zero state. 

From the equivalent circuit in Fig.5 (b), we can obtain: 

11 21L OP L OP CV V V   , Ldc OP dcV V                 (28) 

According to the equivalent circuit in Fig.5 (c), we have: 

11 12eq C L NO L NOV V V V    , 11 12( )Ldc NO C L NO L NO dcV V V V V        (29) 

Where VL11-OP and VL12-OP are the voltages for tapped-inductor winding L11 and L12 in 

open-circuit zero state. Similarly, VL11-NO and VL12-NO are the voltages in 

non-open-circuit zero state.  

The magnetic fluxes within TL cells are designed to increase linearly during 



 

open-circuit zero state: 
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              (30) 

11L S  is the self magnetic flux produced by iL11-op for linking the coil of L11. In contrast, 

11L M  is the mutual magnetic flux produced by iL11-op for linking the coil of L12. For a 

perfectly coupled TL, 11L S  and 11L M  are equal, inferring that VL12-OP can be 

rewritten as: 

11
12 1 11

L S
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d
V NN NV

dt

 
                         (31) 

Applying the volt-second balance principle to L11, the corresponding voltage across 

L11 during non-open-circuit zero state, VL1-NO, can be expressed:  
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Applying the volt-second balance principle to L12, we have 

0 12 1 12 0L OP L NOT V TV                        (33) 

Hence, 
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From (28)to (34), we have: 
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From (28) ,(29)and (35), we have: 

0 1 11 12( ) ( ) 0dc C L NO L NO dcT V T V V V V               (36) 

So, 
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Hence, BTL, the boost factor of TL-ZSMR, can be expressed by: 
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Similarly, the voltage transfer ratio of TL-ZSMR can be obtained 
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IV. FEATURES COMPARISON  

A. Feature Comparisons Of Proposed Rectifiers 

The boost factors B versus D for the ZMSR, SL-ZSMR and TL-ZSMR with various 

turn ratios are shown in Fig.6 (a). When N=0, 
1-

1- 2

D
B

D
 , the secondary winding of 

tapped inductor is omitted, and the TL-ZSMR becomes a ZSMR. When 1N = , 

21

1 3

D
B

D





, the boost factor is equal to that of SL-ZSMR. It can be seen that the 

voltage-boost capability of the proposed TL network at a specified D value improves 

as N increases. The voltage stress for switching device is different under different 

voltage-boost levels. Fig.6(b) shows the voltage stress comparison of switching 

device S1 for the ZMSR, SL-ZSMR and TL-ZSMR. As shown in Fig.6(b), for the 

same output voltage gain, the proposed TL-ZSMR has a lower voltage stress 

compared ZSMR and SL-ZSMR as N increases. 

 

(a)                          (b) 



 

 

(c) 

Fig.6. (a)Boost ability of proposed ZMSR,SL-ZSMR and TL-ZSMR with various turn ratios of N 

(b)Switching device S1 voltage stress of proposed ZMSR,SL-ZSMR and TL-ZSMR with various 

turn ratios of N (c) Voltage conversion ratios versus modulation index of proposed ZMSR, 

SL-ZSMR and TL-ZSMR with various turn ratios of N. 

Fig.6(c) shows the voltage conversion ratios versus modulation indices of the 

proposed three rectifiers. The proposed three rectifiers can all provide higher voltage 

boost inversion by using the same modulation index. For the same output voltage gain, 

the proposed TL-ZSMR uses a higher modulation index to decrease the total harmonic 

distortion value and improve the rectifier output quality. Table I compares the 

corresponding governing equations of the proposed ZSMR, SL-ZSMR and TL-ZSMR. 

From Table I, it can be seen that the TL-ZSMR has the higher voltage stresses of 

diodes and capacitors due to its stronger voltage-boost ability in the same D. 
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Stress comparison to three topologies 
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B. Differences Among Proposed Rectifiers And Converters Published In Other 

References 

The converters [4-7] are the traditional ac-ac matrix converters without the 

Z-source network and the voltage-boost function. The converters [11, 12] are the 

voltage-boost ac-ac Z-source matrix converters but without the ac-dc rectifier function. 

The converters [15-18], different from ac-ac Z-source matrix converters [11, 12], can 

realize the ac-dc rectifier function but a buck Z-source matrix rectifier. The 

differences among proposed rectifiers and the converter [15] by “keping you” are 

analyzed as follows. 

Firstly, the topology differences among proposed rectifiers and converter [15] are 

shown in Table II. From Table II, it can be seen that the component counts of 

proposed rectifiers are different from those of the converter [15]. As shown in 

Fig.7(a), the converter [15] includes three switches (X1, X2 and S1) and a battery. The 

three switch count and the switch position are different from those of proposed 

rectifiers and proposed rectifiers do not include the battery, which are the topology 

differences among proposed ZSMR and the converter [15]. From Fig.4 and Fig.5, it 

can be seen that the proposed SL-ZSMR and TL-ZSMR exist the larger topology 

differences compared with the converter [15].  

Secondly, the topology differences among proposed rectifiers and the converter [15] 



 

need different operation principles. The proposed ZSMR, SL-ZSMR and TL-ZSMR 

introduce the additional open-circuit zero state where the switch S1 is turned on and 

all the switching devices to realize the voltage-boost ac-dc function. The auxiliary 

switch S1 ensures the energy to flow from the capacitors (C1 and C2) to the inductors 

(L1 and L2) and provides the conduction path for the capacitor C and inductor Ldc. The 

equivalent circuits of proposed ZSMR, SL-ZSMR and TL-ZSMR are shown in Fig.3, 

Fig.4 and Fig.5.  

Differently, the auxiliary switch X1 and the diode D of the rectifier in [15] mainly 

block the energy flow and the current of three-phase ac sources to the battery. Fig.7(b) 

shows the equivalent configuration of the converter [15] in ac-dc rectification mode. 

In this mode, the switch X1 and S1 are in the OFF-state; X2 and X3 are closed. As 

shown in Fig.7(b), the Z-source network of the converter in [15] under ac-dc 

rectification mode serves as the filter at the dc side. The converter in [15] without the 

voltage-boost process is a ac-dc buck rectifier, which is essential difference from 

proposed rectifiers. 
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(a)                                      (b) 

Fig.7. (a) The general topology structure in [15] and (b) Equivalent structure of the converter in 

[15] when it is in the ac-dc rectification mode. 

TABLE II 



 

The topology differences among proposed rectifiers and rectifiers [15] 

Topology ZSMR SL-ZSMR TL-ZSMR rectifier in [15] 

Numbers of switches 13 13 13 17 

Numbers of diodes 0 6 4 1 

Numbers of inductors 6 8 6 5 

Numbers of capacitors 6 6 6 5 

V. SIMULATION VERIFICATION 

To verify the theoretical analysis for the proposed ZSMR, SL-ZSMR and 

TL-ZSMR, simulations are set up for the topologies shown in Fig.3(a), Fig.4(a) and 

Fig.5(a). The balanced three-phase input voltage for these three simulations is 

20V/50Hz, and the load per phase is 10Ω. For the ZSMR L1=L2=2mH and 

C1=C2=470uF; for the SL-ZSMR L1=L2=L3=L4=1mH and C1=C2=470uF; and for the 

TL-ZSMR L11=L21=0.22mH, L12=L22=0.88mH and C1=C2=470uF. In the simulations, 

all the components are assumed to be ideal. 

The simulation results are shown in Fig.8, Fig.9 and Fig.10 for the ZSMR, 

SLZSMR and TLZSMR respectively for the condition when M=0.8 and D=0.1. It can 

be seen from Fig.8 that the capacitor voltage VC and output voltage Vdc are 26.5V 

which is closed to the theoretical value 27V calculated from (9) and (13). Then, from 

(12) and (14), we get the voltage transfer ratio G=0.779 and the boost factor B=1.125. 

Fig.8 also shows the enlarged waveform of Z-source inductor current IL1. It can be 

seen from the Fig.8 that the inductor charges or discharges when S1 is turned on or 

off. 
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Fig.8. Simulation results of ZSMR 

As shown in Fig.9, it can be seen that the capacitor voltage VC is 30.2V close to 

the theoretical value of 30.86V, and the output voltage Vdc is 33.5V which is close to 

the theoretical value of 33.94V. It is obvious that the input voltage of Z-source 

network, the capacitor voltage and the output voltage for SL-ZSMR are much higher 

than those of the ZSMR for the same D and M. So, the corresponding voltage transfer 

ratio, 0.975 from (24), is greater than ZSMR, verifying that the voltage-boost ability 

of the circuit is significantly higher.  
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Fig.9. Simulation results of SL-ZSMR 

The voltage transfer ratio can be realized optimally by the proposed TL-ZSMR, as 

shown in Fig.10. From Fig.10, it can be seen that the capacitor voltage VC and output 

voltage Vdc are consistent with the theoretical values, and the input voltage of 

Z-source network is the highest of the three topologies. The corresponding voltage 

transfer ratio is 1.24 calculated by equation (39). Obviously, when D and M are the 

same, the voltage transfer ratio of the TL-ZSMR is the highest. Fig.10 also shows the 

enlarged waveforms of the current of tapped-inductor LL11 and LL12, and it can be seen 

that the waveforms of IL11 and IL12 are complementary, which is consistent with the 

theoretical analysis. So, by the simulations, we have verified the availability of the 

proposed rectifiers. 
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Fig.10. Simulation results of TL-ZSMR 

VI. EXPERIMENTAL RESULTS 

The same parameters are chosen to construct a testing hardware circuit according to 

the simulations. The switching frequency is 5 kHz. The switch devices are 

1MBH60D-100 and the drive circuit, DA962D6, can independently drive six IGBTs 

at the same time. The switch turn-on time is about 0.3us, and the turn-off time is 

about 0.85us. The commutation delays are less than or equal to 1.15us, the addition 

both turn-off time and turn-on time. The core material of ZSMR utilizes H5C2 and 

the number of turns is 21. The core material of SL-ZSMR also utilizes H5C2 and the 

number of turns is 14. The core material of TL-ZSMR is PC40. The primary turn 

number is 18 and the secondary turn number is 36. The average dc accuracy of the 

oscilloscope is about +/-3%. The modulation scheme and control strategy are 

implemented in a high-performance DSP (TMSF320F2812). Fig.11, Fig.12 and 

Fig.13 correspond to the experiment results for the ZSMR, SL-ZSMR and TL-ZSMR, 

respectively. From Fig.11, Fig.12 and Fig.13, it can be seen that the experimental 

results are consistent with the simulation results. The capacitor voltage values and the 

output voltage values for the ZSMR, SLZSMR and TLZSMR are listed in Table III. 

The capacitor voltage value for ZSMR is about 25.9V close to the theoretical value 

1 0.9
24 27

1 2 0.8
C eq

D
V V V

D


    


, and the output voltage value is about 25.3V. So, the 

corresponding voltage transfer ratio is 0.730
3

dc
z

im

V
G

V
  , which is 0.049 less than 

that of the simulation because of IGBT device voltage drop. 
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Fig.11. Experiment results of ZSMR 

TABLE III 

 ZSMR SLZSMR TLZSMR(N=2) 

VC 25.8V 28.9V 34.8V 

Vdc 25.8V 31.9V 42.1V 

Fig.12 shows the Z-source input voltage for SL-ZSMR, whose magnitude is higher 

than the ZSMR. From the Table III, it can be seen the capacitor voltage for the 

SL-ZSMR is about 28.9V close to the theoretical 

value
1 1 0.1

24 30.85
1 3 1 3 0.1

C eq

D
V V V

D

 
   

  
. The output voltage is about 31.9V close to 

the theoretical value 
2 21 1 0.1

24 33.94
1 3 1 3 0.1

dc eq

D
V V V

D

 
   

  
, which is higher 6.6V than 

for the ZSMR using the same D. Due to IGBT power tube voltage drop there, and 

three-phase input voltage is not very symmetrical, the actual output voltage to be 

slightly smaller, but little impact. Therefore, the SLZSMR has a better voltage transfer 

ratio (0.92). 
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Fig.12. Experiment results of SL-ZSMR 

The experiment results for the TL-ZSMR are shown in Fig.13, which includes the 

Z-source input voltage, output voltage, capacitor voltage and the tapped-inductor 

current. It can be seen that the capacitor voltage is about 34.8V close to the theoretical 

value
1 1 0.1

24 36
1 4 1 4 0.1

C eq

D
V V V

D

 
   

  
. The output voltage is about 42.1V close to 

the theoretical value
(1 2 )(1 ) (1 2 0.1)(1 0.1)

24 43.2
1 4 1 4 0.1

dc eq

D D
V V V

D

    
   

  
, which is 

higher 16.8V than for the ZSMR with the same D. The corresponding voltage transfer 

ratio is 1.21. Obviously, the voltage-boost ability of the TLZSMR is the highest of the 

three circuits. Based on the simulation and experiment results, the validity and 

advantages of the proposed rectifiers have been proven to be a good agreement with 

the theoretical analysis results. 
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Fig.13. Experiment results of TL-ZSMR 

VII CONCLUSION 

This paper has presented a novel Z-source matrix rectifier by combining a matrix 

rectifier and three Z-source networks. The proposed rectifiers introduce a modified 

modulation strategy by taking an open-circuit zero state into the traditional zero states 

to overcome a voltage-boost drawback in traditional matrix rectifier. And the new 

increased Z-source network also serves as energy storage and guarantees double 

filtration grade at the output of the rectifier. Finally, the validity of the three 

topologies considered and the modified modulation strategies for the proposed ZSMR, 

SL-ZSMR and TL-ZSMR circuits is verified using both the simulation and 

experiment results. 
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