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Abstract—A general method for the stability analysis of power
converters is presented in this paper. The method is based on
Harmonic Linearisation and Linear Time Periodic (LTP) analysis
techniques and a single-phase grid-feeding inverter with PLL is
considered as case study. Although stability analysis has been
developed using the average model of the converter, the obtained
results can be extended to the switching model and it is possible to
evaluate precisely the boundary between stability and instability.
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I. INTRODUCTION

AC power systems based on power converters are complex
and highly non-linear because both the converters and the
interconnected loads often show a non-linear behaviour. A
theory for the stability analysis of such systems is required
and existing analysis techniques can be broadly categorized
into frequency and time-domain methods. Frequency-domain
methods are based on the impedance models of source and
loads of the system and on the application of the Nyquist
stability criterion [1]. For balanced and symmetric three-phase
AC systems the analysis can be performed in the dq reference
frame [2], but this is no longer the case for unbalanced
or single-phase systems. In such cases the dynamic phasor
approach allows one to determine the 2-dimensional source
and load impedance, however a precise boundary between
stable and unstable systems is not usually provided [3],
[4]. Harmonic linearisation is a technique that develops
a small-signal linear impedance model for a non-linear
system along a periodically time-varying trajectory [5], [6].
These calculated small signal-impedances can be used along
with the Nyquist stability criterion but potential limitations
might affect this method, as stated in [1]. In this paper a
time-domain method is developed and discussed. Starting
from a non-linear state space model of the system, harmonic
linearisation is applied in order to derive a linearised model,
which is an LTP system. Subsequently LTP time-domain

theory is applied in order to perform stability analysis [7],
[8]; alternatively it is possible to obtain equivalent results in
the frequency domain by defining a Harmonic State Space
(HSS) small signal model [7], [9]. This method allows us to
define accurately the stability boundaries of the system and
no approximations are introduced apart from a truncation of
the Fourier coefficients, which can be chosen according to
the desired accuracy of the results.

II. SINGLE-PHASE GRID FEEDING INVERTER WITH PLL
MODEL

TABLE I: System parameters

Vgrid = 115
√

2 V fgrid = 50 Hz fpwm = 12.5 kHz Vdc = 400 V
L1 = 0 H L2 = 1 mH C1 = 20 µF Rc = 1 Ω
kp1 = 0.0123 ki1 = 23.4417 kp2 = 40.3875 ki2 = 3024.2
Lg = 1.5 mH Rg = 0.1 Ω Iref = 20-25 A

The single-phase inverter is supplied by an ideal DC source,
Vdc, and its output is connected through an L2C1L1 low-pass
filter to the grid, which is represented by an ideal sinusoidal
voltage source, Vg(t), in series with an RgLg impedance.
Unity power factor operation is considered. A Phase Locked
Loop (PLL) is used to measure the phase of the grid voltage
and to generate the current reference signal for the inverter
output, Iref (t). A PI control is then used to control the
inverter. We will show that there is a threshold value for the
parameter Iref , above which the system becomes unstable.
That is, the instability is due to the fact that the PLL is no
longer able to generate the correct phase reference for the
controller. It is worth noticing that a damping resistor Rc is
used in the low pass filter in order to simplify the design
of the current control and focus on the instability caused
by the PLL. Using LTP techniques and theory we will also
show that it is possible to evaluate precisely the instability
threshold and perform a rigorous stability analysis.



Fig. 1: single-phase grid feeding inverter with PLL - switching model

III. AVERAGE MODEL

The analysis will be focused on the average model of the
system. This model gives a good description of the switching
system up to one third of the switching frequency. Since it is of
interest to study the case where the instability is caused by the
incorrect behaviour of the PLL, we know that such instability
arises at frequencies far below one third of the switching one.
So the switching model is replaced by the average one and the
analysis is based on this approximation. Finally the results of
the analysis and the time domain simulation of the switching
model are compared and it is shown that both results agree.

Vo(t) =
1

Lg + L1
[(L1Rg − LgRc)x6(t) + LgRcx7(t)

+ Lgx8(t) + L1Vg(t)]

Vconv(t) = Vo(t) + Vdcki1x5(t) + Vdckp1Iref cos(x3(t))

− Vdckp1x7(t)

ẋ1(t) = x2(t)

ẋ2(t) = −ω2
gx1(t)− ωgx2(t) + ω2

gVo(t)

ẋ3(t) = x4(t)− kp2 sin(x3(t))Vo(t) + kp2 cos(x3(t))x1(t)

ẋ4(t) = −ki2 sin(x3(t))Vo(t) + ki2 cos(x3(t))x1(t)

ẋ5(t) = Iref cos(x3(t))− x7(t)

ẋ6(t) =
1

Lg + L1
[−(Rc +Rg)x6(t) +Rcx7(t) + x8(t)

− Vg(t)]

ẋ7(t) =
Rc
L2
x6(t)− Rc

L2
x7(t)− 1

L2
x8(t) +

1

L2
Vconv(t)

ẋ8(t) = − 1

C1
x6(t) +

1

C1
x7(t) (1)

For single-phase applications the PLL needs to estimate the in-
quadrature component of the input voltage, Vo(t), and among
the several available topologies a linear filter that introduces
a Tg/4 delay at ωg is used: D(s) = ω2

g/(s
2 + sωg +ω2

g). The
whole system is equivalently represented by the state space
model (1), which is an eighth order Non-Linear Time Periodic
(NLTP) system, with all the state space variables Tg-periodic
and the non linearity due to the presence of the PLL. The only
input signal is Vg(t).

IV. LINEAR TIME PERIODIC APPROACH

The stability analysis that we are going to describe involves
an LTP system. However, most real AC system average models
are NLTP, as is the one we want to analyse (1). Then
the first step to perform is to linearise the system. In DC
systems, the linearisation is applied around a constant steady
state operating point, while in AC systems the steady state
operating point is time-periodic rather than constant. So in
this case traditional linearisation techniques cannot be applied,
but Harmonic Linearisation must ne applied , which means a
linearisation around the steady state operating trajectory.

Given a general NLTP system, T -periodic:

ẋ(t) = f(x(t)) + g(x(t))u(t)

y(t) = h(x(t)) + l(x(t))u(t) (2)

and given a steady state input ū(t) we solve numerically (in
Matlab for example) this NLTP system and we obtain the
steady state solution x̄(t). Now Harmonic Linearisation is
applied, so a small signal perturbation is added to the steady
state input, output and solution:

u(t) = ū(t) + ũ(t)

y(t) = ȳ(t) + ỹ(t)

x(t) = x̄(t) + x̃(t) (3)



and making this substitution in the NLTP system:

˙̄x(t) + ˙̃x(t) = f(x̄(t) + x̃(t)) + g(x̄(t) + x̃(t)) [ū(t) + ũ(t)]

ȳ(t) + ỹ(t) = h(x̄(t) + x̃(t)) + l(x̄(t) + x̃(t)) [ū(t) + ũ(t)]
(4)

Taking into account only the first order terms, those propor-
tional to x̃(t), ỹ(t) or ũ(t), and ignoring all the others gives
us the linearised model, which results in an LTP system:

˙̃x(t) = A(t)x̃(t) +B(t)ũ(t)

ỹ(t) = C(t)x̃(t) +D(t)ũ(t) (5)

with the matrices A(t), B(t), C(t) and D(t) being T -periodic.
In Fig.2 the steps to obtain the LTP model are summarised.

Fig. 2: From NLTP to LTP

Before proceeding with the stability analysis we want first to
review some properties of Linear Time Invariant (LTI) systems
which will be useful in the analysis of LTP systems. Consider
the LTI system:

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t) (6)

The test signal of fundamental interest in the study of LTI
systems is the complex exponential u(t) = u0e

jΩt = u0e
st,

s ∈ C, u0 ∈ Cm. Substituting this signal in the LTI state
space model and evaluating the steady state output response
gives us:

y(t) =
[
C(sI −A)−1B +D

]
u0e

st → y(t) = G(s)u0e
st

(7)
So the transfer function operator G(s) is defined and this
is possible only because both input and output spaces are
the same; the input signal has one harmonic component and
the output signal has the same harmonic component, with
possibly different amplitude and phase. Now the stability
analysis can be performed by evaluating the eigenvalues of
the A matrix.

We are now interested in obtaining the transfer function
operator for the LTP system. Consider first the case where
the same signal used for LTI systems is now used for LTP
systems. The important result that comes out is that the
output space is different from the input space, as shown in
Fig.3. In this case the output signal is composed of the same
input harmonic Ω plus infinite harmonics that are Ω + qωT ,
with q ∈ Z and ωT = 2π/T = 1/fT . So the main result
is that with a complex exponential as test signal to an LTP
system we are unable to define the transfer function operator
and proceed with stability analysis.

Fig. 3: complex exponential test signal to an LTP system

Fig. 4: EMP test signal to an LTP system

A different test signal is now defined, which will be referred
to as Exponentially Modulated Periodic (EMP) signal [7], [8],

u(t) = ejΩt
+∞∑

n=−∞
une

jnωT t (8)

When an EMP signal is injected as test signal to an LTP
system, we find the significant result that both input and output
spaces are the same and they possess the same set of harmonic
components, as shown in Fig.4. So now it is possible to define
the transfer function operator and apply stability analysis.

Consider the LTP model (5). The dynamic matrix is ex-
panded in complex Fourier series as:

A(t) =

+∞∑
n=−∞

Ane
jnωT t (9)

and similarly for B(t), C(t) and D(t). An EMP test signal
implies that the steady state and output responses are also EMP
signals:

x(t) = ejΩt
+∞∑

n=−∞
xne

jnωT t (10)

→ ẋ(t) =

+∞∑
n=−∞

(jΩ + jnωT )xne
j(Ω+nωT )t (11)

y(t) = ejΩt
+∞∑

n=−∞
yne

jnωT t (12)

We now make these substitutions in (5), which gives us:

0 =

+∞∑
n=−∞

[
(jΩ + jnωT )xn −

∞∑
m=−∞

An−mxm

−
∞∑

m=−∞
Bn−mum

]
ej(Ω+nωT )t (13)

0 =

+∞∑
n=−∞

[
yn −

∞∑
m=−∞

Cn−mxm

−
∞∑

m=−∞
Dn−mum

]
ej(Ω+nωT )t (14)



This system of equations has to hold for ∀n ∈ Z, which means:

(jΩ + jnωT )xn =

∞∑
m=−∞

An−mxm +

∞∑
m=−∞

Bn−mum

yn =

∞∑
m=−∞

Cn−mxm +

∞∑
m=−∞

Dn−mum

(15)

This is a concise representation of the input-output rela-
tionship between the Fourier coefficients of the input and
output signals. However the manipulation of Fourier series
usually leads to complicated calculation and for this reason the
Toeplitz transform is introduced in order to make the analysis
simpler.

A Toeplitz transformation is defined as follows:

T [A(t)] = A =



. . .
...

...
...

...
...

· · · A0 A−1 A−2 A−3 A−4 · · ·
· · · A1 A0 A−1 A−2 A−3 · · ·
· · · A2 A1 A0 A−1 A−2 · · ·
· · · A3 A2 A1 A0 A−1 · · ·
· · · A4 A3 A2 A1 A0 · · ·

...
...

...
...

...
. . .


(16)

which is a doubly infinite block Toeplitz matrix and the
matrices Ai are the Fourier matrix coefficients of the T -
periodic matrix A(t). A similar definition applies to the
matrices T [B(t)] = B, T [C(t)] = C, T [D(t)] = D and to
the vectors T [x(t)] = X , T [u(t)] = U , T [y(t)] = Y .

If we examine the system of equations (15) for ∀n, we
notice that the Toeplitz transforms can be used in order to
obtain a clearer and more compact notation. So we are able
to define the harmonic state space model (HSSM) of the LTP
system:

sX = (A−N )X + BU
Y = CX +DU (17)

with N = blkdiag{jnωT I}. With simple steps the Harmonic
Transfer Function (HTF) of the system is defined:

Y = Ĝ(s)X
Ĝ(s) = C [sI − (A−N )]

−1 B +D (18)

Stability analysis is now performed evaluating the eigenvalues
of the matrix (A−N ). If all the eigenvalues have Re[λi] ≤ 0,
where those with Re[λi] = 0 have algebraic multiplicity equal
to 1, then the system is stable, otherwise the system is unstable.

So far an infinite number of coefficients has been considered
in the Fourier series expansion. To implement this analysis
on a computer we introduce a truncation order N which
refers to the number of harmonics taken into account. For
N = 2, for example, this means that we are taking into
account the DC-component and the first and second harmonic.

The corresponding Fourier expansion involves the Fourier
coefficients for n = −2,−1, 0, 1, 2:

A(t) =

+N∑
n=−N

Ane
jnωT t =

+2∑
n=−2

Ane
jnωT t (19)

and we consider the following associated truncated Toeplitz
form:

T [A(t)] = A =


A0 A−1 A−2 Z Z
A1 A0 A−1 A−2 Z
A2 A1 A0 A−1 A−2

Z A2 A1 A0 A−1

Z Z A2 A1 A0

 (20)

with Z a zero matrix of proper dimension. So when the
truncation order is increased a larger number of Fourier
coefficients of the Fourier expansion is taken into account and
at the same time the dimension of the associated Toeplitz form
increases .

Given an LTP system of order p, which means there are p
state space variables, and a truncation order N , the number
of eigenvalues associated with the matrix A − N will be
(2N + 1) × p. However, only p of these eigenvalues are the
important ones for the analysis; all the others are translated
copies of the original ones, with translation equal to jnωT ,
n = ±1, . . . ,±N . Fig.5 shows an example of LTP pole loci
with q = 6 and N = 1. In red are depicted the important
poles and in black their translated copies. It can be noticed
that for a large truncation order the eigenvalue loci result in
long vertical lines of eigenvalues.

Fig. 5: general eigenvalue loci of an LTP system: red -
important eigenvalues; black - translated copies

V. STEADY STATE SOLUTION

In order to apply Harmonic Linearisation the steady state
solutions of the system (1) must be evaluated first. We will
discuss some mathematical considerations and then solve



numerically the system equations. The set of steady state
solutions will be of the form:

x̄i(t) = |x̄i| cos(ωgt+ arg(x̄i)) =
x̄ie

jωgt + c.c.

2

for i = 1, 2, 5, 6, 7, 8 ; x̄3(t) = ωgt+ x̄03 (21)

x̄4(t) = to be defined ; V̄x(t) =
∣∣V̄x∣∣ cos(ωgt+ arg(V̄x))

=
V̄xe

jωgt + c.c.

2
, x = o, conv, g (22)

Substituting these expressions in the non-linear state space
model gives us:

jωg

[
x̄5e

jωgt + c.c.
]

2
=

[
Irefe

jx̄03ejωgt + c.c.
]

2

−
[
x̄7e

jωgt + c.c.
]

2
(23)

Ignoring the complex conjugate parts and making some sim-
plifications gives:

jωg
x̄5

2
=
Irefe

jx̄03

2
− x̄7

2
⇒ x̄5 =

1

jωg

[
Irefe

jx̄03 − x̄7

]
(24)

A similar approach is applied to the other equations:

jωg
x̄6

2
= − (Rc +Rg)

Lg + L1

x̄6

2
+

Rc
Lg + L1

x̄7

2
+

1

Lg + L1

x̄8

2
−

(25)

Vg
2j(Lg + L1)

⇒ x̄6 =
Rcx̄7 + x̄8 + jVg

Rc +Rg + jωg(Lg + L1)
(26)

jωg
x̄7

2
=
Rc
L2

x̄6

2
− Rc
L2

x̄7

2
− 1

L2

x̄8

2
+

1

L2

V̄conv
2

⇒ x̄7 =
Rcx̄6 − x̄8 + V̄conv

Rc + jωgL2
(27)

jωg
x̄8

2
= − 1

C1

x̄6

2
+

1

C1

x̄7

2
⇒ x̄8 =

1

jωgC1
[−x̄6 + x̄7]

(28)

V̄o
2

=
L1Rg − LgRc
Lg + L1

x̄6

2
+

LgRc
Lg + L1

x̄7

2

+
Lg

Lg + L1

x̄8

2
+

L1

Lg + L1

Vg
2j

(29)

V̄conv
2

=
V̄o
2

+Vdcki1
x̄5

2
+Vdckp1Iref

ejx̄03

2
−Vdckp1

x̄7

2
(30)

These 6 equations are now solved numerically in Matlab and
the solutions x̄5, x̄6, x̄7, x̄8, V̄o, V̄conv are obtained. We find:

x̄2 = jωgx̄1 (31)
x̄1 = −jV̄o (32)

so the solutions x̄1, x̄2 are given by:

x̄1(t) =
∣∣V̄o∣∣ cos(ωgt+ V̄o − π/2) (33)

x̄2(t) = ωg
∣∣V̄o∣∣ cos(ωgt+ V̄o) (34)

The last two quantities to be defined are x̄3 and x̄4:

x̄3(t) = ωgt+ x̄03 (35)

hence

˙̄x3(t) = ωg = x̄4(t)

− kp2 sin(ωgt+ x̄03)
∣∣V̄o∣∣ cos(ωgt+ V̄o)

+ kp2 cos(ωgt+ x̄03)
∣∣V̄o∣∣ sin(ωgt+ V̄o) (36)

Applying trigonometric simplification gives us:

x̄4(t) = ωg − kp2 sin( V̄o − x̄03) (37)

So it follows that ˙̄x4(t) = 0. But from the state space model,
using again trigonometric simplifications, we have:

˙̄x4(t) = ki2
[
− sin(x̄3(t))V̄o(t) + cos(x̄3(t))x̄1(t)

]
(38)

and so
˙̄x4(t) = −ki2 sin( V̄o − x̄03) (39)

which implies V̄o− x̄03 = 0 or ±π. In our case, V̄o = x̄03,
which gives the last two solutions:

x̄3(t) = ωgt+ V̄o (40)

x̄4(t) = ωg (41)

VI. LINEARISED MODEL

Following the steps illustrated in the previous paragraph we
now derive the LTP Model of the NLTP system (1), which is
of the form ˙̃x(t) = A(t)x̃(t), with A(t) being a Tg-periodic
matrix (42). It is now possible to derive the Toeplitz form A
and evaluate the eigenvalues of A−N to determine whether
the system is stable or not.

VII. SIMULATION RESULTS

In this section simulation results are presented to validate
the proposed stability analysis method. From the study of the
eigenvalue loci it can be seen that the maximum value for the
reference input Iref for which the system is stable is around
22.5 A. Two simulations have then been performed: the first
with Iref = 22 A, which gives a stable system and the second
with Iref = 23 A, for the unstable case. In Fig.6 are shown
the eigenvalue loci for the two cases: all the eigenvalues are
in the left half-plane for the stable case, while for the unstable
case some of them are in the right-half plane. Some spurious
eigenvalues arise due to the fact that a truncation is introduced
in evaluating the Toeplitz form (in this case a truncation order
N = 40 is considered) but they have no physical meaning.
In Fig.7 we show the time evolution of the relevant currents,
voltages and phases of the switching model in the two cases.
It is worth noticing that in Fig.7(d) the inductor current Il(t)
correctly tracks the reference current Iref (t), which confirms
that the instability is not due to the current control but to
the PLL. A good accuracy is provided in finding the stability
boundaries of the system.



˙̃x1(t) = x̃2(t)

˙̃x2(t) = −ω2
g x̃1(t)− ωgx̃2(t) + ω2

g

[
L1Rg − LgRc
Lg + L1

]
x̃6(t) +

ω2
gLgRc

Lg + L1
x̃7(t) +

ω2
gLg

Lg + L1
x̃8(t)

˙̃x3(t) = x̃4(t)− kp2 sin(x̄3(t))

[
L1Rg − LgRc
Lg + L1

]
x̃6(t)− kp2 sin(x̄3(t))

LgRc
Lg + L1

x̃7(t)

− kp2 sin(x̄3(t))
Lg

Lg + L1
x̃8(t)− kp2 cos(x̄3(t))V̄o(t)x̃3(t) + kp2 cos(x̄3(t))x̃1(t)− kp2 sin(x̄3(t))x̄1(t)x̃3(t)

˙̃x4(t) = −ki2 sin(x̄3(t))

[
L1Rg − LgRc
Lg + L1

]
x̃6(t)− ki2 sin(x̄3(t))

LgRc
Lg + L1

x̃7(t)

− ki2 sin(x̄3(t))
Lg

Lg + L1
x̃8(t)− ki2 cos(x̄3(t))V̄o(t)x̃3(t) + ki2 cos(x̄3(t))x̃1(t)− ki2 sin(x̄3(t))x̄1(t)x̃3(t)

˙̃x5(t) = −Iref sin(x̄3(t))x̃3(t)− x̃7(t)

˙̃x6(t) = −Rc +Rg
Lg + L1

x̃6(t) +
Rc

Lg + L1
x̃7(t) +

1

Lg + L1
x̃8(t)

˙̃x7(t) = −RcL1 + L1Rg
L2(Lg + L1)

x̃6(t)− RcL1

L2(Lg + L1)
x̃7(t) +

L1

L2(Lg + L1)
x̃8(t) +

Vdcki1
L2

x̃5(t)

− Vdckp1Iref sin(x̄3(t))

L2
x̃3(t)− Vdckp1

L2
x̃7(t)

˙̃x8(t) = − 1

C1
x̃6(t) +

1

C1
x̃7(t) (42)

(a)

(b)

(c)

(d)

Fig. 6: (a), (b) stable system with Iref = 22A, (c), (d) unstable system with Iref = 23A

VIII. CONCLUSION

In this paper a general method is presented, based on
harmonic linearisation and LTP theory, to perform stability

analysis of complex non-linear time periodic power systems.



(a)

(b)

(c)

(d)

(e)

(f)

Fig. 7: currents: blue - Il(t), red - Igrid(t), green - Iref (t); voltages: blue - Vo(t); phase: blue - θgrid, red - θPLL; (a), (b),
(c) stable system with Iref = 22A, (d), (e), (f) unstable system with Iref = 23A

A case study of a single-phase grid-feeding inverter with
PLL has been used to show the practical application of
the method. Numerical simulations have been performed to
validate the proposed technique, showing good accuracy in
the identification of the instability boundary.
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