
 1 

Naphthalocyanine Thin Films and Field Effect Transistors  

 

Ayad M.S. Esmail, Chrisopher R. Staddon and Peter H. Beton* 

 

School of Physics & Astronomy, University of Nottingham, Nottingham NG7 2RD, UK 

 

*corresponding author peter.beton@nottingham.ac.uk 

 

ABSTRACT 

Naphthalocyanine (Nc) thin films have been grown by sublimation on SiO2. We have used 

atomic force microscopy and X-ray diffraction to show that the films are disordered for 

room temperature deposition, but show a highly crystalline needle-like morphology for a 

substrate temperature of ~200oC. Field effect transistors exhibit p-channel operation with a 

mobility, which has a peak value of 0.052 cm2/Vs, showing a high dependence on substrate 

temperature. Exposure to atmosphere results in an increase in current and mobility and a 

reduction in threshold voltage. We compare our results with films formed from analogue 

molecules such as phthalocyanines and naphthalocyanine functionalised with solubilising 

sidegroups and discuss the potential of Nc for applications in organic electronics and 

sensors. 
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INTRODUCTION 

Dye molecules derivatised from phthalocyanine (Pc) and the larger analogue molecule, 

naphthalocyanine (Nc) have attracted much attention as candidate materials for 

photovoltaic devices, field effect transistors, gas sensing and organic spintronic devices1–13. 

The parent molecules are planar with a central conjugated ring system which can 

accommodate a metal centre through the formation of co-ordination bonds. In the solid 

state the molecules stack face-to-face which leads to the formation of needle-like crystals. 

Both molecules strongly adsorb light and the larger molecule, Nc, has a more extended -

conjugation system, resulting in an adsorption edge at longer wave length, in the infra-red. 

Both molecules are highly insoluble and there have been many studies of derivatives  which 

have additional groups which can promote solubility4,13. Pc can be sublimed readily and the 

resulting thin films have been incorporated into a wide range of organic devices 1–3,5. 

However, there have so far been very few studies of the properties of sublimed Nc thin 

films11,14,15; in fact it has been suggested that Nc cannot be sublimed13, although the 

deposition of monolayer coverages have been reported by a number of groups16–22. 

Consequently it has not been possible to characterise systematically the properties of 

sublimed Nc thin films. 

 

In this paper we investigate the growth of Nc thin films by sublimation and show that the 

resulting organic layers can be used to form p-type field effect transistors which can be 

operated under both vacuum and atmospheric conditions. We use atomic force microscopy 

(AFM) and X-ray diffraction (XRD) to investigate the grown films and find a strong 

temperature dependence of morphology with the formation of highly-facetted needle-like 

crystals for elevated substrate temperatures during growth. 
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EXPERIMENTAL 

For substrates we use pieces (typically 1 x 1 cm2) of a Si wafer on which a 200 nm thermal 

oxide has been grown. For bottom-contact devices the substrates are pre-patterned with a 

contact metallisation by evaporating  10 nm Ti followed by 100 nm of Au through a shadow 

mask to define source and drain contacts with typical length L = 25 m, and width w = 3 

mm. To sublime Nc these samples are then transferred via atmosphere to a separate 

vacuum system where they are mounted on a heater in an arrangement which permits in-

situ electrical measurements through the use of mechanical probes. Top-contact devices are 

fabricated by first depositing the Nc layer, then transferring the sample via atmosphere to a 

vacuum system for metallisation using the same shadow mask arrangement as described 

above. Nc (purchased commercially from Sigma; structure shown in Figure 1a) is loaded into 

a quartz crucible and annealed for approximately 12 hours prior to sublimation at a rate, 

measured using a quartz crystal thickness monitor, of 20 nm/hour.  The base pressure of the 

vacuum system was 2 x 10-7 mbar and the substrate temperature, Ts, is measured using a 

thermocouple.  

 

Electrical measurements were acquired in the vacuum system in the dark either at the base 

pressure, or at atmospheric pressure after the introduction of air to the chamber in which 

the sample is housed. Top-contact devices were pre-annealed at 100 oC for 2 hours prior to 

the acquisition of electrical characteristics.   
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The Nc films were characterised structurally using an Asylum MFP3D atomic force 

microscope (AFM) operated in AC (tapping) mode and the orientational order relative to the 

substrate was determined using -2 X-ray diffraction scans. 

 

 

RESULTS AND DISCUSSION 

Figure 1b-d shows AFM images of samples after the deposition of 65 nm of Nc at substrate 

temperatures, Ts, varying from room temperature up to 230 oC. For low temperatures we 

observe islands with typical lateral dimensions of 40 nm and a near-circular shape with no 

obvious faceting. As the substrate temperature is progressively increased the islands evolve 

into a more asymmetric facetted shape, very similar to the needle-like crystals reported1 for 

Pc. In addition, the coverage of the substrate starts to reduce and the sticking coefficient 

falls to zero for Ts > 250 oC.   

 

X-ray diffraction data (𝜃 − 2𝜃 plots) confirm an increase in order with well-defined peaks 

appearing for films grown at Ts = 180 oC (see Figure 2). The position of the principal peak at 

2 = 5.84  0.09o corresponds to a plane spacing perpendicular to the surface of 1.51  0.02 

nm. Additional higher order peaks are also observed for this sample, consistent with this 

plane spacing. At the lower growth temperature of Ts = 120 oC the same first order peak is 

observed by the higher order peaks are much less intense. The sample grown at room 

temperature is much less ordered with a very broad feature at 2  ~ 6o.  Although the crystal 

structure for metal-free naphthalocyanine has not been published, the observed spacing 

observed for the samples grown at higher temperature is very close to that observed in the 

growth of metallated (Zn) naphthalocyanine14 and cannot be explained by molecules lying 
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parallel to the substrate, for which a spacing of ~0.35 nm would be expected. Instead we 

infer that the growth morphology is very similar to that observed for Pc 1in which there is a 

switch from a flat-lying disordered morphology at low temperatures to a face-to-face 

packing of molecules aligned out-of-plane with the substrate at elevated temperatures.  

 

The characteristics of Nc field effect transistors (FET) can be measured using the pre-formed 

contact metallisation as source and drain, and the silicon substrate as the gate in a 

conventional (bottom-contact) device geometry23. The characteristic for a device prepared 

with a sample temperature of 200oC measured in vacuum (see Figure 3a) shows excellent 

transistor action through the formation of a p-type accumulation channel at a threshold 

voltage of VT = -20V (determined from the corresponding transfer characteristic in Fig. 3b), 

minimal leakage current and an on-off ratio of > 105 (measured at source drain voltage of -

60V). The characteristic in Fig. 3a includes data taken as the source-drain voltage is swept 

up and down; these plots are overlaid indicating that the measured characteristics are 

largely free of hysteresis. From Fig. 3b we determine a mobility of  = 0.014 cm2/Vs (here 

we use the  = (L/wCi)(dI1/2/dVG)2, where Ci = 17 nF/cm2 is the gate capacitance per area, I is 

the current and VG is the gate voltage. 

 

The exposure to atmosphere has a highly detrimental effect on the electrical characteristics 

of many organic thin film transistors, but for the Nc transistors we observe an increase in 

current under these conditions. In Figs. 3c and 3d we show the I(V) characteristics of the 

device discussed above after the pressure in the chamber has been allowed to rise to 

atmospheric pressure through the introduction of air. We note that the saturation current 

has increased by approximately 50%, over the full range of gate voltages (for example at a 
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source-drain voltage of -70V. Analysis of the corresponding transfer characteristic in Fig. 3d 

shows that this rise can be attributed to a increase in mobility to 0.02 cm2/Vs; we also 

observe a decrease of the threshold voltage to VT = -13 V. The changes arising from 

atmospheric exposure may be reversed by annealing to ~100oC in vacuum. 

 

The mobility depends strongly on the substrate temperature during growth, as might be 

expected for the very different morphologies and order determined from AFM and XRD. 

This variation is summarised in Figure 4 which shows the mobility, both in vacuum and air, 

for substrate temperatures in the range of 120-250oC. The maximum mobility occurs at a 

temperature where the AFM (Fig. 1c) shows a high degree of order, but without the 

significant gaps and loss of connectivity observed at higher temperature (Fig. 1d). We 

attribute the fall in the apparent mobility at the very highest temperatures reported in Fig. 4 

to the reduction in material adhering to the surface (Fig. 1d); this is not an intrinsic material 

effect but a consequence of the dramatic reduction of conducting pathways for samples 

grown with a fixed incident dosage, but lower sticking coefficient.  

 

The increase in mobility on exposure to atmosphere occurs consistently over this 

temperature range. This is observed more clearly in a plot on a logarithmic scale included in 

the Supporting Information (SI). This data in SI also includes measurements of devices 

grown at room temperature for which the mobility in vacuum (air) is ~ 10-5 cm2/Vs (~ 10-4 

cm2/Vs), several orders of magnitude lower than the maximum value. It is known that an 

increase in current flowing FETs formed from solubilised Nc derivatives can occur in the 

presence of oxidising species through their action as electron acceptors9. Our observation of 

a shift of threshold voltage to less negative values is consistent with an increase in hole 
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concentration which compensates traps, either in the dielectric layer or at the interfaces of 

the Nc film. In our case the presence of molecular oxygen due to atmospheric exposure is a 

likely candidate for the additional acceptors1. The increase in mobility can also be explained 

by the presence of additional acceptors through the compensation and screening of charged 

traps leading to a reduction in scattering.   

 

We have also fabricated devices in a top contact geometry in which the Nc layer is 

deposited prior to the deposition of contacts as described above; these devices are passed 

through the atmosphere then annealed in vacuum prior to the acquisition of electrical 

measurements such as those shown in Figure 5 (sample grown at 200oC). Similar to the 

bottom-contact devices we observe transistor action with minimal hysteresis, but the 

measured mobility is higher, 0.052 cm2/Vs, and the threshold voltage VT = 4V so that the 

device is normally on. This value of mobility is close to the maximum reported for s olution 

processed Nc FETs9. The effect of substrate temperature on the electrical characteristics 

shows the same general trends as for the bottom contact devices with an increase as the 

substrate temperature is raised to ~200oC followed by a rapid fall as the sticking coefficient 

is reduced at higher values (these data are included in Fig. 4). However, in the range 120-

200oC the mobility varies over a smaller magnitude as compared with bottom-contact 

devices (see also logarithmic plot in SI). The differences between top- and bottom-contact 

FETs are likely due to changes in the nucleation and growth of Nc close to the gold contacts 

which are present prior to Nc sublimation for bottom-contact geometry.  
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CONCLUSIONS 

Our results confirm that, contrary to some suggestions in the literature13, it is possible to 

fabricate thin film FETs from sublimed Nc layers. The transistor characteristics, and the 

variation of morphology and carrier mobility with substrate temperature are highly 

reminiscent of the trends observed for the smaller analogue molecule phthalocyanine and 

our results suggest that it may be possible to substitute Nc for Pc in applications , such as 

photovoltaics and photoconductors, where there may be advantages in using sublimed films 

which exploit the properties of Nc which has an optical absorption edge at a much longer 

wave length. To this end we plan to investigate the optical properties of sublimed Nc co-

deposited with other organic molecules in our future work.  
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Figure 1 a) schematic of naphthalocyanine; b) – d) AFM images of NC films grown at 

substrate temperatures, b) room temperature, c) 200oC, d) 230oC. At low temperature small 

grains are observed but at high temperatures needle-like crystallites are formed. 
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Figure 2 -2 X-ray diffraction of Nc films grown at room temperature, 120oC and 180oC. 

Films grown at higher temperature show clear peaks indicating the presence of crystalline 

material with a plane spacing perpendicular to the substrate of d = 1.51 nm. 
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Figure 3 I(V) characteristics of a bottom contact Nc FET grown at 200°C. a) and b) show, 

respectively, transistor and transfer characteristics of a device held under vacuum 

conditions; c) and d) show the transistor and transfer characteristics of the same device 

after exposure to atmosphere. In all measurements the voltage is ramped up and down. The 

curves are essentially indistinguishable in a) and b); in c) and d) there is a small amount of 

hysteresis. 
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Figure 4 Variation of carrier mobility with substrate temperature for bottom contact devices 

in vacuum and air and also for top contact devices. 
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Figure 5 Measured transistor (a) and transfer (b) characteristic of a device grown at 200°C 

and fabricated in a top contact geometry. Measurements were performed at room 

temperature under vacuum; the sample was first annealed in vacuum at 100oC. 
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