
NeuroImage: Clinical 12 (2016) 269–276

Contents lists available at ScienceDirect

NeuroImage: Clinical

j ourna l homepage: www.e lsev ie r .com/ locate /yn ic l
Associations of limbic-affective brain activity and severity of ongoing
chronic arthritis pain are explained by trait anxiety
William J. Cottama,b,c, Laura Condona,c, Hamza Alshufta,b,c, Diane Reckziegela,b,c, Dorothee P. Auera,b,c,⁎
aArthritis Research UK Pain Centre, University of Nottingham, Nottingham, UK
bSir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK
cDivision of Clinical Neuroscience, Radiological Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK
⁎ Corresponding author at: Radiological Sciences, Roo
Centre, Nottingham NG7 2UH, UK.

E-mail address: Dorothee.Auer@nottingham.ac.uk (D.P

http://dx.doi.org/10.1016/j.nicl.2016.06.022
2213-1582/© 2016 The Authors. Published by Elsevier Inc
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 3 December 2015
Received in revised form 29 June 2016
Accepted 30 June 2016
Available online 01 July 2016
Functional magnetic resonance imaging studies (fMRI) have transformed our understanding of central process-
ing of evoked pain but the typically used block and event-related designs are not best suited to the study of on-
going pain. Here we used arterial spin labelling (ASL) for cerebral blood flowmapping to characterise the neural
correlates of perceived intensity of osteoarthritis (OA) pain and its interrelation with negative affect. Twenty-six
patients with painful knee OA and twenty-seven healthy controls underwent pain phenotyping and ASL MRI at
3T. Intensity of OA pain correlated positively with blood flow in the anterior mid-cingulate cortex (aMCC),
subgenual cingulate cortex (sgACC), bilateral hippocampi, bilateral amygdala, left central operculum,mid-insula,
putamen and the brainstem. Additional control for trait anxiety scores reduced the pain-CBF association to the
aMCC, whilst pain catastrophizing scores only explained some of the limbic correlations. In conclusion, we
found that neural correlates of reported intensity of ongoing chronic pain intensity mapped to limbic-affective
circuits, and that the association pattern apart from aMCC was explained by trait anxiety thus highlighting the
importance of aversiveness in the experience of clinical pain.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Chronic pain affects approximately 11% of the population, with poor
outcomes for current treatment (Harstall and O., 2003). Large surveys
across Europe and Canada found that arthritis/osteoarthritis (OA) joint
pain was the most common cause of chronic pain, reported by over
one third of chronic pain patients (Breivik et al., 2006; Schopflocher et
al., 2011). Pain is a primary symptomof OA, a degenerative joint disease,
but there is disagreement on howwell structural damage (as evidenced
by radiographs) concurs with the severity or presence of symptoms in-
cluding pain (Hannan et al., 2000). Previous studies of chronic OA pain
have suggested that the pain experience is not only the result of con-
stant or aberrant nociceptive drive due to joint tissue damage or inflam-
mation (Mease et al., 2011) but is also inclusive of psychological factors
such as anxiety and depression (Marks, 2009; Axford et al., 2010;
Edwards et al., 2011). Neuroimaging studies have found functional
and structural brain changes in chronic pain patients thought to reflect
brain plasticity and potentially providing targets for pharmacological
and psychological therapies (Davis and Moayedi, 2013).

Despite the increasing interest in neuroimaging studies in chronic
pain, findings are often inconsistent not only between different pain
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aetiologies but also in chronic musculoskeletal pain. The brain response
to evoked pain was abnormal in some studies in patients with OA espe-
cially in those reporting hyperalgesia, with other studies of OA and
chronic lower back pain subjects not reporting differences from controls
(Gwilym et al., 2009; Apkarian et al., 2005; Parks et al., 2011; Sofat et al.,
2013; Wasan et al., 2011; Hiramatsu et al., 2014). Similar discrepancies
between studies were shown for other chronic pain cohorts such as fi-
bromyalgia and chronic regional pain syndrome (Freund et al., 2011;
Kamping et al., 2013; Lebel et al., 2008; Pujol et al., 2009). These discrep-
ancies might have arisen from the challenge to induce comparable pain
states between patients and controls when usingfixed stimulus intensi-
ty (Ducreux et al., 2006; Gwilym et al., 2009) rather than comparable
perceived pain intensity (Hiramatsu et al., 2014; Gracely et al., 2002).

Moreover, experimentally evoked pain is unlikely to reproduce the
full subjective experience of chronic pain with its aversive nature relat-
ed to individual fears, beliefs and memories. To overcome these limita-
tions, it would be desirable to directly study ongoing arthritis pain with
appropriate methods that allow assessment of particular brain states.
One suchmethod is positron emission tomography (PET) using radioac-
tive tracers tomap cerebral glucosemetabolismwhich revealedmarked
differences in the glucosemetabolic pattern during clinical arthritis pain
compared with experimental pain (Kulkarni et al., 2007). Alternatively,
MRI based mapping of cerebral blood flow (CBF) using an arterial mag-
netic spin label (ASL) has shown promise to noninvasively study pain
states in post-surgical pain, fibromyalgia, post-herpetic neuralgia,
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Table 1
Patient Demographics and group differences.

Data Knee OA patients Healthy controls P-value

N. 26 27 –
Median age (range) 67.5 (54–84) 65.0 (57–80) 0.076
N. Males 12 9 0.35
Laterality of affected knee 12 left/14 right – –
N. Right-handed 24 23 –
Median educational scores 6b 3 0.023
VAS 0–100 40.2 (10–80) – –
PainDETECTc 12.5 (0–25) – –
BDI (range)c 7.8 (0–19) 2.5 (0−12) 0.0003
STAI-S 31.7 (20–55)a 26.4 (20–49)a 0.037
STAI-T 41.4 (21–70)a 30.7 (20–52)a 0.004
PCS 13.6 (1–34) 11.7 (0–29) 0.438
PCS: helplessness 5.6 (1–14) 4.2 (0−13) 0.203
PCS: magnification 2.4 (0–6) 2.3 (0–7) 0.903
PCS: rumination 5.6 (0–15) 5.2 (0−20) 0.749

Displayed are the mean (range) values unless elsewise specified. BDI – Beck's Depression
Index, STAI-S – State Anxiety, STAI-T – Trait Anxiety, PCS – Pain Catastrophizing Scale.

a 1 subject score missing.
b 2 subjects were missing.
c Scores reported are the raw questionnaire scores.
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chronic low back pain and OA patients (Howard et al., 2011; Howard et
al., 2012; Liu et al., 2013; Wasan et al., 2011; Shokouhi et al., 2015).
Whole-brain ASL was recently used for covariance analysis of CBF
mapswith perceived intensity of capsaicin-induced pain in healthy con-
trols (Segerdahl et al., 2015). The experimental approach also differs
from earlier BOLD fMRI studies based on correlating perceived pain in-
tensity across stimulation blocks (Boly et al., 2007; Christmann et al.,
2007; Moulton et al., 2012; Peyron et al., 2007; Straube et al., 2009) by
using an acute noxious stimulus to induce a prolonged pain state similar
to Favilla et al. (2014). This whole-brain ASL correlational approach
seems ideally suited to investigate clinical ongoing pain, thereby over-
coming the experimental challenge to induce clinically relevant pain
and the need for defining a priori regions of interest (Howard et al.,
2012).

There is accumulating evidence linking the presence of chronic pain
to increased levels of negative affect, including anxiety and depression
(Axford et al., 2010; Marks, 2009), with some theorising that chronic
pain and negativemood together form a continuumof aversive learning
(Baliki and Apkarian, 2015). It is however unclear how this increase in
negative affect relates to changes in brain function in chronic pain, as in-
vestigation of their interrelation has not been systematic.

Against this background,we aimed to use ASL to identify and charac-
terise the neural correlates of clinical knee OA pain. Specifically, we
hypothesised that brain areas encoding ongoing pain intensity overlap
with limbic networks, and that the co-activation pattern can be partly
explained by negative affect.

To test these hypotheses, we investigated the covariance pattern of
regional CBF, indexing neural activity, with subjective rating of ongoing
pain in chronic knee OA patients. We then repeated partial correlation
analysis controlling for markers of negative affect that showed associa-
tions with pain severity.

2. Material and methods

2.1. Subjects and materials

Ethical approval was granted by Nottingham Research Ethics Com-
mittee 2 (Ref: 10/H0408/115). A total of 43 patients (median age
67.0 years, range 45–84 years, range of pain duration 12–456 months,
19 males) with radiographically defined unilateral chronic knee osteo-
arthritis and 30 healthy controls (median age 64.5 years, age range
43–80 years, 11 males) were included after giving written informed
consent. Imaging data was excluded if of poor quality due tomovement
or imaging artefacts (patients = 8, controls = 3) and also patients
reporting no pain on the day were excluded (n = 9). Group demo-
graphics after exclusions can be found in Table 1.

Directly before the scan session, all subjects underwent question-
naire assessments studying levels of education (where a score of 1 rep-
resents the attainment of a higher degree and 8 represents no
educational attainment, adapted from Egerton and Mullan (2008)),
pain severity (Visual Analogue Scale, VAS; 0–100), anxiety (State-Trait
Anxiety Inventory, STAI), neuropathic-like pain components
(PainDETECT – only in the patient cohort), pain catastrophizing (Pain
Catastrophizing Scale, PCS) and depression (Beck's Depression Index,
BDI-II) (Beck et al., 1996; Spielberger et al., 1983; Freynhagen et al.,
2006; Sullivan et al., 1995). As BDI-II and PainDETECT scores show
non-parametric properties, these scores were converted following
Rasch analysis to allow use in linear analyses (unpublished data; see
supplementary material for full details).

2.1.1. MRI data acquisition
Subjects underwent multimodal MRI at 3T (MR750 Discovery, GE

Healthcare) using a 32-channel head coil. Only ASL data is reported
alongside high-resolution T1-weighted, 3D-FSPGR scan of the whole-
brain, used for registration (Flip angle = 12°, echo time [TE] =
3.172 ms, repetition time [TR] = 8.148 ms, inversion time [TI] =
450 ms, field of view [FOV] = 256 mm, slice thickness = 1 mm,
matrix = 256 × 256). The ASL sequence combines pulsed-continuous
ASL (pCASL) labelling with a 3D spiral read-out (Flip angle = 111°,
TE=10.5 ms, TR=4632ms, labelling duration=1450ms, post-label-
ling duration= 1525ms, FOV=240mm, slice thickness= 4mm, slice
gap = 4 mm, number of slices = 36, echo train length = 1, number of
excitations = 3, matrix = 128 × 128) (Dai et al., 2008). Background
suppression was used and an M0 image collected for image quantifica-
tion. T1-weighted images were acquired parallel to the AC-PC line
whilst the bottom of the acquired ASL image was positioned just
below the cerebellum to allow whole-brain CBF imaging.

2.2. Image processing

Cerebral blood flow (CBF) maps (ml/100 g/min) were generated
using an automatic reconstruction script as reported in Zaharchuk et
al. (2010). The data was then manually brain-extracted using NeuRoi
(http://www.nottingham.ac.uk/scs/divisions/clinicalneurology/
software/neuroi.aspx), registered linearly (12 DOF) to MNI-space with
FSL-FLIRT v6.0 (FMRIB software library) (Jenkinson et al., 2002) and
smoothed to 8 mm FWHM in SPM8 (http://www.fil.ion.ucl.ac.uk/
spm). In this study we were focussed only upon grey matter CBF linked
to pain perception and hence used a grey matter mask to mitigate the
multiple-test correction. For whole grey matter analyses, we used a
dual-tissue probability mask (excluding ≤20% greymatter and ≥30% ce-
rebrospinal fluid) based on the modified International Consortium for
Brain Mapping (ICBM) tissue-probability maps provided in SPM8 (Rex
et al., 2003). Probability thresholds were visually adapted to the 3D
ASL dataset to increase grey matter specificity.

2.3. Statistical analyses

To address the main study aim we undertook a whole-brain grey
matter correlation with reported VAS scores in OA subjects. Secondary
tests included a between group comparison (all OA vs. HC), a subgroup
comparison of those patients with left- or right-lateralised knee OA, and
repeat correlation analyses with pain intensity 1) using data flipped in
the x-axis (only data from participants with OA in the left knee were
flipped), 2) controlling for any affective scores that correlated with re-
ported pain intensities. All whole grey matter tests were corrected for
age and sex, as well as for mean global CBF to control for inter-subject
CBF differences of no interest using a GLM approach. Voxel-wise non-
parametric permutation testing was carried out using FSL-randomise
to correct for multiple comparisons (5000 permutations) and

http://www.nottingham.ac.uk/scs/divisions/clinicalneurology/software/neuroi.aspx
http://www.nottingham.ac.uk/scs/divisions/clinicalneurology/software/neuroi.aspx
http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
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significancewas defined as P b 0.05 FWE-corrected using threshold-free
cluster enhancement (Nichols and Holmes, 2002; Smith and Nichols,
2009). In linewith our hypothesis of a heightened limbic-affective com-
ponent of clinical pain, we have extracted CBF values from those limbic/
paralimbic regions of interest (ROI) that had shown significant CBF-VAS
relationships in the initial regression analysis for selected post-hoc anal-
ysis to investigate interrelations with scores of negative affect (Rasch
converted BDI, Trait anxiety and PCS scores). All psychometric scores
of negative affect that presented either significant or trend correlations
(P b 0.1) with VAS and limbic regional CBF were then taken forward for
mediation analysis using the Process macros for SPSS (Hayes, 2015). In
each case, reported VAS and regional CBF values were used as the inde-
pendent (X) and dependent (Y) variables whilst psychometric scores
were included as the mediating variable (M). Total and indirect effects
of X on Y through M were assessed using 5000 bootstrap samples
(bias corrected) and were considered significant if the 95% confidence
interval did not include zero.

All demographic variables were compared between groups using an
independent samples t-test. All tests were performed using SPSS 22
(IBM).

3. Results

3.1. General findings

No significant group differenceswere found in age or gender, but pa-
tients had lower educational levels. Self-reportedmoodwas significant-
ly lower in patients compared with controls, but not fulfilling of clinical
depression criteria, as maximum scores classified only as ‘mild’ low
mood (Beck et al., 1996). Patients also scored significantly higher on
state and trait anxiety scales but not pain catastrophizing. Results
from independent t-tests can be found in Table 1.

Global grey matter CBF did not differ (P = 0.52, age and sex
corrected) between OA (44.0 ± 7.8 ml/100 g/min) and HC (45.8 ±
10.5 ml/100 g/min). Neither educational levels, reported VAS, BDI,
PCS, nor STAI scores significantly correlated with global grey matter
CBF values (Educational, P = 0.809; VAS, P = 0.573; BDI, P = 0.203;
PCS, P = 0.449; State anxiety, P = 0.987; Trait anxiety, P = 0.639; con-
trolled for age and sex). Trait anxiety and pain catastrophizing scores
were found to significantly correlate with reported VAS (Trait anxiety
– R = 0.643, P b 0.001; PCS – R = 0.564, P = 0.003) whilst Rasch con-
verted BDI and state anxiety scores did not (BDI - R = 0.116, P =
0.573; State anxiety – R = 0.333, P = 0.104).

3.2. Association of local CBF with ongoing pain intensity in OA patients

Using voxel-wise correlation analysis greymatter CBFwas positively
correlated with reported VAS scores in few areas previously reported to
be active during experimentally induced nociception (Wager et al.,
2013), mainly the anterior mid-cingulate (aMCC). Importantly, we
found additional positive covariance of CBFwith VAS scores in emotion-
al, fear and limbic areas, predominantly in the subgenual ACC (sgACC),
bilateral hippocampi, left putamen and the bilateral amygdala (Fig. 1,
Table 2). Illustrative scatter plots of this VAS × rCBF relationship are re-
ported in Fig. 2.

As positive correlations were mainly lateralised in the left hemi-
sphere, a Kruskal-Wallis t-test was used to investigate a potential bias
from different pain intensity scores between subjects with left knee
pain (n = 12) and those with right knee pain (n = 14). VAS scores
were shown to not differ according to the laterality of knee pain (P =
0.411; controlled for age and sex). Whole-brain comparisons of left-
and right-lateralised knee OA patients were also non-significant when
corrected for multiple-comparisons (FWE, P N 0.05).

Re-running the main correlation analysis using data that had been
flipped in the x-axis (only data from participants with OA in the left
knee were flipped) to investigate if any regions displayed clear
lateralisation. The results were centred on the midline with clusters
once again found in the mACC, sgACC, left hippocampus and the right
hippocampal/amygdala complex (FWE, P b 0.05). Two small clusters
remained around the left putamen but there were no longer significant
results within the left insula (Supplementary Fig. 2).

Due to PCS and trait anxiety scores displaying significant correlation
with reported pain scores, we repeated the whole-brain correlation
analysis whilst additionally controlling for trait anxiety and PCS scores
(n = 25, as one subject was missing questionnaire data) to assess for
putative confounding or mediating covariance with CBF. Controlling
for trait anxiety resulted in markedly reduced associations, with only
2 clusters in the aMCC remaining significant (Fig. 1c, Table 3).
Regressing out PCS scores, however, retained the correlations within
the bilateral amygdala, left hippocampus, left putamen, left operculum
and the aMCC, whilst correlations in the sgACC became non-significant.
Additional clusters were also revealed in the posterior cingulate gyrus,
right central operculum and the right putamen (Fig. 1b, Table 3).

3.2.1. Interrelations with psychometrics of negative affect
To further characterise possible interrelations or putative mediation

of CBF-VAS associations with negative affect, we performed post hoc
tests on limbic regions where CBF was shown to significantly covary
with VAS. As summarised previously, only PCS and trait anxiety were
found to be significantly associated with severity of reported ongoing
pain. No significant interrelations between CBF andpsychometric scores
were shown, with borderline associations noted between PCS and
sgACC CBF (P b 0.1) and between BDI and bilateral amygdala CBF
(P b 01, Table 4). Hence, PCS was further assessed for mediation effect,
which was non-significant (95% confidence interval lower limit
−0.0596, upper limit 0.1946).

3.3. Group-wise whole-brain CBF comparison

Local CBF was not found to be significantly different in patients and
controls (FWE, P N 0.05). There was also no difference after controlling
for those psychometric scores showing between group significant dif-
ferences (BDI, and trait anxiety scores). Single-group visualisations of
CBF are provided in the Supplementary materials (Supp. Fig. 1).

4. Discussion

We studied the neural correlates of ongoing pain intensity in persis-
tent knee OA pain using whole-brain CBF mapping, and present evi-
dence for limbic, paralimbic and subcortical networks underpinning
chronic pain perception in line with a strong affective, largely aversive
dimension of the clinical pain experience.We also show that covariation
of CBF and VAS in OA pain in the limbic and paralimbic regions was
strongly modulated by trait anxiety.

We found that perceived intensity of OApain in subjectswith chron-
ic painful knee OA was associated with a pattern of increased CBF in-
volving nociceptive (anterior MCC, aMCC), (para-)limbic (bilateral
amygdala, subgenual ACC, and hippocampus) networks and subcortical
regions (the left putamen and brainstem). The aMCC has been consis-
tently reported to underpin perceived pain intensity in both clinical
OA patients and across previous studies in healthy controls (Boly et
al., 2007; Christmann et al., 2007; Coghill et al., 1999; Favilla et al.,
2014; Peyron et al., 2007; Straube et al., 2009). Animal research has
shown that this cingulate sub-region contains a large cluster of nocicep-
tive neurons (Lenz et al., 1998; Sikes and Vogt, 1992; Vogt, 2005). The
aMCC was also the only region significantly covarying with perceived
pain intensity after control of either trait anxiety or pain
catastrophizing. This is in good agreement with the aMCC's reported
role in pain processing, its consistent activation in nociceptive neuroim-
aging studies in control and clinical cohorts (Apkarian et al., 2005;
Peyron et al., 2000; Tanasescu et al., 2016), and the proposition that it
forms part of the neural signature of pain (Wager et al., 2013). This



Fig. 1.Brain regionswhere CBF correlates positively (FWE P b 0.05)with reportedVAS scores after a) correcting for age, sex, andmean CBF and additionally for b) pain catastrophizing or c)
trait anxiety scores. All images are shown in radiological format (right hemisphere is displayed on the left of the figure).
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correlation also links to parallel work from our group finding a negative
relationship between reported OA pain intensity and GABA levels in the
aMCC, potentially alluding to the molecular mechanisms underlying
chronic pain in this cohort (Reckziegel et al., 2016). Our partial correla-
tion maps controlling for trait anxiety and trait catastrophizing show
that the aMCC pain association is independent of negative affective
trait and thus provide further support for the notion of a mainly noci-
ceptive role of the aMCC activation in both experimental and clinical
pain.

Apart from the common pain encoding role of the aMCC, therewas a
double dissociation between pain intensity encoding areas in patients
and that reported previously in healthy controls. We did not find an as-
sociation between activity in S1, S2, thalamus and bilateral anterior
Table 2
Areas with significant associations between CBF and reported ongoing OA pain intensity.

Anatomical regions Cluster extent X Y Z T-score

Positive correlations
L. Central Operculum 2983 −42 0 12 5.05
L. Putamen −24 4 8 4.5
L. Brain Stem −4 −34 −4 4.76
L. Posterior Thalamus −10 −32 6 4.24
L. Hippocampus −28 −24 −12 4.08
R. Hippocampus 28 −26 −10 3.77
L. Mid-Insula −40 −2 2 3.43
L. Amygdala −22 −6 −12 3.62
R. Amygdala 18 −10 −14 3.24
aMCC 253 2 2 34 5.49
R. Subgenual ACC 79 4 26 −6 5.04
L. Subgenual ACC −2 26 −6 4.22
R. TOF 68 38 −40 −12 3.73

All results at FWE corrected P b 0.05, reported in MNI152 standard space.
L. – Left, R. – Right, aMCC – Anterior Mid-Cingulate Cortex, TOF – Temporal Occipital
Fusiform.
insula, brain regions that were previously reported to show covariance
of perceived pain intensity and neural activity in experimental pain
(Baliki et al., 2006; Boly et al., 2007; Christmann et al., 2007; Coghill et
al., 1999; Moulton et al., 2012; Peyron et al., 2007; Roy et al., 2009;
Straube et al., 2009; Favilla et al., 2014). Stimulus intensity as opposed
to perceived pain intensity also correlated positively with activity in
the bilateral insula and thalami in addition to S2 and aMCC (Atlas et
al., 2014; Bornhovd et al., 2002; Lin et al., 2013; Oertel et al., 2012).
Very few experimental nociceptive studies identified activity changes
in the hippocampus or amygdala, but, those that do report amygdala ac-
tivity give conflicting results (Atlas et al., 2014; Oertel et al., 2012;
Peyron et al., 2007). No study reported activity in the sgACC in regards
to pain- or stimulus-related intensity processing. Most of these investi-
gations used BOLD fMRI (one used H2

15O PET) as opposed to ASL which
might have contributed to the observed differences. Nevertheless ASL
measures CBF thus probing the same neurovascular coupling as BOLD,
and is based on a direct physiological meaningful metric, identical to
H2
15O PET, supporting that the differences are due to chronic pain.
Whole-brain CBF covariance mapping revealed a unique subset of

activity linked with reported ongoing pain intensity in the sgACC, bilat-
eral hippocampi, left putamen and amygdala in chronic knee OA pain
patients. None of these regions were noted to consistently encode
pain intensity in healthy control studies (Apkarian et al., 2005;
Duerden and Albanese, 2013). The reported covariation within the
sgACC is intriguing as this region has not only been reported in other
studies of ongoing pain in OA and chronic back pain (Baliki et al.,
2008; Howard et al., 2012; Kulkarni et al., 2007; Parks et al., 2011),
but is known to play a key role in affective disorders, with atrophy
and functional hyperactivity reported in depressed individuals when
compared to healthy subjects (Niida et al., 2014; Rodriguez-Cano et
al., 2014; Connolly et al., 2013; de Kwaasteniet et al., 2013). By
regressing out putative confounding effects from negative affect, we



Fig. 2. Scatter plots displaying partial correlations of reported pain intensity (VAS) and cerebral blood flow in healthy controls (HC; red) and chronic OA pain patients (OA; blue) in the left
amygdala, hippocampus and the anterior mid-cingulate cortex (aMCC) controlled for age, sex and mean grey matter CBF.
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found that covariation of the clinical pain experience with sgACC CBF is
explained by either pain catastrophizing or trait anxiety. Furthermore,
sgACC CBF showed a borderline association with pain catastrophizing
that was moderately correlated with VAS. However, post hoc analysis
did not support a mediation effect.

In this study we found that bilateral hippocampal CBF significantly
covariedwith reported pain intensity. The left hippocampal CBF-VAS as-
sociation was independent of catastrophizing whilst the right hippo-
campus became non-significant when controlling for catastrophizing
scores. The hippocampus is a region typically known for the role it
plays in memory and the limbic system, but it has also been observed
to develop significant molecular changes such as decreased plasticity
and neurogenesis in animal models of chronic neuropathic pain
(Terada et al., 2008; Mutso et al., 2012). Human imaging studies have
also reported increased hippocampal activity during ongoing OA pain
(Howard et al., 2012; Parks et al., 2011) and in chronic back pain pa-
tients when compared with controls (Mutso et al., 2014). These results
show that the hippocampus is involved in chronic pain and whilst the
current study relates it to ongoing pain, previous studies of chronic
pain have displayed evidence of hippocampal plasticity such as connec-
tivity changes during the transition from subacute to persistent back
pain (Mutso et al., 2014) and increased grey matter after an 11-week
cognitive behavioural therapy intervention (Seminowicz et al., 2013).

Chronic pain has longbeen linked to increased distress and emotion-
al aversiveness and the amygdala has been noted as an important region
involved in the interaction between nociception and emotion
(Neugebauer et al., 2004). Pre-clinical studies have, for example,
shown evidence that lesioning of the amygdala in a neuropathic pain
model “significantly inhibited the persistence of pain” (Li et al., 2013),
and that application of CRF to the amygdala can trigger pain-related be-
haviour in the absence of any pain-related pathology or disease (Ji et al.,
Table 3
Areas with significant associations between CBF and reported ongoing OA pain intensity
additionally controlled for pain catastrophizing and trait-anxiety scores.

Anatomical regions Cluster extent X Y Z T-score

VAS × CBF controlled for STAI-T
aMCC 11 −4 6 32 5.84
aMCC 2 −4 6 44 5.84

VAS × CBF controlled for PCS
L. Putamen 1261 −30 −6 −4 6.63
L. Amygdala −24 −6 −14 4.72
L. Hippocampus −22 −16 −16 3.82
L. Central Operculum −42 −2 12 3.99
L. Insular Cortex −40 −4 4 3.93
aMCC 331 −2 8 38 7.4
R. Putamen 195 32 −6 −2 4.87
R. Amygdala 26 −6 −14 3.70
Brain Stem 100 0 −20 −22 4.14
PCC 19 −2 −20 46 4.83
R. Anterior Insular Cortex 17 28 14 −14 4.38
R. Central Operculum 6 44 −2 10 3.91

All results at FWE corrected P b 0.05, reported in MNI152 standard space. L. – Left, R. –
Right, aMCC – Anterior Mid-Cingulate Cortex, S2 – Secondary Somatosensory Cortex,
PCC – Posterior Cingulate Cortex, STAI-T – Trait Anxiety, PCS – Pain Catastrophizing Scale.
2013). Human neuroimaging studies also provide evidence that the
amygdala is involved in the perception of chronic pain (Neugebauer et
al., 2004; Hashmi et al., 2013; Liu et al., 2013). The covariance of both
the amygdala and sgACC is furthermore in line with known functional
and structural connectedness (Kellermann et al., 2013; Robinson et al.,
2010; Simons et al., 2014), and concords with observations of increased
metabolismwithin the left amygdala and sgACC in OA patients compar-
ing highwith low pain states orwith pain free control subjects (Howard
et al., 2012; Kulkarni et al., 2007; Parks et al., 2011). Importantly, a lon-
gitudinal fMRI study of back pain subjects demonstrated a shift of pain
processing away from classical nociceptive areas towards emotion-re-
lated circuitry including the amygdala in patients who progressed
from acute to persistent back pain (Hashmi et al., 2013). Our finding
of pain intensity encoding for chronic pain in the amygdala is thus con-
sistent with common reporting in chronic pain cohorts and develop-
ment over pain chronification, and strengthens the notion of
amygdala dysfunction as a mechanism contributing to persistent clini-
cal pain (Hashmi et al., 2013; Howard et al., 2012; Kulkarni et al.,
2007; Liu et al., 2013; Parks et al., 2011). Putaminal activation has previ-
ously been reported in ASL studies of post-surgical tooth pain, fibromy-
algia, postherpetic neuralgia and subcutaneous evoked pain (Howard et
al., 2011; Liu et al., 2013; Owen et al., 2012; Shokouhi et al., 2015). There
is some suggestion of enlarged putaminal volumes in chronic pain co-
horts (DeSouza et al., 2013; Schmidt-Wilcke et al., 2006) and the puta-
men is structurally connectedwith a network of nociceptive, attentional
and sensory-motor regions supporting a role of the putamen in the per-
ception of pain (Starr et al., 2011). Interestingly, a previous study of
catastrophizing in fibromyalgia patients reported greater putaminal
and ACC activity in high catastrophizers (compared with low
catastrophizers) whilst we find increased correlation in these regions
even when controlling for PCS (Gracely et al., 2004). A plausible role
of the putamen reported herewith the amygdala-hippocampal complex
and sgACC is in the learning and memory of past aversive pain experi-
ences (Gramsch et al., 2014; Kattoor et al., 2013; Vogt, 2005). A putative
link to acquired, learnt pain sensitivity would also be in line with the
noted independence of the putaminal pain encoding from negative af-
fective scores. Thus, the observed putaminal activation in ongoing clin-
ical painmight be attributed to a conditioned aversive learned response
to the subjective, and repeated, experience of chronic pain.

There is strong evidence reporting a relationship between chronic
pain and anxiety. In line with previous findings, we found higher levels
of trait anxiety in patients with chronic OA pain, and that anxiety scores
were positively relatedwith reported pain intensity (Axford et al., 2010;
Marks, 2009). Trait anxiety scores were also correlated with pain
catastrophizing scores. Importantly, trait anxiety scores accounted for
most of the observed CBF-pain intensity correlations except within the
aMCC suggesting that the involvement of the limbic-affective circuits
in perceived clinical pain intensity is largely driven by negative affect
and specifically anxiety. To our knowledge, previous ASL and fMRI stud-
ies in chronic pain patients did not control for trait anxiety. It is note-
worthy that also the amygdala activation- pain relationship was also
lost when covarying for trait anxiety, but not when controlling for
pain catastrophizing. This suggests that the amygdala activation



Table 4
Bivariate Pearson correlation scores between psychometric scores and CBF in regions of interest.

BDI PCS aMCC sgACC L. Amyg R. Amyg L. Hipp R. Hipp

Trait 0.359 (0.078) 0.649 (0.000) 0.171 (0.415) 0.120 (0.568) 0.169 (0.419) 0.225 (0.281) 0.169 (0.420) 0.083 (0.693)
BDI 0.359 (0.078) 0.234 (0.250) 0.293 (0.147) 0.336 (0.093) 0.335 (0.095) 0.327 (0.103) 0.312 (0.120)
PCS 0.239 (0.250) 0.390 (0.054) 0.073 (0.729) 0.245 (0.239) 0.317 (0.123) 0.298 (0.148)

All values are reported r-correlation values (P-value) frombetween variables carried out in SPSS 22. Abbreviations: L – Left, R –Right, Trait – STAI Trait anxiety score, BDI –Rasch-converted
BDI-II scores, PCS – Pain Catastrophizing Scale, sgACC – subgenual Anterior Cingulate Cortex, Amyg – Amygdala, Hipp - Hippocampus.
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underpinning the severity of the clinical pain experiencemay reflect the
predisposition to heightened anxiety. Whilst we did not find a media-
tion effect, the modulatory role of trait anxiety on amygdala's function
in pain encoding could explain the inconsistent reports of amygdala ac-
tivation in pain studies, and aligns well with the threat detection func-
tion of the amygdala. Moreover, the prominent role of trait anxiety for
the neural underpinning of clinical pain convergeswith novel treatment
concepts. Anxiety relieving interventions such as mindfulness-based
training or prescription of duloxetine (mixed anxiolytic antidepressant
profile) have been shown to reduce levels of chronic pain (Chappell et
al., 2009; Pergolizzi et al., 2013; Rod, 2015).

Contradictory to previous studies of OA subjects, we found no signif-
icant differences in neural activity at rest between patients and controls
even in the presence of ongoingmild pain (Gwilym et al., 2009; Howard
et al., 2012). Results of no difference have also been reported in OA pa-
tients undergoing noxious stimulation and fibromyalgia patients at rest
when compared to healthy controls (Kulkarni et al., 2007; Shokouhi et
al., 2015; Parks et al., 2011). A potential explanation is that none of
the regions we identified are specific to pain and as such, may serve
multiple other functions (such as arousal, pain-unrelated discomfort)
in the healthy subjects at the time of scanning which may have con-
founded our comparison. Additionally, the lack of independent associa-
tion between limbic CBF and pain scores when accounting for trait
anxiety, suggests that previous group differences might have been con-
tributed to by an even greater group difference in negative affect than
seen in our cohort. Moreover, our study is likely to have relatively low
sensitivity to detect group differences in CBF as our cohort reported
only mild-moderate ongoing pain levels and mild levels of anxiety and
were well prepared to reduce inconvenience for the scanning sessions
thus reducing potential differences compared to a control group. This
does however not invalidate the findings from themore powerful with-
in-group correlation analysis.

In this study, we combined an optimisedMRI technique in a reason-
ably large, psychometrically well characterised patient sample with a
novel voxel-based pain perception driven analysis to establish brain re-
gions directly related to the perceived intensity of ongoing pain and for
the first time investigated their interdependence from negative affec-
tive scores. ASL imaging affords several advantages in this regard over
the blood-oxygen-level dependent (BOLD) fMRI by providing absolute
measures of CBF (ml/100 g/min) as opposed to relative and physiologi-
cally compounded indices of blood oxygenation. ASL imaging displays
enhanced sensitivity to tonic stimuli in comparison to BOLD which is
ideal to investigate chronic pain states such as OA due to the tonic na-
ture of chronic pain. This paradigm also minimises attentional con-
founds compared to fMRI studies looking at spontaneously fluctuating
pain intensity that require continuous recording of pain ratings during
the scan period.

The study had a number of limitations. In order to overcome the low
signal-to-noise ratio, (SNR) inherent with ASL imaging, a 3D pCASL se-
quence with background suppression which has been shown to mark-
edly improve the SNR (Dai et al., 2008) was used that is however
sensitive to motion artefacts and did not allow to record pain scores
concurrently. Secondly, the study is limited by its cross-sectional design
thus only allowing observational findings. Thirdly, VAS scoreswere only
recorded prior to the scan and no recordingswere taken after to confirm
that pain persisted during the scan. Lastly, without a larger sample size,
the secondary tests assessing the effect of PCS and STAI scores on the
VAS × CBF correlation are to be considered preliminary but warrant fur-
ther research and replication.

5. Conclusion

We found that ongoing pain in chronic knee OA is characterised by
increased brain activity in limbic-affective regions thus providing
novel evidence for a strong emotional component of arthritis pain.
This is further supported by the finding that limbic CBF-pain associa-
tions were largely accounted for by trait anxiety and, to a lesser degree,
by pain catastrophizing. Taken together, in chronic OA pain, we demon-
strate that only aMCC encodes pain intensity independently from nega-
tive affect whilst the involvement of emotional circuits is driven by trait
anxiety.
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