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Abstract

We present high resolution Brillouin scattering measurements on cubic GaN layers grown on

GaAs substrate. By using a suitable scattering geometry, scattering by surface acoustic waves was

recorded for different azimuthal angles and the surface acoustic wave velocities were determined.

The comparison of the experimental results with numerical simulations of the azimuthal dependence

of the surface wave velocity shows good agreement and allowed us to determine a consistent set of

elastic constants for c-GaN.
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In recent years, the development of solid-state light-emitter technology has attracted

much research effort into the group III nitrides. The InGaN-GaN material system has pro-

duced efficient light emitting diodes in the yellow, green and blue regions and form the basis

of current solid-state lighting technology for white lighting applications.1 On the other hand,

the unique properties of GaN (wide bandgap, high breakdown electric field, high electron

mobility) make this material a promising candidate for the next generation of microwave

power electronics2 and high temperature, high frequency devices.3 The group III nitrides

normally crystallize in the stable, hexagonal, wurtzite structure. For conventional growth

of quantum wells along the polar c axis, strong built-in electric fields caused by gradients

of spontaneous and piezoelectric polarization develop which cause the charge separation of

electron-hole pairs (quantum Stark effect). This results in the redshift of the emission wave-

length and in a reduced emission efficiency.1,4 Growth on non-polar or semi-polar faces of

hexagonal GaN is being explored to overcome this problem.4,5 An alternative route consists

in using the metastable zinc-blende polytype of GaN which is free of built-in electric fields

in the typical (100) growth direction.6,7

The growth of non-polar (100) oriented cubic (zincblende) GaN layers can be achieved by

molecular beam epitaxy (MBE) on (100) cubic substrates under specific growth conditions.8

Despite the increasing technological interest in zincblende GaN, this polytype has received

so far much less attention than its wurtzite counterpart and their physical properties are

not well known yet. Only recently a comprehensive study of the optical properties of cubic

GaN in the near-band-gap excitonic region has been published.9 More recently, the an-

harmonic phonon decay in c-GaN has been investigated by means of Raman scattering.10

Whereas Brillouin scattering measurements providing a reliable experimental determina-

ton of the elastics constants were reported in wurtzite GaN,11,12 the present knowledge of

the elastic constants of cubic GaN comes mainly from molecular-dynamics and density-

functional-theory calculations.13–18 To our knowledge, only one of the three independent

elastic constants of c-GaN has been experimentally determined by means of picosecond

acoustic experiments.19

In this Letter, we present a high resolution Brillouin scattering (HRBS) study of the elas-

tic constants of cubic GaN. Our measurements were performed on a high-quality zincblende

GaN layer grown on a semi-insulating (100) GaAs substrate by plasma-assisted molecular

beam epitaxy (PA-MBE) in a MOD-GENII system using As2 as a surfactant to initiate the
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FIG. 1: Raman spectrum in z(xy)z̄ backscattering configuration of the cubic GaN layer studied.

Inset, Raman spectrum of a different cubic layer with higher hexagonal phase content.

growth of the cubic phase material. Details of the growth procedure are given elsewhere.8

Raman scattering measurements were used to assess the cubic phase purity of the sample.

The Raman spectra were excited with the 532 nm line of a diode-pumped Nd:YAG solid-

state laser and were analyzed using a Jobin-Yvon T64000 spectrometer. The thickness of

the layer was determined to be h = 515 ± 16 nm by means of spectroscopic ellipsometry

using a SOPRA GES5E system and the Winelli II software. The Brillouin measurements

were carried out using a 2060 Beamlock Spectra Physics Ar+ laser fitted with an intracav-

ity temperature-stabilized, single-mode and single-frequency z-lok etalon (λ0 = 514.5 nm)

as a light source. The scattered light was analyzed using a Sandercock-type 3 + 3 tandem

Fabry-Pérot interferometer.20 A more detailed description of the experimental set-up is given

elsewhere.21 Typical values for finesse and constrast were 150 and 109, respectively.

To assess the crystalline quality and phase purity of the studied cubic GaN layer, pre-

liminary Raman scattering measurements were performed. Figure 1 displays the Raman

spectrum in z(xy)z̄ backscattering configuration of the cubic GaN layer used in this study.

The spectrum is dominated by the symmetry allowed LO mode at 737 cm−1. The mea-

sured full width at half maximum of the LO peak (9.9 cm−1) compares well with cubic GaN

Raman spectra published in the literature.10,22 The low-frequency shoulder observed at 714

cm−1 was assigned to a second-order TA(L)+TO(L) combination mode.10 The weaker peak
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FIG. 2: Schematic representation of the surface Brillouin scattering geometry used in the mea-

surements. The incident light of wave vector ki is at an angle α (saggital angle) from the surface

normal. The backscattered light is collected at 180◦ with wave vector ks. The light is polarized

in the scattering plane and the scattered phonon wave vector is qSAW. The scattering plane is

rotated about the 〈010〉 axis by an angle φ (azimuthal angle). Inset, a view of the cubic GaN

sample mounted on the sample holder.

observed at 543 cm−1 corresponds to the TO mode of the cubic GaN. Although this mode

is forbidden in backscattering from {100} faces, it is detected in the Raman spectra due to

the forward scattering contribution of the light reflected at the interface between the trans-

parent layer and the substrate.10,23,24 No signal from the Ehigh
2 mode of the wurtzite GaN

can be observed in the spectra. Given the sizable intensity of the Ehigh
2 peak characteristic

of the hexagonal phase, its absence in the Raman spectrum indicates the high phase purity

of the cubic GaN layer used in this study. For comparison, in the inset of Fig. 1 we display

a Raman spectrum of a cubic GaN layer which contains also some hexagonal phase. In this

sample, the emergence of a distinct, weak peak at 568 cm−1 corresponding to the Ehigh
2 mode

of the wurtzite GaN can be clearly observed. These spectra demonstrate the high sensitivity

of Raman scattering for characterizing the phase purity of cubic GaN layers.

To obtain information about the elastic constants of cubic GaN, the surface acoustic wave

velocity (vSAW) was determined from HRBS measurements. Even though Brillouin scattering

in transparent materials is dominated by the elasto-optic scattering by bulk modes, the

observation of excitations localized near the surface (i.e. Raighley surface waves) is possible
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FIG. 3: HRSBS spectrum of the cubic GaN sample for α = 70◦ in the [101] direction. Lorentzian

line shapes have been fitted to the Rayleigh peaks to accurately obtain the spectral frequency shift

of the light corresponding to scattering with the surface acoustic phonon mode.

in transparent films deposited on an opaque substrate.25 In order to couple the incident

light beam to the surface phonons, the incident beam was polarized in the scattering plane.

The backscattered light was collected at 180◦ according to the scattering geometry shown in

Fig. 2. In this backscattering geometry the SAW wave vector qSAW is parallel to the sample

surface and its magnitude is given by qSAW = 4π sinα/λ0, where λ0 is the laser wavelength

in vacuum and α is the sagittal angle. The SAW propagation velocity can then be obtained

from the surface phonon frequency νSAW as

vSAW =
νSAWλ0

2 sinα
. (1)

The scattering angle used in the measurements (α = 70◦) provides a qSAWh value of 11.8,

which is high enough for the Rayleigh modes to be in the asymptotic region where the influ-

ence of the substrate is negligible.26 Figure 3 displays a typical HRSBS spectrum obtained

for α = 70◦ and φ = 45◦ from the cubic GaN layer. A Lorentzian line-shape fit to the

Rayleigh peak yields an accurate value of the SAW propagation velocity via Eq. (1).

Crystals with cubic symmetry exhibit four-fold symmetry in the vSAW values within the

(010) plane. By rotating the sample about the surface normal, the azimuthal angle can be

varied and thus the direction of scattering wave vector qSAW can be selected within the (010)

plane. For the HRSBS experiments, the sample was placed on a sample holder that was

attached to a goniometer, so that it was possible to accurately fix the sagittal angle α and
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rotate the sample about the surface normal to change the azimuthal angle φ, as can be seen

in Fig. 2. In this way, the SAW propagation velocity in different crystallographic directions

within the sample plane can be experimentally probed by HRSBS measurements.

Since the SAW propagation velocity is determined by the elastic constants of the material,

we can extract information about the three independent elastic constants of the cubic layer

from our HRSBS measurements.

For a crystal with cubic symmetry, the Rayleigh SAW velocities in the [100] and [101]

directions are determined, respectively, by the secular equations27,28

ρv2SAW −

(

c11
c44

×
c44 − ρv2SAW
c11 − ρv2SAW

)
1

2

(

c11 −
c212
c11

− ρv2SAW

)

= 0 (2)

and

ρv2SAW −







c11
c44

×
c44 − ρv2SAW

1

2
(c11 + c12 + 2c44)− ρv2SAW







1

2

(

1

2
(c11 + c12 + 2c44)−

c212
c11

− ρv2SAW

)

= 0.

(3)

Here ρ = 6.103 g cm−3 is the mass density of cubic GaN estimated from the lattice param-

eter given in Ref. 29 and c11, c12, and c44 are the three independent elastic constants of

cubic GaN. From the HRSBS measurements we have determined v
[100]
SAW = 3866.9 m s−1 and

v
[101]
SAW = 4220.4 m s−1. Then, Eqs. (2) and (3) constitute an undetermined system of two

equations with three unknowns. To reduce the number of unknowns and render the sys-

tem determinate, we consider the longitudinal sound velocity and the corresponding elastic

constant c11 experimentally measured in cubic GaN by picosecond acoustic measurements

at 4.7 K.19 The sound velocity measured in wurtzite-type GaN was found to be indepen-

dent of temperature within experimental error,19 so it is reasonable to consider the c11 value

of 285 GPa determined at low temperature in our room temperature analysis. By solving

Eqs. (2) and (3) with ρ = 6.103 g cm−3 and c11 = 285 GPa as input parameters, we can

determine the elastic constants c12 and c44 from the measured SAW velocities. In Table I,

the values we obtain are compared with theoretical values derived from a number of com-

putational approaches such as density functional theory, molecular dynamics, and Keating

model available in the literature.

Although the different calculational approaches yield a certain dispersion in the elastic

constant values, it is worth noticing that the set of cij values determined from experimental
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TABLE I: Elastic constants for c-GaN as determined in this work from HRBS measurements of

the SAW compared with values predicted by theoretical calculations.

c11 (GPa) c12 (GPa) c44 (GPa) Ref.

285 ± 8a 149± 9b 157.7 ± 0.6b

264 153 68 13

296 154 206 14

293 159 155 15

274.2 166.1 199 16

295 155.1 189.4 17

255 133 177 18

305 128 147 30

325 142 147 31

a Experimental value taken from Ref. 19

b This work: experimental values derived from HRBS measurements.

measurements of the Rayleigh SAW velocities in the present work are consistent with the

predicted values and display relative deviations less than 2% in relation to the averaged

theoretical values given in Table I.

In order to check the validity of the obtained results, the set of elastic constants have

been used to simulate the scattered light intensity using the Green’s function formalism

introduced by Zhang et al.32 The dependence of the SAW velocity on the azimuthal angle

for the c-GaN/GaAs sample studied is plotted in Fig. 4. An excellent agreement is found

between the calculated azimuthal dependence and the SAW velocity measured by HRBS

experiments along different directions, which confirms the consistency of the set of elastic

constants determined in this work.

In summary, we have carried out HRBS measurements to determine the SAW velocity

in a (010)-oriented c-GaN layer for the [100] and [101] propagation directions. From the

analysis of the Rayleigh SAW peak frequency a consistent set of elastic constants c11, c12

and c44 has been experimentally determined for the first time in c-GaN. The obtained values

agree well with the mean values of the theoretical predictions found in the literature. The
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FIG. 4: Simulation of the azimuthal angle dependence of the SAW velocity for the c-GaN layer on

GaAs using the set of elastic constants determined in this work (see Table I). The circles represent

SAW velocities at different azimuthal angles determined by HRBS measurements.

azimuthal dependence of the SAW velocity found in the HRBS experiments can be accurately

simulated using the obtained set of elastic constants.
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24 R. Cuscó, N. Domènech-Amador, T. Hatakeyama, T. Yamaguchi, T. Honda, and L. Artús, J.
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