
Learning based super-resolution land cover mapping 

Feng Ling, Yihang Zhang, Giles M. Foody IEEE Fellow, Xiaodong Li,  

Xiuhua Zhang, Shiming Fang, Wenbo Li, Yun Du 

 

This work was supported in part by the National Basic Research Program (973 Program) of China under Grant 

No. 2013cb733205, and in part by Natural Science Foundation of Hubei Province for Distinguished Young 

Scholars under Grant No. 2013CFA031.  

F. Ling, Y. Zhang, X. Li, and Y. Du are with the Key Laboratory of Monitoring and Estimate for Environment 

and Disaster of Hubei Province, Institute of Geodesy and Geophysics, Chinese Academy of Sciences, Wuhan 

430077, China (e-mail: lingf@whigg.ac.cn). 

G. M. Foody is with the School of Geography, University of Nottingham, University Park, Nottingham NG7 

2RD, UK 

X. Zhang is with the Wuhan Institute of Technology, Wuhan 430205, China 

S. Fang is with the School of Public Administration, China University of Geosciences, Wuhan 430074, China.  

W. Li is with the Hefei Institute of Technology Innovation, Chinese Academy of Sciences, Hefei, 230088, China. 

*
Corresponding author: lingf@whigg.ac.cn  

mailto:lingf@whigg.ac.cn
mailto:lingf@whigg.ac.cn


Abstract: Super-resolution mapping (SRM) is a technique for generating a fine spatial resolution land cover 

map from coarse spatial resolution fraction images estimated by soft classification. The prior model used to 

describe the fine spatial resolution land cover pattern is a key issue in SRM. Here, a novel learning based SRM 

algorithm, whose prior model is learned from other available fine spatial resolution land cover maps, is proposed. 

The approach is based on the assumption that the spatial arrangement of the land cover components for mixed 

pixel patches with similar fractions is often similar. The proposed SRM algorithm produces a learning database 

that includes a large number of patch pairs for which there is a fine and coarse spatial resolution representation 

for the same area. From the learning database, patch pairs that have similar coarse spatial resolution patches as 

those in input fraction images are selected. Fine spatial resolution patches in these selected patch pairs are then 

used to estimate the latent fine spatial resolution land cover map, by solving an optimization problem. The 

approach is illustrated by comparison against state-of-the-art SRM methods using land cover map subsets 

generated from the USA’s National Land Cover Database. Results show that the proposed SRM algorithm better 

maintains the spatial pattern of land covers for a range of different landscapes. The proposed SRM algorithm has 

the highest overall accuracy and Kappa values in all these SRM algorithms, by using the entire maps in the 

accuracy assessment. 

Index Terms：Super-resolution mapping; Learning database; Patch pairs; Neighboring patches 



I. Introduction 

Super-resolution mapping (SRM), which is also referred to sub-pixel mapping, is a method to generate fine 

spatial resolution land cover maps from coarse spatial resolution remote sensing images. SRM can be viewed as 

the post-processing of soft classification to further address the mixed pixel problem that is common in coarse 

spatial resolution images [1, 2]. In general, soft classification estimates the fraction images that illustrate the area 

percentage cover of land cover classes within coarse spatial resolution mixed pixels. The fraction images may be 

input to a SRM analysis to predict the spatial locations of the land cover class at a fine spatial resolution. The 

output of the SRM analysis is a hard classification land cover map, which has a finer spatial resolution than that 

of input fraction images. At present, SRM has become a promising method to reduce the mixed pixel problem 

that is widely encountered with coarse spatial resolution images, and has been successfully used in many 

applications, such as mapping waterlines [3-5], lakes [6], urban buildings [7], urban trees [8], forests [9], as well 

as in ground control point refinement [10] and the calculation of landscape pattern indices [11]. 

A large number of SRM algorithms have been proposed [12-27]. Generally, SRM is an ill-posed problem 

[28], and the prior information about the spatial pattern of different land cover classes at the fine spatial 

resolution scale needs be known before SRM is performed. Therefore, in order to estimate the latent fine spatial 

resolution land cover map from input coarse spatial resolution fraction images, one of the key issues is the 

definition of the prior model. The latter has been described from different perspectives. In the simplest case, 

when only the coarse spatial resolution fraction images are available, the prior model is often based on the spatial 

dependence principle, which aims to make the fine spatial resolution land cover map have the maximal spatial 

dependence [1]. In practice, the spatial dependence of a certain fine spatial resolution pixel can be calculated by 

comparing it with its neighboring fine spatial resolution pixels [14], fractions of its neighboring coarse spatial 

resolution pixels [29], or both of them [30]. Moreover, anisotropic land cover dependences have also been 



proposed to describe the spatial land cover pattern more precisely [31], especially for some special land cover 

classes [7, 32]. The spatial dependence model is a popular model for use in SRM due to its simplicity and 

absence of requirements for additional information about the spatial pattern of the land cover. However, the 

model can be inappropriate for areas with complex land cover patterns. The use of the wrong prior model in a 

SRM analysis can result in an inappropriate and inaccurate land cover representation, possibly even worse than 

that of a standard hard classification of the coarse resolution image in some cases [6, 33]. 

A promising approach to improve the effectiveness of the prior model is through the incorporation of 

additional information on the land cover to inform the SRM analysis. Various approaches have been used. An 

intuitive additional dataset to use in a SRM analysis is another kind of fine spatial resolution images, such as a 

panchromatic band image [34-37] or a fine spatial resolution synthetic aperture radar (SAR) image [38]. Fine 

spatial resolution digital elevation model [4, 5] and light detection and ranging (LIDAR) data [39], and vector 

datasets [40] have also been successfully used to refine SRM analyses. Multiple sub-pixel shifted coarse spatial 

resolution images which are used as an alternation datasets to provide additional information about the spatial 

land cover pattern [41] for SRM, and this method has been further developed [6, 42-45]. A historical fine spatial 

resolution land cover map can also be used to help the SRM analysis [9, 46, 47]. Adding site-specific additional 

datasets can increase the accuracy of SRM, however, this kind of approach is often limited because the 

additional dataset should cover the same area, in its entirety, as the input fraction images, and this may often not 

be the case with the additional data only available for part of the region being mapped.  

In addition to the aforementioned approaches, the spatial land cover pattern can also be learned from the 

training image, which is often a fine spatial resolution land cover map that has a similar spatial land cover 

pattern to the objective fine spatial resolution land cover map. In this situation, SRM predicts the fine spatial 

resolution land cover map from input coarse spatial resolution fraction images with the aid of the prior model 



that is learned from these training fine spatial resolution land cover maps. One kind of learning based SRM 

algorithm uses a model to describe the fine spatial resolution land cover pattern, and the parameters of the prior 

model are learned from the training maps [48-50]. Central to this kind of approach is the selection of the prior 

model. Presently, a popular approach is to use a semi-variogram based approach in which the SRM aims to 

produce a fine spatial resolution land cover map that has the same spatial pattern as that represented by the 

semi-variogram fitted to the available fine spatial resolution land cover map. A critical drawback of this category 

of SRM algorithms is, however, that the geo-statistical methodologies are constructed based on the assumption 

of spatial stationary, and they are limited for complex land cover patterns which are often non-stationary.  

Another kind of learning based SRM algorithms directly learns the relationship between coarse spatial 

resolution fraction images and the fine spatial resolution land cover maps without a predefined model [51-54]. 

The basic assumption of this method is that the fine spatial resolution spatial land cover pattern is similar for a 

mixed pixel patch, which is basically a block of coarse resolution pixels, with similar land cover class fractional 

composition. Several algorithms have been proposed to learn the relationship, including the back-propagation 

(BP) neural networks [51-54], and the support vector regression algorithms [55]. The SRM algorithms belonging 

to this category often include two steps. In the first step, a fine spatial resolution image is estimated for each land 

cover class using the learned relationship. In the second step, fine spatial resolution pixel labels are assigned with 

the maximum a posteriori principle using all of these estimated fine spatial resolution images and input fraction 

images as constraints. This kind of learning based SRM algorithm are special cases of the interpolation-based 

SRM algorithm [56]; only the interpolation step is performed by the learning based methods. As a result, the 

limitation of the interpolation-based SRM algorithm, notably salt-and-pepper and linear artifacts, is unavoidable 

for this category of learning based SRM algorithm. 

In this paper, we propose a novel SRM algorithm, which is also based on the assumption that coarse spatial 



resolution mixed pixel patches with similar fractions have a similar fine spatial resolution land cover pattern. 

Different to other learning based SRM algorithms, the novelty of the proposed learning based SRM algorithm 

lies in the way the coarse spatial resolution and fine spatial resolution patches are used within the analysis. The 

proposed method does not need the additional label assignment step and patch outliers are effectively addressed 

during the analysis, avoiding commonly encountered error sources in other two-step learning based SRM 

algorithms. The remainder of this paper is organized as follows. Section II details the proposed learning based 

SRM algorithm. Section III validates the performance of the proposed algorithm through several experiments. 

Section IV discusses some issues about the proposed algorithm and Section V concludes this paper. 

II. Methods 

A. Problem description 

Suppose that the original coarse spatial resolution remotely sensed image has M N  pixels and the 

number of land cover classes in the whole image is C . It is assumed that the fraction images F  for all classes 

have been estimated by soft classification. The SRM analysis aims to generate a fine spatial resolution land 

cover map H  using F  as input. By setting the zoom factor to be z , each coarse spatial resolution pixel is 

divided into z z  fine spatial resolution pixels. All fine spatial resolution pixels are considered to be pure 

pixels and each one should be assigned to a single land cover class. The resulting fine spatial resolution land 

cover map thus contains ( ) ( )z M z N    pixels, whose labels are defined to a unique class of C . 

In this paper, it is assumed that fraction images F  are exactly estimated without error. In each coarse 

spatial resolution pixel V , the number of fine spatial resolution pixels ( )cQ V  assigned to the class 

(1,2, , )c C L  is computed according to the equation: 

2

,( ) round( ( ) )c F cQ V f V z                             (1) 

where , ( )F cf V  is the fractional abundance of the class c  within the area represented by the  coarse spatial 



resolution pixel V in the fraction images F , round( )x  returns the value of the closest integer to x . In this 

situation, the objective of the SRM analysis is to arrange these fine spatial resolution pixels within each coarse 

spatial resolution pixel to make the fine spatial resolution land cover map honor a pre-defined spatial pattern 

model. 

For the proposed learning-based SRM algorithm, it is assumed that there are a set of fine spatial resolution 

land cover maps available. These fine spatial resolution maps could be historical land cover maps or land cover 

maps derived from fine spatial resolution remote sensing images. These available fine spatial resolution land 

cover maps are used to provide information about the spatial land cover patterns at the fine spatial resolution. 

Then, assuming that a mixed pixel patch with similar fractions has similar spatial land cover pattern, the SRM 

analysis may yield a fine spatial resolution map. 

B. The fine and coarse spatial resolution patch pair 

For the land cover class c , the spatial land cover pattern is represented by the patch pair [ , ]c cx y , in which 

cy  is a coarse spatial resolution patch and its corresponding fine spatial resolution patch is 
cx . Here, square 

patches of size p  are used with a coarse spatial resolution patch including p p  coarse spatial resolution 

pixels. The coarse spatial resolution patch is represented by the vector [ (1), (2), , ( )]c c c cy f f f p p L , where 

( )cf V  is the fraction value of the coarse spatial resolution pixel V  of the class c . The corresponding fine 

spatial resolution patch includes z p z p    fine spatial resolution pixels, and is represented by the vector 

[ (1), (2), , ( )]c c c cx I I I z p z p   L , where ( )cI v  is an indicator number showing whether a fine spatial 

resolution pixel v  belongs to the class c , and is defined as: 

1 if  fine spatial resolution pixel  labelled with the land cover class 
( )

0 otherwise
c

v c
I v


 


          (2) 

Thus, 
cx  represents the spatial distribution of fine spatial resolution pixels of the class c . 



 

Fig. 1. A patch pair example, where the zoom factor is 4 and the coarse spatial resolution patch size is 3. (a) is a fine spatial 

resolution land cover map including 12×12 pixels of two land cover classes, 1 (black) and 2 (white); (b) is the corresponding fine 

resolution patch of the class 1, where the number 1 indicates that the fine resolution pixel belongs to the class 1, and 0 indicates that 

the fine resolution pixel belongs to other classes; (c) is the corresponding coarse resolution patch, where the number within pixels is 

the area percentages of the class 1 in each coarse spatial resolution pixel. 

 

Fig. 1 shows a patch pair example with 3p   and 4z  . Fig. 1(a) is a fine spatial resolution land cover 

map including two classes. For the land cover class 1, as shown in black in Fig. 1(a), the fine and coarse spatial 

resolution land cover patches are shown in Fig. 1(b) and Fig. 1(c), respectively. The fine spatial resolution patch 

is an indicator map [Fig. 1(b)], where a label 1 means that the fine pixel belongs to the class 1, and 0 means that 

the fine spatial resolution pixel belongs to other classes. Therefore, the indicator map 

1

The first line The 5th line The 12th line

[0,0,...,0,...,0,0,0,1,1,1,1,1,0,0,0,0,...,0,0,...,0]x  14442 4443 14444444442 4444444443 14442 4443  shows the spatial pattern of the class 1. The coarse patch is 

the fraction image of the class, where the value represents the area percentages within each coarse pixel, and is 

represented as 1

1 1 3 3 3
[0, ,0, ,1, ,0, , ]

4 4 8 8 16
y  . Together 

1 1[ , ]x y  is a patch pair for the class 1.  

Once a large number of patch pairs available, the SRM problem can then be solved by using a pattern 

matching method. Given a coarse spatial resolution patch in the input fraction images, the patch pairs that have 

similar coarse spatial resolution patches are selected from those available patch pairs. These selected patch pairs 

are called as neighboring patch pairs, because if all patch pairs are listed in order according to the fraction values, 

they are located in neighboring sites. It is noted that these neighboring patch pairs all include a coarse spatial 

resolution patch and a fine spatial resolution patch. Because coarse spatial resolution patches with similar 



fraction values often have similar spatial land cover patterns, the latent fine spatial resolution patch for the coarse 

spatial resolution patch in the input fraction images should be similar with the fine spatial resolution patch 

included in the neighboring patch pairs. Thus, the SRM seeks to make the spatial land cover pattern of the 

resultant fine spatial resolution land cover map match those of neighboring patch pairs.  

In general, in the proposed learning based SRM algorithm, the fine and coarse spatial resolution patch pairs 

are first extracted from available fine spatial resolution land cover maps to produce a learning database. Similar 

patch pairs are then found for each coarse spatial resolution patch in input fraction images. Finally, these 

available patch pairs in the learning database are used to reconstruct the final fine spatial resolution land cover 

map. All these steps are described in detail as follows. 

C. Generating the training database 

Finding the relationship between the fine spatial resolution land cover maps and coarse spatial resolution 

fraction images, which is represented by patch pairs in the training database, is one of the key issues of the 

proposed learning based SRM algorithm. Here, the patch pairs are generated class by class. Given a set of fine 

spatial resolution land cover maps, a corresponding set of coarse spatial resolution patches for each land cover 

class can be produced from them. 

An example fine spatial resolution land cover map which includes three land cover classes, as shown in Fig. 

2(a), is used to illustrate the training database generation procedure. Before the training database is generated, 

the zoom factor z  and the coarse spatial resolution patch size p  are set. In this example, z  is set to be 4, 

and p  is set to be 3. A fine spatial resolution patch then includes z p z p    fine spatial resolution pixels 

(equals to 12×12 in this example). In order to generate a patch pair, a fine spatial resolution land cover map 

with the size of z p z p    is first exacted. Generally, by moving a fixed window containing z p z p    

rows and columns within the original land cover map, various fine spatial resolution maps can be extracted. 



These extracted fine spatial resolution maps can be overlapped, thus the fine spatial resolution land cover pattern 

included in the original land cover map is fully exploited. For an extracted fine spatial resolution map, as shown 

in Fig. 2(b), one fine spatial resolution patch, that is, one indicator map was then generated for each land cover 

class, as shown in Fig. 2(c)-(e). For each fine spatial resolution patch, the corresponding coarse spatial resolution 

patch consists of fraction values of all coarse spatial resolution pixels. Each coarse spatial resolution pixel 

corresponds to z z  fine spatial resolution pixels, and the fraction value ( )cf V , which is the percentage of the 

fine spatial resolution pixels assigned to the class c  in the coarse spatial resolution pixel V , is calculated as: 

2( ) ( )c c

v V

f V I v z


                              (3) 

 

Fig. 2. An example of the training database generation procedure, where the zoom factor is 4 and the coarse resolution patch size is 

3. (a) is the original fine resolution land cover map; (b) is one fine resolution land cover map including 12 12  fine resolution 

pixels extracted from the original fine resolution land cover map. (c), (d) and (e) are fine resolution patches of different land cover 

classes, which are generated from the extracted fine resolution land cover map. The number 1 indicates that the fine resolution pixel 

belongs to the class, and 0 indicates that the fine resolution pixel belongs to other classes; (f), (g) and (h) are corresponding coarse 

resolution patches generated from (c), (d) and (e), where the number within pixels means the area percentages of different class in 

each coarse resolution pixel. One fine resolution patch and one coarse resolution patch form a patch pair, including (c) and (f), (d) 

and (g), and (e) and (h) for three different land cover classes. 



Each extracted fine spatial resolution map (Fig. 2) can generate one patch pair for each land cover class. 

Supposed that K  different fine spatial resolution maps are extracted from the original fine spatial resolution 

land cover map, K  patch pairs can be generated for each class. Those patch pairs comprise the training 

database, where the fine spatial resolution patches are represented as , , 1{ }i K

T c T c iX x   and the coarse spatial 

resolution patches are represented as , , 1{ }i K

T c T c iY y   for class c . 

D. Searching neighboring patch pairs 

Once the training database has been built, it is used to provide land cover information to estimate the latent 

fine spatial resolution land cover map with input coarse spatial resolution fraction images. For each coarse 

spatial resolution patch in the input fraction images, neighboring training patch pairs that have similar coarse 

spatial resolution patch are searched from the training database. Since the training database is generated class by 

class, the search procedure is also performed class by class. Let , , 1{ }i R

F c F c iY y   be coarse spatial resolution 

patches in the input fraction images F  for class c . For the thi coarse spatial resolution patch ,

i

F cy , its 

neighboring training patch pairs are chosen according to the following criterion: 

, , 2

, , , ,

1
( , ) ( ( ) ( ))i i j i i j

F c T c F c T c Lf y y f V f V T
p p

   

                 (4) 

where ,

, ,( , )i i j

F c T cf y y  is the difference of fraction values between coarse spatial resolution patch ,

i

F cy  in the 

fraction image and the thj corresponding patch ,

,

i j

T cy  in the training database. , ( )i

F cf V  is the fraction value of 

the class c  of the coarse spatial resolution pixel V  in ,

i

F cy , and ,

, ( )i j

T cf V  is the fraction value of the class c  

of the corresponding coarse spatial resolution pixel V  in ,

,

i j

T cy . The more similar the coarse spatial resolution 

patches are, the lower the value of f . The threshold 
LT  is the tolerable fraction difference between two 

patches. If the value of ,

, ,( , )i i j

F c T cf y y  is no more than that of 
LT , 

,

,

i j

T cy  is thus considered the similar patch of 

,

i

F cy , and the patch pair that includes 
,

,

i j

T cy  is the neighboring training patch pair. The value of 
LT  is an 



important parameter for searching neighboring patch pairs. If it is too large, the neighboring patch pairs are too 

different with that of the input fraction images to provide accurate land cover information. On contrast, if 
LT  is 

too small, only few neighboring patch pairs can be found, leading to insufficient land cover information. The 

effect of the value of 
LT  will be assessed in our later experiments. 

The k-dimensional (K-D) tree algorithm is applied to find neighboring training patch pairs in the present 

work, due to its efficient and successful application in the image super-resolution field [57]. The K-D tree 

organizes coarse spatial resolution patches in the training database off-line to enable a fast search by defining a 

binary tree of thresholds, which are chosen optimally so as to expedite the search. Moreover, the K-D tree relies 

on a special high dimensional data structure and thus the neighbors searching step can be speeded up 

significantly. More detailed information about the K-D tree can be found in references [57, 58]. 

For each coarse spatial resolution patch in the input fraction images F , the neighboring coarse spatial 

resolution patches and their corresponding fine spatial resolution patches are searched from the training database 

using the K-D tree algorithm. A simple example for a two class situation given in Fig. 3 is used to illustrate the 

neighboring training patch pairs searching procedure. In this example, the coarse spatial resolution patch size p  

is set to be 3, and one coarse spatial resolution patch then includes 3 × 3 coarse spatial resolution pixels. For a 

coarse spatial resolution pixel in the fraction image, all nine coarse spatial resolution patches that include this 

coarse spatial resolution pixel are extracted, by scanning the entire fraction images F . For each coarse spatial 

resolution patch ,

i

F cy , we search the neighboring coarse spatial resolution patches from the training database. 

The neighboring training patch pairs , ,

, , 1{ , } iki j i j

T c T c jx y  , where 
ik  is the number of the searched patches, are then 

used to estimate the latent fine spatial resolution land cover map, as described below. 



 

Fig. 3. An example of the fine resolution land cover map estimation procedure, where the coarse resolution patch size is 3. Two land 

cover classes are included. For one pixel, all relative coarse resolution patches are extracted for the input fraction images for each 

class. The neighboring patch pairs are selected from the training database for each exacted coarse resolution patch. All selected 

patch pairs are then used to estimate the resultant fine resolution land cover map, which shows the distribution of the classes and is 

still in correct proportion in the input fraction images (9/16 and 7/16, respectively). 

E. Estimating the fine spatial resolution land cover map 

The fundamental assumption of the proposed learning based SRM algorithm is that coarse spatial resolution 

patches with similar class fraction values have similar fine spatial resolution land cover patterns. In order to 

estimate the latent fine spatial resolution land cover map, the proposed SRM algorithm aims to make the fine 

spatial resolution patches in the latent fine spatial resolution land cover map similar with the fine spatial 



resolution patches identified from the selected neighboring training patch pairs. Therefore, the objective of the 

SRM is to obtain a minimal difference between the fine spatial resolution patch in the estimated fine spatial 

resolution land cover map and corresponding fine spatial resolution patches in the neighboring training patch 

pairs. During the estimation process, all coarse spatial resolution pixels in the input fraction images are handled 

simultaneously, and SRM can be addressed by using the following minimization optimization model: 

µ
µ

, ,

, , ,
1 1 1

( ) ( ) ( , )
ikC M N

i j i j i

L T c T c H c
c i j

Min H w x E x x


  

                  (5) 

µ µ

, , 2

, ,, ,
1

1
( , ) ( ( ) ( ))

z p z p
i j i i j i

T c T cH c H c
v

E x x I v I v
z p z p

  



 
  

                (6) 

µ

, , ,

, , , ,,
( ) 1 ( , ) 1 ( , )i j i j i i j i

L T c T c T c F cH c
w x f y y f y y                     (7) 

Subject to 

µ,
1

( ) 1
C

H c
c

I v


 ,                              (8) 

µ µ

2

, ,
( ) ( )

H c H c
v V

I v f V z


    for all V F .                    (9) 

where µH  is the fine spatial resolution land cover map that we aim to estimate. Setting the coarse spatial 

resolution patch size to be odd without loss of generality, ,

i

F cy  is the coarse spatial resolution patch in which the 

thi  coarse spatial resolution pixel is located in the patch center in the fraction images F . Note that ,

i

F cy  is the 

same as µ,

i

H c
y  because the values in F  are preserved in µH  as (1). µ,

i

H c
x  is the corresponding fine spatial 

resolution patch of µ,

i

H c
y  in µH  for the class c . ,

, 1{ } iki j

T c jx   are fine spatial resolution patches corresponding to 

the coarse spatial resolution patches ,

, 1{ } iki j

T c jy   in the selected neighboring training patch pairs. µ

,

, ,
( , )i j i

T c H c
E x x  is 

the difference between two fine spatial resolution patches, µ,

i

H c
x  and ,

,

i j

T cx , and is computed as (6), where 

µ,
( )i

H c
I v  is the indictor of the fine spatial resolution pixel v  within µ,

i

H c
x , and ,

, ( )i j

T cI v  is the indicator of the fine 

spatial resolution pixel v  within ,

,

i j

T cx , respectively. ,

,( )i j

L T cw x  is the weight value assigned to the fine spatial 

resolution patch ,

,

i j

T cx , and is computed in the coarse spatial resolution scale by comparing the fraction difference 

between two corresponding coarse spatial resolution patches as (7). The larger the fraction difference, lower the 



weight value. Moreover, Equation (8) ensures that each fine spatial resolution pixel is assigned one and only one 

land cover class, and Equation (9) is the area constraint provided by the input coarse spatial resolution fractions 

for all coarse spatial resolution pixels. 

The minimization problem has a large solution space, which increases with the number of neighboring fine 

spatial resolution patches, land cover classes, and the image size. To solve the problem within a short 

computational time, this work used a simulated annealing algorithm to find the solution. A power-law annealing 

schedule is used in the simulated annealing algorithm [59], where the temperature 
nTem  at iteration n  is 

modified according to 

1n nTem Tem                                   (10) 

where (0,1)   controls the decrease rate of temperature 
nTem . 

In the initialization step, the fine spatial resolution pixels of each class within each coarse spatial resolution 

pixel are randomly labeled according to the input coarse spatial resolution fractions. In this situation, the 

constraints in (8) and (9) are naturally satisfied. In each iteration, two fine spatial resolution pixels with different 

land cover labels are randomly selected in each coarse spatial resolution pixel. The values are then calculated by 

using equation (5) according to the current fine spatial resolution land cover map configuration. If swapping 

these two fine spatial resolution pixels decreases the object function value in equation (5), these two fine spatial 

resolution pixels are swapped. Otherwise, the swap can only be accepted with a small probability according to 

the current temperature in equation (10). The algorithm stops when the previously fixed number of iterations is 

achieved. 

F. Patch outlier rejection 

The above-proposed minimization optimization model should be generally considered as a simple fine 

spatial resolution pixel averaging method. This model has limitations, notably that the derived fine spatial 



resolution map may be disrupted because of the problem of patch outliers. In general, a fine spatial resolution 

patch only corresponds to one coarse spatial resolution patch, and their relationship is shown in equation (3). But 

on the contrary, given a coarse spatial resolution patch, many different fine spatial resolution patches can 

correspond to it, making SRM be an underestimated inversion problem [28].  

 

Fig. 4. An example of patch outliers in selected neighboring patch pairs. (a) is a patch pair for one land cover class. The fine 

resolution patch includes 15 × 15 pixels and the coarse resolution patch includes 3×3 pixels. The fine resolution pixel filled by grey 

color indicates that it belongs to the class. The number within pixels means the area percentages of class in each coarse resolution 

pixel of the class. (b) to (j) are searched neighboring patch pairs of (a) using the tolerable fraction difference value. The fraction 

values in (b) to (j) are similar with the fraction values in (a), however, only fine spatial resolution patches in (b) and (c) are similar 

with that in (a). Fine spatial resolution patches in (g)-(j) are much different with that in (a). 

  Fig. 4 presents an example of a patch outlier. In Fig. 4(a), a patch pair is taken from an experiment reported 

below. This patch pair includes a coarse spatial resolution patch of size 3 × 3, and a fine spatial resolution patch 

of size 15 × 15. The numbers within coarse spatial resolution pixels mean the fraction values of the class. Grey 

fine spatial resolution pixels represent the pixels belonging to this class, and white fine spatial resolution pixels 



represent the pixels belonging to other classes. Searching in a training database including 120,000 patch pairs by 

using the coarse spatial resolution patch in Fig. 4(a) as the reference, the resultant 9 neighboring patch pairs are 

simultaneously shown in Figs. 4(b)-(j). As the neighboring patch pairs are searched by comparing the fraction 

different between coarse spatial resolution patches, coarse spatial resolution patches in these neighboring patch 

pairs are all much similar to the coarse spatial resolution patch in the reference patch pair. When comparing the 

fine spatial resolution patches, it is noticed that only fine spatial resolution patches in Fig. 4(b) and Fig. 4 (c) are 

very similar with those in Fig. 4(a). Fine spatial resolution patches in Figs. 4(g)-(j) are very different with those 

in Fig. 4(a), and are then not suitable to be applied to estimate the fine spatial resolution patch. Therefore, in 

order to improve the performance of the learning based SRM algorithm, only the patch pairs which have similar 

fine spatial resolution patches with the reference should be applied to estimate the latent fine spatial resolution 

land cover map, and other patch pairs should be considered as outliers. 

For the fine resolution patch ,

,

i j

T cx  within the neighboring training patch pairs, it is defined as the outlier 

patch according to the following criterion: 

, , 2

, , , ,
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where ,

, ,( , )i j i

T c H cf x x  is the difference between two fine spatial resolution patches, and is computed as same as 

,

, ,( , )i j i

T c H cE x x  is equation (6). ,

i

H cx  is the fine spatial resolution patch in the latent fine spatial resolution land 

cover map, and ,

,

i j

T cx  is the fine resolution patch within the neighboring training patch pairs. The more similar 

the fine resolution patches are, the lower the value of ,

, ,( , )i j i

T c H cf x x . The threshold 
hT  is the tolerable difference 

between two fine spatial resolution patches. If the value of ,

, ,( , )i j i

T c H cf x x  is no less than that of hT , the fine 

spatial resolution patch ,

,

i j

T cx  is considered as an outlier patch. 

In the object function (5), ,

,( )i j

L T cw x  is used to give the weight values. However, this weight value is 

computed by comparing coarse spatial resolution patches and is then not sufficient to distinguish outliers from 



the selected neighboring patch pairs. In order to consider the outlier patches, an additional patch weight 

,

,( )i j

H T cw x  that is computed at the fine spatial resolution is added in the object function of the proposed SRM 

algorithm as: 
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In general, if the patch ,

,

i j

T cx  is an outlier, the weight value ,

,( )i j

H T cw x  is set to be zero, meaning that this 

fine spatial resolution patch no longer used during the estimation procedure. Otherwise, the weight value 

,

,( )i j

H T cw x  is set to be one, if the patch is not the outlier.  

 

Fig. 5. The flowchart of the iterative patch outlier handling procedure. 

Setting an appropriate value of 
hT  is important if patch outliers are to be addressed effectively. In the 

present work, an iterative method is used. The main iteration procedure is shown in Figure 5. At first, a fine 

spatial resolution land cover map is estimated according to the minimization optimization model (5), using all 

searched neighboring learning patch pairs. Because all neighboring patch pairs are searched by using a tolerant 

fraction value 
LT  as (4), it is expected that the estimated fine spatial resolution land cover map is similar with 



the latent fine spatial resolution land cover map. Then, we begin to refine the estimated fine spatial resolution 

land cover map, by decreasing the value of 
hT  step by step, from the maximal threshold Max

hT  to the minimal 

threshold Min

hT . With each value of 
hT , a new fine spatial resolution land cover map is estimated according to 

(12). At the beginning, with a large 
hT  value, only a relatively small amount of neighboring patches, whose fine 

spatial resolution patches are markedly different to  the current estimated fine spatial resolution land cover map, 

are considered as outlier. Without these patch outliers, a more accurate fine spatial resolution land cover map is 

expected to be estimated. The value of 
hT  decreases iteratively and more patches are considered as outliers. 

Then, the estimated fine spatial resolution land cover map is expected to be more accurate. At the end, the 

iteration converges to a stable solution until the minimal value Min

hT  is reached, and the estimated fine spatial 

resolution land cover map is considered as the result of SRM. 

G. The proposed algorithm 

According to the aforementioned principles, we summarize the proposed learning based SRM algorithm in 

Algorithm 1. In brief, a fine spatial resolution land cover map is first randomly generated using input coarse 

spatial resolution fraction images in the initialization step. Meanwhile, the patch pairs in the training database are 

constructed according to the zoom factor and the coarse spatial resolution patch size. The input coarse spatial 

resolution fraction images are then scanned and neighboring patch pairs are searched by the K-D tree algorithm, 

for all coarse spatial resolution patches in fraction images class by class. Using these searched neighboring patch 

pairs, the initial fine spatial resolution land cover map is estimated by using the simulated annealing algorithm. 

Outliers in these neighboring patch pairs are then found and the fine spatial resolution land cover map is 

re-estimated, by changing the threshold value hT . Once hT  reaches Min

hT , the iteration is finished, the estimated 

fine spatial resolution land cover map is the result of the learning based SRM algorithm. 

 



Algorithm I 

Objective: Estimate fine spatial resolution land cover map H  

Input: Coarse spatial resolution fraction images F , zoom factor z , land cover class 

number C , coarse spatial resolution patch size p , coarse spatial resolution fraction 

threshold 
LT , the maximal and minimal fine spatial resolution thresholds 

Max

hT  and 

Min

hT , fine spatial resolution threshold change value 
hdT , parameters of the simulated 

annealing algorithm: 
0Tem ,  , and Ite . 

1. Initialization:  

1) For each coarse spatial resolution pixel, calculate the number of fine spatial resolution 

pixels for each class as (1);  

2) Randomly set class label for all fine spatial resolution pixels using the number as the 

constraints; 

2. Training database generation 

1) Extract fine spatial resolution patches from available land cover maps; 

2) Estimate the corresponding coarse spatial resolution patch for each fine spatial resolution 

patch and generate patch pairs in the training database; 

3. Similar Patch Finding 

1) Build the K-D tree for all coarse spatial resolution patches in the training database; 

2) Scan F , and extract all coarse spatial resolution patches; 

3) Search neighboring patch pairs from the training database for all coarse spatial 

resolution patches in F . 

4. Generating initial high resolution land cover map 

1) Reconstruct µH  by minimizing the objective function in (5) using the simulated 

annealing algorithm. 

5. Iterative patch outlier rejection 

1) Set 
Max

h hT T  

2) Do { 

[1] Calculate the weight values using current µH  and 
hT , according to (13); 

[2] Reconstruct µH  according to (12); 

[3] h h hT T dT  ; 

} Until 
Min

h hT T  

Result: Output the fine spatial resolution land cover map µH . 

 

III. EXAMPLE 

The National Land Cover Database 2001 (NLCD 2001) that shows the land cover for the conterminous 

USA was used to test the proposed learning based SRM algorithm. NLCD 2001 is a raster-based 16-class land 



cover map over all 50 US states and Puerto Rico at spatial resolution of 30 m, and is primarily generated from 

the unsupervised classification of Landsat Enhanced Thematic Mapper Plus circa 2001 satellite dataset [60]. To 

simplify the experiment, the original 16 classes of the NLCD images were converted into simple class scheme 

which includes four general land cover classes: water, urban, forest and agriculture.  

 

 
Fig. 6. All 12 subsets of NLCD land cover maps used to generate the training database. Each subset has 400 × 400 pixels and four 

land cover classes. 

 

Fig. 7. Four subset NLCD land cover maps (with 120×120 pixels) used to test the proposed algorithm. 



We select twelve subsets of NLCD maps (each contains 400 × 400 pixels) as shown in Fig. 6 to generate 

the coarse and fine spatial resolution patch pairs, which formed the training database. A further four subsets of 

NLCD maps (each contains 120 × 120 pixels; Fig.7), were used to assess the proposed SRM algorithm. These 

twelve subsets are called as training maps and the four subsets are called as test maps. The locations of these four 

test maps are different to those of the twelve training maps used to construct the training database. For each of 

the four test maps, we generate synthetic coarse fraction images by linear averaging the fine spatial resolution 

pixel number within the coarse spatial resolution pixel according to different zoom factors. Using simulated 

fraction images as input, as well as the constructed training database, the proposed SRM algorithm is applied to 

estimate a fine spatial resolution land cover map. In order to assess the accuracy of the proposed learning based 

SRM algorithm, by using the test land cover maps as the reference, the overall accuracy (OA) and Kappa 

coefficient are used to evaluate the accuracy of the estimated land cover maps, by comparing the entire estimated 

map with the corresponding reference map. 

The proposed learning based SRM algorithm was also compared with the pixel-based hard classification 

method (HC) and several popular SRM algorithms including the pixel swapping algorithm based on simulated 

annealing (PS) [61], the sub-pixel/pixel attraction algorithm (SPA) [29], the bilinear interpolation based 

algorithm (BI) [56] and the BP neural network based algorithm (BP) [53]. It is noted that the input of PS, SPA 

and BI algorithms includes only coarse spatial resolution fraction images, because all these SRM algorithms 

describe the land cover distribution using the spatial dependence principle. By contrast, the input of BP 

algorithm includes not only the coarse spatial resolution fraction images, but also fine spatial resolution land 

cover maps that are used to learn prior land cover information. In the experiments, all twelve training maps are 

used in the BP algorithm. 

 



 
Fig. 8. Simulated fraction image generated from the test map I as shown in Fig. 7. The top row presents the fraction images at 

5z  , and the bottom row presents the fraction images at 8z  .  

The test map I as shown in Fig. 7(a), was first used to assess the impact of parameters in the proposed SRM 

algorithm. Synthetic fraction images, as shown in Fig. 8, were simulated from the fine spatial resolution test map 

I. Two zoom factors, 5z   and 8z  , were applied. The fine and coarse spatial resolution patch pairs in the 

training database were generated from all twelve training maps as shown in Fig. 6 with zoom factors of 5 and 8, 

respectively.  

When the proposed learning based SRM algorithm is performed, the resultant fine spatial resolution land 

cover map is affected by parameters used in the algorithm. According to our experiments, the coarse patch size 

p  was set to be 3, because a large p  value makes the spatial structure of a coarse patch too complex to find 

enough similar image patches. Max

hT  was set to 1, meaning that no fine spatial resolution neighboring patches 

are considered as outliers at the beginning. 
hdT  was set to 0.05, in order to decrease the value of 

hT  gradually. 

Moreover, to further assess the impact of parameter values on the performance of the proposed method, three 

most important parameters including the number of patch pairs in the training database, the coarse spatial 

resolution fraction difference threshold value 
LT  and the minimal fine spatial resolution difference threshold 

value Min

hT  are discussed in the following sections, respectively. 



 

Fig. 9. Kappa values of the resultant fine resolution land cover maps of the proposed learning based SRM algorithm with different 

numbers of training patch pairs. (a) is the result at 5z  ; (b) is the result at 8z  . 

 

1) Impact of the number of patch pairs in the training database: To assess the impact of the number of 

patch pairs in the training database, the analysis was repeated 8 times over the range of 4 4[1 10 ,15 10 ]   with an 

interval of 42 10 . Fig. 9 indicates the Kappa values of resultant fine spatial resolution land cover maps 

produced by the learning based SRM algorithm with different numbers of patch pairs in the training database, at 

zoom factors of 5 and 8, respectively. When the number is less than 43 10 , the Kappa values of the results at 

5z   and 8z   are both at a low level. This is because the use of only a few patch pairs cannot provide 

enough information about the spatial land cover patterns. With the increment of the number, both Kappa values 

at 5z   and 8z   increase rapidly until the number reaches to about 411 10 , and then the Kappa values 

maintain stable, as shown in Figs. 9 (a) and (b). It is also noticed that the increment of Kappa values at 5z   is 

more rapid than that at 8z  , when the number is in the range of 4 4[3 10 , 9 10 ]  . The reason is that more patch 

pairs are needed in order to decrease the uncertainty caused by a large zoom factor. According to the experiment, 

a number of patch pairs larger than 411 10  is reasonable. As more patch pairs may increase the calculation 

burden, the number of patch pairs in the training database is set to be 412 10  in our latter experiments. 

2) Impact of the threshold 
LT : The threshold value 

LT  is a pre-defined parameter that represents the 

tolerable fraction difference between two coarse spatial resolution patches. This parameter guarantees that the 

searched coarse spatial resolution patch which has a fraction difference f  larger than 
LT  cannot be accepted 

as the candidate image patch. Fig. 10 shows the Kappa values of the resultant fine spatial resolution land cover 



maps produced by the proposed learning-based SRM algorithm with different 
LT  values. When 

LT  is in the 

range of [0.02,0.14]  at 5z   and in the range of [0.02,0.12]  at 8z  , the Kappa values increase with the 

increment of the value of 
LT . This is because that the number of candidate patch pairs is too small to provide 

enough land cover pattern information for SRM, if 
LT  is set to be a too low value. For 5z  , as shown in Fig. 

10(a), if the value of 
LT  is larger than 0.14, the Kappa values are kept at a stable level. For 8z  , however, the 

Kappa values begin to decrease until a stable value, if 
LT  is larger than 0.12. In general, with a larger value of 

LT , more patch pairs with larger fraction errors are considered as candidate patches, which indeed generally 

provide erroneous information and make the estimated fine spatial resolution land cover map differ significantly 

from the latent map. Setting too large a value of 
LT  may degrade the estimated fine spatial resolution map. 

However, the result is only slightly different because of the additional patch outlier rejection procedure. 

 

Fig. 10. Kappa values of the resultant fine resolution land cover maps of the proposed learning based SRM algorithm with different 

values of coarse resolution threshold 
FT . (a) is the result at 5z  ; (b) is the result at 8z  . 

  

 

Fig. 11. Kappa values of the resultant fine resolution land cover maps of the proposed learning based SRM algorithm with different 

minimal fine resolution threshold 
Min

hT . (a) is the result at 5z  ; (b) is the result at 8z  . 

3) Impact of the minimal fine spatial resolution threshold of Min

hT : The value of Min

hT  is denoted as the 

minimal threshold value, which is used to distinguish the outlier patches from all neighboring patches in the 



estimation procedure. To assess the impact of the Min

hT  value, the learning based SRM algorithm was applied 

with different values of Min

hT  in the range of [1.0, 0.1]  with an interval of -0.1. The Kappa values of the 

resultant fine spatial resolution land cover maps produced by the proposed learning based SRM algorithm at 

5z   and 8z   are shown in Fig. 11. With the decrement of the values of Min

hT , the corresponding Kappa 

values of the resultant fine spatial resolution land cover maps increase, because more coarse spatial resolution 

patches are considered as outlier patches and not used in the estimation procedure. When Min

hT  is larger than 0.2 

at 5z   and 0.3 at 8z  , however, the Kappa values begin to decrease as the value of 
hT  decreases. The 

reason is that most neighboring patches are considered as outliers if the value of 
hT  is too low, and the 

remaining neighboring patches can not provide enough information for SRM. 

 

Fig. 12. Resultant fine resolution land cover maps produced by the proposed learning based SRM algorithm. (a) is the result without 

patch outlier handling procedure and (b) is the result using patch outlier handling procedure at 5z  . (c) is the result without 

patch outlier handling procedure and (d) is the result using patch outlier handling procedure at 8z  . Using the patch outlier 

handling procedure reduces the salt-and-pepper artifacts as shown in the enlarged part A, and the linear discontinuities as shown in 

the enlarged part B. 

A visual comparison, as shown in Fig. 12, is used to further assess the impact of the value of Min

hT . For 

5z  , as shown in Fig. 12(a), many salt-and-pepper artifacts appear and the spatial continuities of some linear 

features are interrupted when 1.0Min

hT  , which means that all patches are accepted and no outliers exist. In 

contrast, with patch outlier rejection (when 0.2Min

hT  ), most of the salt-and-pepper artifacts are eliminated and 



the spatial continuities are well maintained, as shown in Fig. 12(b). The impact of Min

hT  on the resultant fine 

spatial resolution land cover map is more obvious when 8z  . Many salt-and-pepper artifacts and linear 

discontinuities that appear in the fine spatial resolution land cover map, as shown in Fig. 12(c), are eliminated by 

the outlier rejection, as shown in Fig. 12(d). 

 

Fig. 13. Resultant land cover maps generated by different methods with 5z   and 8z   for the test map I. HC produces jagged 

boundaries (such as the area A); PS produces isolated patches (such as the area B); SPA and BI produce linear artifacts (such as the 

area C); and BP produces salt-and-pepper artifacts and isolated patches (such as the area D). 

 

4) Comparison with other methods: According to aforementioned discussion about parameters used in the 

proposed learning based SRM method, the optimal parameter values were used to produce the resultant fine 

spatial resolution land cover maps. In particular, the number of patch pairs in the learning database is 412 10 , 

the value of 
fT  is 0.12 , and the value of Min

hT  is 0.2 for 5z   and 0.3 for 8z  , respectively. By using the 

same aforementioned simulated coarse fraction images used for the proposed learning based SRM method as 

input, the resultant land cover maps of HC, PS, SPA, BI, BP and the proposed learning based SRM are all shown 

in Fig. 13. Additionally, the Kappa and OA values of all these maps produced by different methods are shown in 

Table. I. 



 

Table I. Kappa and Overall Accuracy (OA) values of the resultant land cover maps produced by different methods at 5z   and 

8z   for the test map I. 

    HC PS SPA BI BP Proposed 

z=5 

Kappa 0.6223  0.6525  0.6780  0.6856  0.7050  0.7348  

OA 0.7735  0.7890  0.8045  0.8091  0.8209  0.8390  

z=8 

Kappa 0.4811  0.4739  0.5068  0.5148  0.5264  0.5561  

OA 0.6957  0.6806  0.7006  0.7054  0.7124  0.7305  

 

In general, for all SRM algorithms, the zoom factor plays an important role on the accuracy of result. The 

key point of SRM is to determine the class labels of the fine spatial resolution pixels within the coarse spatial 

resolution pixel. For a given zoom factor z , there will be z z  fine spatial resolution pixels within the coarse 

spatial resolution pixel to be estimated. With the increase of z , the number of fine spatial resolution pixels 

would be increased exponentially, and more fine spatial resolution pixels within the coarse spatial resolution 

pixel need to be estimated. Therefore, the uncertainty of the estimation would be expected to increase, and the 

performance of the algorithm would decrease. 

For the results of HC, as shown in Fig. 13 and Fig. 13, the land cover boundaries are jugged and many 

spatial details are missed. The Kappa and OA values of the results of HC, as shown in Table. I, stay at the lowest 

level. This is because that HC is based on the pixel scale, and does not consider the spatial distribution of classes 

at sub-pixel scale. By contrast, more land cover details at the sub-pixel scale are maintained by SRM including 

PS, SPA, BI, BP and the proposed learning-based SRM method. Visual comparison of the fine spatial resolution 

maps obtained from the various SRM analyses highlighted differences in the way they represented the land cover. 

For the results of PS, many land cover features are mapped as isolated rounded patches, and the spatial 

continuities are interrupted. This shortcoming becomes more serious with the increment of the zoom factor. 



When 8z  , the Kappa and OA values of PS are 0.4739 and 0.6806, and are even lower than those of HC 

because the uncertainty of the fine spatial resolution pixel distributions in the resultant fine spatial resolution 

land cover map generated by PS is serious when the zoom factor is large. The fine spatial resolution land cover 

maps produced by SPA and BI visually differed from that obtained with PS with more spatial detail are 

maintained. The Kappa and OA values of fine spatial resolution land cover maps produced by SPA and BI are 

also higher than those of PS. However, numerous linear artifacts are found near the land cover boundaries in the 

obtained fine spatial resolution land cover maps produced by SPA and BI, and the linear artifacts become more 

serious with the increment of the zoom factor. The fine spatial resolution land cover maps produced by PS, SPA 

and BI are, therefore, less than ideal. This is because these SRM methods just apply the spatial dependence 

assumption to describe the land cover pattern, and this assumption will often be too simple to provide enough 

information for SRM in areas with complex land cover patterns. 

Compared with the results of PS, SPA and BI, the linear artifacts in the results of BP are eliminated and the 

spatial continuities are maintained to some extent. The Kappa and OA values of the resultant fine spatial 

resolution land cover maps produced by BP at zoom factor of 5 and 8 are both higher than those of PS, SPA and 

BI. This improvement arises from the use of additional information about the spatial land cover pattern that is 

learned from the training database in the SRM procedure. However, in the resultant fine spatial resolution land 

cover maps produced by BP, many salt-and-pepper artifacts are found and many linear land cover features are 

also mapped as isolated small-sized patches. Moreover, with the increment of the zoom factor, the geometric 

integrity of features is more difficult to be maintained by the BP based SRM method. The shortcoming of the BP 

based SRM method is mainly caused by its two-step procedure and the impact of outliers during the learning 

procedure. 

The resultant fine spatial resolution land cover maps produced by the proposed learning-based SRM method 



are more similar to the reference (Fig. 7) at both zoom factors than the maps produced from the other SRM 

methods. Isolated land cover patches, jagged shapes and linear artifacts, which are common in the resultant fine 

spatial resolution land cover maps produced by aforementioned methods, are effectively eliminated by the 

proposed learning based SRM method. More spatial details, especially the linear features and the spatial land 

cover continuities are maintained. The Kappa and OA values of the resultant fine spatial resolution land cover 

maps produced by the proposed learning based SRM method are all the highest at both zoom factors.. Both the 

visual comparison and accuracy analysis indicate that the proposed learning-based SRM method is superior to 

the SRM algorithms used for comparison. 

The test maps II to IV, as shown in Figs. 7(b) to (d), were used to further validate the performance of the 

proposed learning-based SRM method. As with the analyses focused on test map I, with the zoom factors of 5 

and 8, the three fine spatial resolution test maps were degraded to produce the simulated coarse spatial resolution 

fraction images. These simulated coarse spatial resolution fraction images are then used as input to the SRM 

methods in order to produce the resultant fine spatial resolution land cover maps. The same parameter values 

used in the experiment of the test map I were applied for test maps II to IV. The resultant land cover maps 

produced by HC, PS, SPA, BI, BP and the proposed learning based SRM algorithm at zoom factors of 5 and 8 

are all shown in Fig. 14 and Fig. 15, respectively. By using the original fine spatial resolution land cover maps as 

the reference, the accuracy analysis of three land cover maps at 5z   and 8z   are shown in Table II. 

A similar trend as the experiment of the test map I is found by visually comparing the resultant fine spatial 

resolution land cover maps produced by different methods. The resultant land cover maps produced by HC have 

jagged boundaries and many spatial details are missed. By contrast, the fine spatial resolution land cover maps 

produced by SRM methods have smooth boundaries and more spatial details are maintained. The fine spatial 

resolution land cover maps produced by PS are locally smooth and many linear land cover features are mapped 



into individual round patches for all three test maps. The spatial land cover pattern of the results produced by 

SPA and BI are much improved, however, numerous irregular linear artifacts exist near the boundaries. 

Moreover, more linear artifacts appear in the SPA and BI results of the test map III than those of the test map II 

and IV, due to the complex land cover features of the test map III, especially the urban class. The BP based SRM 

method can reconstruct more spatial details, and eliminate linear artifacts in the results of SPA and BI to some 

extent, due to additional spatial land cover information is learned from the extra fine spatial resolution land cover 

maps. However, many salt-and-pepper artifacts and isolated small-sized patches are still unavoidable due to the 

errors caused by the two-step process. By contrast, the fine spatial resolution land cover maps produced by the 

proposed learning-based SRM method, as shown in Fig. 14 and Fig. 15 at 5z   and 8z  , are more similar to 

the reference fine spatial resolution land cover maps as shown in Fig. 7. The fine spatial resolution land cover 

maps produced by the proposed algorithm are smooth. Salt-and-pepper artifacts, isolated patches and irregular 

linear artifacts that appear in the results of some of the other SRM analyses are mostly eliminated. For all of the 

three testing land cover maps at both zoom factors of 5 and 8, more spatial detail, especially the linear features, 

are well maintained in the results of the proposed learning based SRM algorithm. 

 



Fig. 14. Resultant land cover maps generated by different methods for test maps II-IV with 5z  . HC produces jagged boundaries 

(such as the area A); PS produces isolated patches (such as the area B); SPA and BI produce linear artifacts (such as the area C); and 

BP produces salt-and-pepper artifacts and isolated patches (such as the area D). 

 

Fig. 15. Resultant land cover maps generated by different methods for test maps II-IV with 8z  . HC produces jagged boundaries 

(such as the area A); PS produces isolated patches (such as the area B); SPA and BI produce linear artifacts (such as the area C); and 

BP produces salt-and-pepper artifacts and isolated patches (such as the area D). 

 

Table II. Kappa and Overall Accuracy (OA) values of the resultant land cover maps produced by different methods at 5z   and 

8z   for test maps II-IV.  

 

      HC PS SPA BI BP Proposed 

Test map II 

z=5 

Kappa 0.6576  0.7157  0.7466  0.7392  0.7465  0.7790  

OA 0.8126  0.8381  0.8556  0.8514  0.8556  0.8741  

z=8 

Kappa 0.5746  0.5770  0.6190  0.6232  0.6230  0.6441  

OA 0.7690  0.7590  0.7829  0.7853  0.7852  0.7972  

Test map III 

z=5 

Kappa 0.6006  0.6273  0.6547  0.6453  0.6596  0.6939  

OA 0.7481  0.7599  0.7776  0.7715  0.7808  0.8028  

z=8 Kappa 0.4922  0.4388  0.5027  0.5144  0.5033  0.5271  



OA 0.6791  0.6385  0.6797  0.6872  0.6801  0.6954  

Test map IV 

z=5 

Kappa 0.6903  0.7592  0.7745  0.7802  0.7820  0.8131  

OA 0.8127  0.8503  0.8599  0.8634  0.8645  0.8838  

z=8 

Kappa 0.6134  0.5972  0.6567  0.6677  0.6737  0.6863  

OA 0.7684  0.7497  0.7867  0.7935  0.7972  0.8051  

 

The accuracy statistics of different methods for three testing land cover maps at zoom factors of 5 and 8 are 

shown in Table. II. When 5z  , the Kappa and OA values of the results of HC are the lowest. It is also noted 

that both Kappa and OA values of the fine spatial resolution land cover maps produced by PS for three test maps 

are lower than those of HC at 8z  , indicating that PS is inappropriate to be applied when zoom factor is large. 

For 5z   and 8z  , the Kappa and OA values of the fine spatial resolution land cover maps produced by SPA 

and BI for three test maps almost stay at the same level. The Kappa values of the fine spatial resolution land 

cover maps produced by BP is higher than those of SPA and BI when 5z  , however, there is no improvement 

of the Kappa and OA values when 8z  . By contrast, the proposed learning based SRM algorithm produces the 

fine spatial resolution land cover maps with the highest Kappa and OA values, at both zoom factors of 5 and 8 

for all three test maps, showing the advantage of the proposed learning-based SRM method. 

IV. Discussions 

The general principle for learning based SRM algorithms is that the spatial pattern of the estimated fine 

spatial resolution land cover map should be similar as that of existing fine spatial resolution land cover maps. 

The variation lies in the method used to represent the spatial land cover pattern. For the proposed learning based 

SRM algorithm, the assumption that a coarse spatial resolution mixed pixel patch with similar fractions has 

similar fine spatial resolution land cover pattern provides the basis for learning the prior spatial land cover 

pattern model. Noted that the similarity relationship only exists for patches, but is not applied for individual 



coarse spatial resolution mixed pixel. The first reason is that the distribution of different land cover classes 

within a coarse spatial resolution pixel is always dependent with its surrounding coarse spatial resolution pixels. 

Secondly, determining the fine spatial resolution map within a coarse spatial resolution pixel one by one always 

leads to spatial discontinuity near coarse resolution pixel boundaries. By contrast, using patches can preserve the 

spatail continuity because these patches are overlapped. 

Learning based SRM algorithms aim to make the estimated fine spatial resolution map similar with existing 

land cover maps. Therefore, how to measure their similarity is a key problem and different methods should lead 

to different SRM algorithms. In the proposed SRM algorithm, the similarity between two fine resolution land 

cover patches is computed by directly comparing their indicator maps. The objective function of the proposed 

SRM algorithm, as shown in equation (12), is then minimizing the difference between the estimated fine spatial 

resolution patch and corresponding fine spatial resolution patches. This objective function is indeed a spatially 

implicit model, as the spatial pattern is not represented by popular two-point statistics models, such as 

semi-variogram, but is directly represented by fine resolution patches themselves. Because the fine spatial 

resolution patch is a high dimensional vector, the effectiveness of similarity calculation should be further 

improved by extracting features from fine spatial resolution patches. Given the recent development of multiple 

point geo-statistics for spatial patterns reproduction [62], some approaches used to simulate spatial patterns in 

the multiple point geo-statistics community [63, 64] should be applied for the improvement of the proposed 

learning based SRM algorithm in the further research. 

In the proposed learning based SRM algorithm, the spatial land cover pattern is represented by patch pairs 

generated class by class. For each land cover class, the indicator map only considers whether a fine spatial 

resolution pixel belongs to a certain land cover class or not, and does not differentiate other land cover classes 

any more. The inter-class relationship can be well presented by this method if only two land cover classes are 
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considered; however, more information about inter-class relationships is lost in indicator maps with the 

increment of land cover classes. In general, a patch often includes limited land cover classes and the inter-class 

relationship within a patch is not complex. Generating patch pairs class by class can then simplify the algorithm 

without losing too much inter-class information. In complex areas, however, considering the inter-class 

relationships of different land cover classes can provide additional information, and needs further study. 

The selected neighboring patch pairs are crucial to the proposed learning based SRM algorithm. In order to 

ensure the quality of those neighboring patch pairs, they are chosen from the learning database with two 

threshold values at different scales. Threshold 
LT  indicates the difference of fraction values between patches at 

the coarse spatial resolution scale, and threshold 
hT  indicates the difference of indicator values between patches 

at the fine spatial resolution scale. Both of them play important roles on the performance of the proposed 

learning based SRM algorithm. From the experiment result, to be more specific, a relative large value of 
LT  and 

a relative small value of 
hT  are more likely to obtain fine spatial resolution land cover maps with higher 

accuracies. This implies that a good neighboring patch pair searching strategy is to start with a large number of 

candidate patch pairs and refine to a few best patch pair candidates. In practice, however, optimal values of 
LT  

and 
hT  may differ between studies, and their values need to be optimized with the use of appropriate training 

samples. Automatic estimation of optimal threshold values could also be considered; however, it is a difficult 

issue and needs further study.  

 

Table III. Computation time for different steps of the proposed SRM algorithm with zoom factors 5 and 8 for the test map I. 

 

 

 

Program run time influences the application of the proposed learning based SRM algorithm. In the 

Zoom 

Factor 

Building 

databases 

Initial map 

Generation  

Outlier 

rejection 
Total 

z = 5 183 s 776 s 785 s 1744 s 

z = 8 129 s 473 s 619 s 1221 s 



experiments, the algorithm was tested on an Intel Core 5 Processor 3.20-GHz Duo CPU with 4 GB RAM using 

MATLAB version 7.3. In general, building datasets and optimizing with the simulated annealing algorithm are 

very time consuming. In the experiments, for building datasets, the number of patch pairs in the training database 

is set to be 412 10 . For the simulated annealing algorithm, the iteration number is set to be 1000 to ensure the 

convergence. The iteration number is set to be 100 in outlier rejection, however, to enhance the computing 

efficiency. With the aforementioned algorithm parameters and the implementation code without optimization, 

the running time was shown in Table III. It is observed that the running time used for building databases is much 

less than the initial map generation and outlier rejection steps, and less time is needed for a lower zoom factor.  

V. Conclusions 

 In this paper, a novel learning based SRM algorithm was proposed and tested relative to a set of established 

SRM methods. Compared with the simple spatial dependence prior model, the learning method can more 

effectively describe the spatial land cover pattern, and make the resultant fine spatial resolution land cover map 

more accurate. In the proposed learning based SRM algorithm, the spatial land cover pattern is represented by 

the patch pairs, which include a fine spatial resolution patch and a coarse spatial resolution patch. The algorithm 

first generates a learning database including a large amount of patch pairs. The K-D tree algorithm is used to 

search neighboring patches for coarse spatial resolution patches in the input fraction images from the learning 

database. These searched neighboring patches are used to estimate the latent fine spatial resolution land cover 

map by solving an optimization problem, which aims to make the estimated fine spatial resolution land cover 

map have similar spatial land cover pattern as these neighboring patches. Moreover, an iterative patch outlier 

finding procedure is applied to reject outliers during the estimation procedure in order to enhance the result. 

The performance of the proposed SRM algorithm was assessed with several experiments that used the 

NLCD land cover maps as the reference. Some important parameters including the number of patch pairs in the 



training database, the coarse spatial resolution scale fraction difference threshold value and the minimal fine 

spatial resolution difference threshold value are discussed, and the optimal values are suggested according to the 

experiment results. The proposed learning based SRM algorithm is also compared with several popular SRM 

algorithms. The results shows that the proposed learning based SRM algorithm better maintains different land 

cover patterns in all experiments. Notably, salt-and-pepper artifacts, isolated patches and irregular linear artifacts 

that often appear in the resultant land cover maps produced by the popular SRM algorithms can be eliminated by 

the proposed learning based SRM algorithm to a large extent. Moreover, the highest Kappa and overall accuracy 

values are also derived by the proposed learning based algorithm. 
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