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Abstract: Super-resolution mapping (SRM) is an ill-posed problem, and different 

SRM algorithms may generate non-identical fine spatial resolution land-cover maps 

(sub-pixel maps) from the same input coarse spatial resolution image. The output 

sub-pixels maps may each have differing strengths and weaknesses. A multiple SRM 

(M-SRM) method that combines the sub-pixel maps obtained from a set of SRM 

analyses, obtained from a single or multiple set of algorithms, is proposed in this 

study. Plurality voting, which selects the class with the most votes, is used to label 

each sub-pixel. In this study, three popular SRM algorithms, namely, the pixel 

swapping algorithm (PSA), the Hopfield neural network (HNN) algorithm, and 

Markov random field (MRF) based algorithm, were used. The proposed M-SRM 

algorithm was validated using two data sets: a simulated multi-spectral image and an 

airborne visible/infrared imaging spectrometer (AVIRIS) hyperspectral image. 

Results show that the highest overall accuracies were obtained by M-SRM in all 

experiments. For example, in the AVIRIS image experiment, the highest overall 

accuracies of PSA, HNN and MRF were 88.89%, 93.81% and 82.70% respectively, 

and increased to 95.06%, 95.37% and 85.56% respectively for M-SRM obtained from 

the multiple PSA, HNN and MRF analyses. 
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1. Introduction 

Super-resolution mapping (SRM) is a process used to predict the spatial distribution 

of land-cover classes in image pixels at a finer spatial resolution than that of the input 

data. As such, SRM has an important role to play in reducing the mixed pixel problem 

that is commonly encountered in mapping land-cover from remotely sensed data. A 

variety of SRM methods are available and often employ constraints to guide the 

analysis to an appropriate solution (Foody and Doan 2007; Foody, Muslim, and 

Atkinson 2005; Ge 2013; Ge et al. 2014; Hu et al. 2015; Li, Ling, and Du 2012; Ling 

et al. 2013; Ling et al. 2010; Wang, Wang, and Liu 2012). For example, an analysis 

may be constrained to ensure that the land-cover class areal proportions for a coarse 

resolution pixel, estimated by a soft classification, are maintained within the 

geographical area it represents and/or that prior information on the spatial pattern of 

the land-cover is used to generate the sub-pixel land-cover map. However, the 

solution space of SRM is large, and it provides multiple plausible solutions that 

satisfy the constraints. Previous studies have shown that a varied set of land-cover 

representations may arise from the same coarse spatial resolution image through the 

use of different SRM methods (Foody and Doan 2007; Makido, Messina, and 

Shortridge 2008). Typically, the identification of an optimal SRM method in advance 

is a difficult, if not impossible, challenge. 

    The multiple classifier system is a powerful solution to difficult pattern 

recognition problems involving large class sets (Ho, Hull, and Srihari 1994), and this 

system has shown considerable potential to increase the accuracy of classifications of 

remotely sensed imagery (Benediktsson and Sveinsson 2003; Briem, Benediktsson, 

and Sveinsson 2002; Bruzzone, Cossu, and Vernazza 2004; Kavzoglu and Colkesen 

2013). Since each classifier usually generates a unique land-cover map that satisfies 

the classifier’s objective function, a set of different maps may be generated from a 

suite of classifiers. The multiple classifier system combines the set of maps, aiming to 

produce a final map that is of superior quality to the individual maps it is made from. 

Although the multiple classifier system has been extensively investigated for the 

classification of remotely sensed imagery, it has been mostly used to combine 

multiple land-cover maps generated with conventional (hard) image classifications at 

the pixel scale. As the latter type of analysis may be degraded by the mixed pixel 

problem, the multiple classifier approach may, however, also be used to combine 



multiple soft classifications (Doan and Foody 2007). Although soft classification can 

predict sub-pixel scale class areal proportion information it does not indicate the 

geographical location of the classes within the area of each coarse resolution pixel. A 

simple enhancement would be to generate a set of sub-pixel maps from the soft 

classifications via a series of SRMs and combine them. Little research has, however, 

focused on the ensemble of multiple SRM algorithms. Many studies show that no 

single SRM algorithm can be expected to perform perfectly, and each SRM output has 

its own strengths and weaknesses (Atkinson 2009; Ling et al. 2014). The combination 

of multiple SRM outputs could utilize the different information of each while 

addressing drawbacks of the individual methods, and this combination is expected to 

produce a more accurate sub-pixel map than that produced by an individual SRM 

algorithm. 

    The use of different SRM algorithms, or a single algorithm with, for example, 

dissimilar parameter settings, allows the generation of non-identical sub-pixel maps 

from the same data (Makido, Messina, and Shortridge 2008). In this study, the 

multiple SRM (M-SRM) approaches that combine the multiple maps from a single 

SRM algorithm and from multiple SRM algorithms are explored. Three popular SRM 

algorithms, namely, the pixel swapping algorithm (PSA) (Atkinson 2005), the 

Hopfield neural network (HNN) algorithm (Su et al. 2012a; Tatem et al. 2001), and 

the Markov random field (MRF)-based algorithm (Kasetkasem, Arora, and Varshney 

2005; Li, Du, and Ling 2012), were used. The combination of multiple sub-pixel 

maps obtained from a set of SRM analyses was accomplished with a voting based 

approach. The proposed M-SRM was validated using two data sets: a simulated 

multi-spectral image and an airborne visible/infrared imaging spectrometer (AVIRIS) 

hyperspectral image. Moreover, analyses using different parameter settings for each 

algorithm were undertaken allowing the combination process to be based upon 

outputs from a single algorithm or multiple algorithms. 

2. Method 

2.1 Component SRM algorithms 

2.1.1 SRM algorithms introduction 



Three popular SRM algorithms, the PSA, HNN and MRF, were adopted. In these 

methods, the coarse resolution pixel is broken down to sub-pixels (fine resolution 

pixels) initially, and the different algorithms have dissimilar strategies to label the 

sub-pixels. This section outlines the salient features of each.  

    The PSA is applied to a soft classification output. It is designed to convert the 

class areal proportions predicted by a soft classification into a set of (hard) sub-pixel 

land-cover class allocations. This is achieved by swapping sub-pixel class labels in a 

way that maximizes the spatial autocorrelation between neighbouring sub-pixels 

under the constraint that the original class areal proportions for the area represented 

by each coarse resolution pixel are maintained (Atkinson 2005). If swapping a pair of 

sub-pixels in a coarse resolution pixel would increase the spatial autocorrelation of the 

output map, the sub-pixels are swapped. Otherwise, no swap is made. The PSA is 

converged until no swap of sub-pixels is made or a pre-defined iteration is reached. 

This approach is reasonable when the land-cover exists as a mosaic of patches that are 

larger than the size of the coarse resolution pixel (Atkinson 2009). The class areal 

proportions are unchanged before and after each swapping of sub-pixels in the coarse 

pixel.  

    The HNN is also applied to a soft classification output. The HNN is a recurrent 

neural network and is formulated as an energy minimization tool to predict the 

sub-pixel land-cover distribution within the geographical area of each coarse 

resolution pixel (Tatem et al. 2001). By utilizing information contained in 

surrounding pixels, the land-cover within each pixel may be mapped using a simple 

spatial clustering function coded into the HNN. In the HNN-based SRM, sub-pixels 

are allocated (hard) land-cover class labels in a manner that reflects directly the class 

areal proportions predicted by a soft classification. The relative weights of a set of 

goal functions control the nature of the final output. The HNN class areal proportions 

constraint aims to retain the class areal proportional information output from the soft 

classification that informs the SRM. The class areal proportions outputted from soft 

classification do not have to be faithfully maintained in the sub-pixel map, depending 

on the weight of the class areal proportions constraint in the HNN goal function.  

    The MRF-based SRM is applied directly on the remotely sensed imagery, and is 

thus different from the PSA and HNN. The MRF-based SRM goal function is not 



relevant to the class areal proportions directly, but is modeled by analyzing the image 

spectral information and the land-cover spatial information (Kasetkasem, Arora, and 

Varshney 2005). The MRF-based SRM goal function includes an image spectral 

constraint and a land-cover spatial constraint. The spectral constraint is the 

assumption that the coarse pixel has a spectral response that is generated from the 

combined spectra from the classes contained in the sub-pixel map. The spectral 

constraint aims to refine the sub-pixel labels in order that the degraded and observed 

coarse resolution pixel spectra are similar (Tolpekin and Stein 2009). In the spatial 

constraint, it is assumed that a sub-pixel map has MRF properties, and the land-cover 

class occupying neighbouring sub-pixels are more likely to come from the same class 

than different classes. The MRF-based SRM land-cover spatial constraint is similar to 

that adopted in the PSA and HNN which maximizes the spatial autocorrelation 

between neighbouring sub-pixels in the result sub-pixel map. 

2.1.2 SRM map initialization 

The PSA and HNN use the class areal proportions generated from the soft 

classification as input and aim to maintain the class areal proportions in the result 

sub-pixel map, whereas the MRF is applied directly to the original remotely sensed 

image. The final sub-pixels land-cover map is generated by the SRM analysis using 

an iteratively refined fine resolution map that is provided, along with the class areal 

proportions or the original remotely sensed image, to the PSA, HNN and MRF 

algorithms. The initial value at each sub-pixel location will have an effect on the SRM 

performance, and different initialization maps may result in dissimilar SRM outputs 

(Makido, Messina, and Shortridge 2008).  

    The PSA initialization map is generated based on the soft classification output. 

The PSA initialization map is a sub-pixel land-cover map, and each sub-pixel is given 

an initial class value of c ( 1, ,c C , and C is the number of land-cover classes). The 

PSA initialization map is produced by randomly assigning sub-pixels class labels in a 

manner that maintains the class proportion information conveyed by the prior soft 

classification (Atkinson 2005). The MRF initialization map is also a land-cover map, 

and can be generated based on the soft classification output or without using the soft 

classification output by assigning each sub-pixel label randomly within the range 1 to 

C. The initial sub-pixel map based on soft classification output is an appropriate 



starting point to result in a faster convergence of the MRF algorithm (Kasetkasem, 

Arora, and Varshney 2005). The HNN initialization map is not hard-classified 

land-cover maps but soft-classified class areal proportions, and is generated without 

using the soft classification output (Tatem et al. 2001). The C class proportion images 

are represented by C interconnected layers, and the neurons within these layers are 

referred to by coordinate notation at the sub-pixel scale. An iterative analysis is then 

undertaken in which the neurons ultimately indicate the class label for each sub-pixel 

given the goal constraints applied. 

2.2 M-SRM 

In the M-SRM, the combination of multiple sub-pixel maps obtained from a set of 

SRM analyses was accomplished via voting. Voting is a simple rule for combining the 

outputs of multiple estimators by treating the output of each estimator as a vote. There 

are many voting strategies that may be implemented such as plurality voting, 

weighted voting and soft voting (Latif-Shabgahi, Bass, and Bennett 2004; Parhami 

1994). Plurality voting (Lin et al. 2003) is a combination strategy that selects the 

candidate with the most votes, assuming that the choice with the most votes should be 

the best choice. Plurality voting is conducted on the basis that the decision of a group 

result is superior to that of a single individual, and is one of the most extensively used 

combination strategies and can achieve a preferable trade-off between identification 

and rejection rates. Plurality voting was used here to select the class label for each 

sub-pixel from the multiple SRM outputs available. 

    The voting procedure can be illustrated for an analysis of a coarse spatial 

resolution remotely sensed image that contains I × J pixels. The SRM generated from 

the latter image is a fine resolution land-cover map (sub-pixel map) with I × s × J × s 

pixels, where s is the scale factor and each coarse resolution pixel contains s
2 

sub-pixels. Each sub-pixel is labelled with one of the C classes, with  , ,h i jc   be the 

class label of , ,h i j  (  , , 1, ,h i jc C  ) where , ,h i j  is the h
th

 ( 21, ,h s ) 

sub-pixel in the coarse resolution pixel (i,j) ( 1, ,i I , 1, ,j J ). Assume K SRM 

algorithms are used in M-SRM. Let   , ,k h i jV c c   be the vote of class c for 

sub-pixel , ,h i j
 
from the k

th
 ( 1, ,k K ) SRM algorithm. The predicted class for 



sub-pixel , ,h i j
 
in M-SRM obtained with plurality voting is derived by maximizing 

the following function: 

  , ,

1, ,

arg max k h i j
c k K

V c c


 
 

 
                    (1) 

    The use of different initialization maps may result in dissimilar SRM outputs. In 

order to explore the influence of different initialization maps on M-SRM, each SRM 

algorithm for M-SRM combination is run a number of predefined times with different 

initialization maps. Each SRM is run N times, and the vote   , ,k h i jV c c   is 

related with the N sub-pixel maps from the k
th

 SRM algorithm. The label of a 

sub-pixel , ,h i j
 
in M-SRM can be dependent on the classes depicted in the multiple 

maps for that sub-pixel, thus the vote   , ,k h i jV c c 
 
is determined according to 

the number of times that the sub-pixel , ,h i j  is labelled as class c  from the N times 

of the k
th

 SRM (k=1,...,K) as: 

    , , , , ,

1, ,

( ),k h i j k n h i j

n N

V c c c c  


  
             

  (2) 

where , , ,( )k n h i jc   is the label of , ,h i j  from the n
th

 ( 1, ,n N ) result derived from 

the k
th

 SRM algorithm;  , , ,( ),k n h i jc c   is the Kronecker delta function that equals 

to 1 if , , ,( )k n h i jc c   and 0 otherwise. This ensemble approach of M-SRM, called 

the pixel-based M-SRM, processes the labels of each sub-pixel from the multiple 

SRM outputs without considering the autocorrelation between spatially adjacent 

sub-pixels. 

    Spatial context captures spatial information relative to local features in an image, 

and has been used in the improving of image classification accuracy (Tarabalka et al. 

2010). Spatial context can be described in terms of relations of neighbouring objects. 

It creates connections among pixels, and can be used to investigate the spatial 

autocorrelation between spatially close pixels. The basis is that sub-pixels that are 

close together are more likely to be similar in labeling than those that are far apart. 

With the context information, the problem of speckling (i.e. individual pixels differing 

in class label from their surrounding pixels) is reduced in image classification. In the 



aforementioned pixel-based M-SRM, the ensemble of different SRM outputs depends 

only on the labels of a sub-pixel in the multiple outputs but ignores the spatial context 

information for that sub-pixel, and the speckling problem may affect the M-SRM 

accuracy. A context-based M-SRM that incorporates the spatial context information 

among neighbouring sub-pixels in the available SRM outputs is proposed and 

expected to minimize the speckling problem. The context-based M-SRM, in which 

the labeling of each sub-pixel is related to the labels of neighbouring sub-pixels, is 

designed as follows.  

    Define  , ,h i j   as the sub-pixel neighbourhood that includes all sub-pixels 

inside a square window of W × W sub-pixels centred on , ,h i j . The neighbourhood 

window size W is the length of the square side, and can be set to 1, 3, 5, 7, or any 

other odd integer. Assume l  is a neighbourhood sub-pixel of , ,h i j  in  , ,h i j  . 

The context-based M-SRM integrates local spatial autocorrelation between 

neighbourhood sub-pixels, with the magnitude of the autocorrelation inversely related 

to the distance between the sub-pixels under consideration. The effect of l  on the 

labeling of , ,h i j  in the W × W window may be dissimilar, depending on the distance 

between l  and , ,h i j . The effect of sub-pixel l  on , ,h i j
 
in the W × W 

neighbourhood window
 

is defined as the weight  , ,h i j lw   . Many 

distance-dependent weighting functions, including the Gaussian model, the inverse 

distance weighting function and the exponential decay function, can be employed to 

measure the variation of  , ,h i j lw    with the distance between l  and , ,h i j . The 

Gaussian model is adopted in this paper:  

 
 

2

, ,

, , 2

,
exp

h i j l

h i j l

d
w

r

 
 

 
  
 
 

                   (3) 

where  , , ,h i j ld    is the Euclidean distance between l  and , ,h i j ; r  is the 

range value that controls the relative magnitude of  , ,h i j lw  
 
with the distance 

 , , ,h i j ld   . The variation in the magnitude of the weight  , ,h i j lw    with the 



variation of  , , ,h i j ld    according to different range value r  is shown in figure 1. 

The weight  , ,h i j lw    decreases very slowly with distance  , , ,h i j ld    when 

r=10, and the spatial autocorrelations between distant sub-pixels in the W × W 

window are high (  , ,h i j lw  
 
approximates to 0.8 when  , , , 5h i j ld    ). By 

contrast, the weight  , ,h i j lw    decreases most sharply with distance  , , ,h i j ld    

when r=1, and the spatial autocorrelations between distant sub-pixels in the W × W 

window are low (  , ,h i j lw  
 
approximates to 0 when  , , , 5h i j ld    ). Note that 

when W=1, the window is of size 1×1 and hence the label of a sub-pixel pixel is only 

dependent on the classes depicted in the multiple maps for that sub-pixel, and there is 

no use of contextual information in this situation. The context-based M-SRM is 

degraded to pixel-based M-SRM in this case.  

 

#Insert Figure 1 here# 

 

    Given the N sub-pixel maps from the k
th

 SRM algorithm and according to the 

neighbourhood system  , ,h i j   and the weight
 

 , ,h i j lw   , the vote 

  , ,k h i jV c c   in the context-based M-SRM is calculated as 

      
 , ,

, , , , ,

1, ,

( ),

h i j

k h i j h i j l k n l

n N l

V c c w c c
 

    
 

             (4) 

where , ( )k n lc   is the label of l  from the n
th

 ( 1, ,n N ) result derived from the 

k
th

 SRM algorithm. 

2.3 Accuracy assessment. 

The accuracy of each land-cover map obtained from the SRM analyses was assessed 

relative to a reference land-cover map of the same geographical area which has the 

same resolution as the SRM output and was expressed as the percentage of cases 

correctly allocated (i.e. overall accuracy); details of the reference maps are provided 



below for each experiment. The accuracy of the class areal proportion images 

unmixed from soft classification was also assessed. The reference class areal 

proportion images were first calculated based on the reference land-cover map, and 

the class areal proportion for each class in each coarse resolution pixel was calculated 

by dividing the number of sub-pixels of that class in the coarse pixel by the square of 

scale factor (s
2
). Then the unmixed and reference class areal proportion images were 

compared using the root mean square error (RMSE) value (Jin, Wang, and Zhang 

2010): 

 
2

1 1
1

1 1
RMSE

C
I J

c,i, j c,i, ji j
cC I J

 
 



 


                 (5) 

where c,i, j  and c,i, j  are the class areal proportion of class c in the coarse 

resolution pixel (i,j) in the reference land-cover map and unmixed class areal 

proportion image.  

3. Experiments and results 

Experiments using a simulated multi-spectral image and an AVIRIS hyperspectral 

image were conducted to assess the proposed M-SRM method. The PSA and MRF 

performances are related with the number of neighborhood sub-pixels (L). When the 

number is 1 this means that the analysis is based upon the eight immediate sub-pixel 

neighbors that lie within a 3×3 window centred on the sub-pixel of interest. In the 

PSA and MRF, the scale factor s and the number of neighbouring sub-pixels L are two 

correlated parameters and different combination of s and L will yield different SRM 

results (Atkinson 2005; Su et al. 2012b; Tolpekin and Stein 2009). The optimal 

number of neighbouring sub-pixels L should not be too large and no more than the 

scale factor s (Atkinson 2005), and were set to L=s-1 in the PSA (Su et al. 2012b) and 

in the MRF (Tolpekin and Stein 2009). 

    The pixel-based M-SRM and context-based M-SRM were assessed. The set of 

M-SRM analyses undertaken are summarized in Table 1. The SRM repetition number 

N was set to 10, and each single SRM algorithm was performed 10 times using 

different initialization maps. The initialization maps are sub-pixel land-cover maps for 

PSA and MRF and sub-pixel soft-classified class areal proportion images for HNN. In 

order to fairly compare the accuracy of single PSA and MRF algorithms, the same set 

http://www.docin.com/p-382503531.html&s=564E29971C57A0D6CE1396A02A95DA7A


of sub-pixel initialization maps, which contained 10 different sub-pixel initialization 

maps, was inputted to PSA and HNN. For the context-based M-SRM, the sub-pixel 

neighbourhood window size W was set to 3, 5, 7, and 9, and the range value r was set 

to 1, 2, 3, and 10, respectively.  

 

#Insert Table 1 here# 

 

 3.1 Simulated multi-spectral image experiment 

3.1.1 Overview 

A simulated multi-spectral image was used to control for possible sources of 

endmember extraction error. A real fine resolution image was used as a starting point. 

Visual classification of this image yielded a ground reference map for the test site. A 

5 waveband multispectral image of the site was then generated using a set of spectral 

endmembers generated to fit with the classes depicted in the reference map. The 

derived multispectral imagery was then degraded with a 5 × 5 pixel mean filter. A soft 

classification of the latter coarse spatial resolution imagery was obtained using a 

linear mixture model (Hu and Weng 2011; Settle and Drake 1993). The class areal 

proportion images generated from soft classification were used as the class 

proportions constraints in the PSA and HNN, and to generate the initial sub-pixel 

land-cover maps for PSA and MRF. The coarse resolution image was also used in the 

MRF spectral constraint.  

3.1.2 Data  

The starting point image was a subset of a QuickBird panchromatic image of Wuhan, 

Hubei Province, China (figure 2, spatial resolution of 0.6 m, 30°35′51″ N and 

114°19′56″ E). The panchromatic image was manually interpreted to yield a reference 

map for an area of 120 × 120 pixels of 4 classes identified: tree, grass, bare earth, and 

path. A simulated 5 band multispectral image was generated using four sets of 

spectral endmembers, and the digital number values of the four endmembers are [630, 

425, 270, 130, 185]
T
, [210, 380, 130, 260, 310]

T
, [150, 590, 340, 560, 440]

T
, and [400, 

220, 520, 360, 650]
T
. The covariance matrices were defined following the approach 



discussed in Tolpekin and Stein (2009), where the covariance matrices for all the 

classes were manually set to M×A. M is an identity matrix, size B×B (B is the number 

of spectral bands and B=5 in this experiment), and A=1,200 is a constant. The spectral 

response of each class was normally distributed in each waveband (Foody and Doan 

2007; Tolpekin and Stein 2009).  

 

#Insert Figure 2 here# 

 

3.1.3 Results and discussion 

The sub-pixel maps obtained from the PSA, HNN and MRF with the highest overall 

accuracies as well as those produced by the pixel-based M-SRM and the 

context-based M-SRM with highest accuracy for each analysis are shown in figure 2. 

In the map obtained from the PSA, many speckle-like artefacts (examples are 

highlighted in the red circles in figure 2) were observed. These arose from spectral 

unmixing errors. The linear unmixing analysis may, for example, allocate a small 

fractional cover of a class that is absent to a pixel and because of the constraints used 

in the PSA this fractional cover must be maintained in the SRM. But the 

representation obtained was close to the references with an RMSE for the unmixed 

class areal proportions of 0.0324. Scatter plots of the reference and unmixed class 

areal proportions are shown in figure 3. The scatter plots indicate that many estimated 

class areal proportion values are close but not identical to the reference values for 

different classes. Unlike with the PSA that maintains the class proportional 

information, the HNN and MRF eliminated the speckle-like artefacts due to the 

spatial smoothing effect based on the spatial autocorrelation model. It was also 

evident that parts of the path were poorly represented, with some sections 

disconnected in the PSA, HNN and MRF results (highlighted in the green circle in 

figure 2). This is because class spatial autocorrelation, which is reasonable where the 

land-cover target of interest is larger than the pixel size, is adopted as the land-cover 

prior information in the PSA, HNN and MRF. Many parts of the linear connected path 

were not larger than the coarse resolution pixel size, and were smoothed and 

disconnected in the results.   



    The outputs from the M-SRM approach differed from those obtained from the 

single SRM analyses. The map generated from the pixel-based M-PSA contained 

more connected path and less speckle-like artefacts than the map from the PSA. The 

maps from the pixel-based M-HNN and M-MRF showed the path to be more 

connected than the maps from the standard single HNN and MRF analyses. This is 

because errors may exist in individual output but are more frequently labelled 

correctly in the other maps available to the M-SRM. The context-based M-SRM 

integrates the neighbourhood sub-pixel information and this eliminated most 

speckle-like artefacts. The maps from the context-based M-HNN and M-MRF showed 

the path to be more fully connected than the maps from the pixel-based M-HNN and 

M-MRF. The maps from the pixel-based and context-based M-PSA-HNN, 

M-PSA-MRF, M-HNN-MRF and M-PSA-HNN-MRF showed few speckle-like 

artefacts and the path to be highly connected. This is because the maps obtained from 

different SRM algorithms were different (figure 2), and the sub-pixels labelled as 

speckle-like artefacts or the disconnected features from one SRM algorithm were 

labelled correctly in the output of other SRM algorithms.  

 

#Insert Tables 2-4 here# 

 

Tables 2, 3 and 4 show the overall accuracies of single SRM and M-SRM algorithms. 

With a single SRM algorithm it was evident that the combination of a set of SRMs 

obtained from it could yield an increase in accuracy. The highest overall accuracies of 

PSA, HNN and MRF were 90.14%, 89.15% and 89.76% respectively, and increased 

to 91.52%, 91.38% and 91.04% respectively for the pixel-based M-PSA, M-HNN and 

M-MRF, and increased to 92.27%, 91.60% and 91.27% respectively for the 

context-based M-PSA, M-HNN and M-MRF.  

    It was also evident that the accuracy of M-SRM was influenced by several 

factors. First, the highest overall accuracies of the context-based M-SRM were higher 

than that of the pixel-based M-SRM for each M-SRM. The accuracy of the 

context-based M-SRM was affected by the neighbourhood window size W and range 

value r. In the context-based M-SRM, a larger W indicates a larger neighbourhood 



window size that explores more sub-pixels with local spatial autocorrelation, and the 

spatial autocorrelations between distant sub-pixels in the W × W neighbourhood 

window are higher with a larger r. In general, the context-based M-SRM with W<5 

and r<3 generated the highest overall accuracy in this experiment. The reference map 

contains linear path objects that are not larger than the coarse spatial resolution pixel, 

and could be over-smoothed if the neighbourhood window W is large and the spatial 

autocorrelations between distant sub-pixels are high with large r. Second, for M-SRM 

that combined different SRM algorithms, the algorithms selected for inclusion played 

a key role in determining the accuracy of the final map. The mean overall accuracy of 

PSA was higher than that of HNN and MRF; the overall accuracies of M-SRM that 

combined PSA were higher than those that excluded the PSA. Specifically, the 

highest overall accuracy of M-PSA was higher than that of M-HNN and M-MRF, and 

the highest overall accuracies of M-PSA-HNN, M-PSA-MRF and 

M-PSA-HNN-MRF were higher than that of M-HNN-MRF which excluded the PSA. 

These results highlight the importance of selecting algorithms for use in a multiple 

classifier system with care. Note, for instance, that the highest overall accuracy of 

M-PSA-HNN-MRF was lower than that of M-PSA and M-PSA-HNN. Thus a 

multiple classifier system using only a subset of the classification methods can be 

more accurate than one using the whole set available. 

3.2 AVIRIS hyperspectral image 

3.2.1 Overview 

A set of analyses based on a real remotely sensed data set were undertaken. This 

research used an AVIRIS image to map land-cover with the result validated against 

reference data obtained from visual interpretation of imagery in Google Earth. 

3.2.2 Data 

An AVIRIS image acquired on 11 June 2008 comprising 224 spectral bands with a 

spatial resolution of 17 m for a test site centred on the airport located in Moffett Field, 

San Francisco Bay, USA, was used (figure 4, 37°24′54″ N and 122°02′54″ W). The 

focus was on a 180 × 70 pixel subset of the imagery for which a reference map was 

generated using a 900 × 350 pixel fine spatial resolution image available in Google 

Earth acquired on 13 October 2008. The Google Earth image was geo-registered to 



the AVIRIS image (root mean squared error was 4.12 m). The scale factor was set s=5. 

The image contained 4 land-cover classes, namely, water, grass, dark surface, and 

white surface. The endmember signatures in the AVIRIS image were selected using 

N-finder algorithm (Winter 1999). According to the geometry of convex sets, the 

N-finder is based on the fact that in p spectral dimensions, the p-volume contained by 

a simplex formed of the purest pixels is larger than any other volume formed from 

any other combination of pixels. The multiple endmember spectral mixture analysis 

was applied to generate land-cover class areal proportion images. 

 

#Insert Figure 4 here# 

 

3.2.3 Results and discussion 

The SRMs obtained from the analyses of the AVIRIS image are shown in figure 4. In 

the maps obtained from the PSA, HNN and MRF, many speckle-like artefacts 

(examples highlighted in the red circles in figure 4) were observed. This is because 

the fractional covers, which were absent to a pixel but allocated by soft classification, 

were maintained in the PSA and were partly smoothed in the HNN and MRF. Some 

speckle-like artefacts were still found in the HNN and MRF. This because the class 

proportion RMSE value was 0.2302 for the spectral unmixing output which was very 

large. Scatter plots of the reference and unmixed class areal proportions are shown in 

figure 5. The scatter plots indicate that there was obvious overestimation and 

underestimation in the grass area, and obvious underestimation in the light surface 

area. In the PSA in figure 4, the speckle-like artefacts in the region A were due to the 

underestimation of the grass fraction, and the speckle-like artefacts in the regions B 

and C were due to the underestimation of the light surface fraction. There are more 

fractional covers represented as large speckle-like artefacts in the coarse pixels in the 

AVIRIS image than in the simulated image; the spatial smoothing effect in the HNN 

and MRF, which could eliminate isolated pixels, could not eliminate all the large 

speckle-like artefacts (examples are highlighted in the red circles in figure 4). The 

speckle-like artefacts in the red circles were not reduced obviously in the maps 

obtained from the pixel-based M-PSA, M-HNN and M-MRF, because the pixels were 

http://www.docin.com/p-382503531.html&s=564E29971C57A0D6CE1396A02A95DA7A


frequently labelled as speckle-like artefacts in different maps available to the M-SRM. 

By contrast, the map generated from the context-based M-PSA, M-HNN and M-MRF 

eliminated most of the speckle-like artefacts due to the spatial smoothing effect from 

the neighbourhood sub-pixels. Similarly, the maps obtained from the pixel-based 

M-PSA-HNN, M-PSA-MRF, M-HNN-MRF and M-PSA-HNN-MRF contained many 

speckle-like artefacts, whereas the maps obtained from the context-based 

M-PSA-HNN, M-PSA-MRF, M-HNN-MRF and M-PSA-HNN-MRF eliminated the 

speckle-like artefacts and contained smoothed class boundaries.  

    More accurate sub-pixel maps were obtained from the M-SRM relative to the 

single algorithm SRM analyses. The highest overall accuracies of PSA, HNN and 

MRF were 88.89%, 93.81% and 82.70%, respectively and increased to 89.99%, 

94.05% and 82.92% respectively for the pixel-based M-PSA, M-HNN and M-MRF, 

and increased to 95.06%, 95.37% and 85.56% respectively for the context-based 

M-PSA, M-HNN and M-MRF. The highest overall accuracies of the context-based 

M-SRM were much higher than that of the pixel-based M-SRM for each M-SRM. 

Higher overall accuracies were found for the context-based M-SRM with W=9 and 

r3, which is different from the results obtained with the simulated data. This is 

because the spectral unmixing error was larger in the AVIRIS image experiment than 

the simulated image experiment, and the maps obtained from the PSA, HNN and 

MRF for the AVIRIS image contained more large speckle-like artefacts. The 

context-based M-SRM with larger W and r, which indicates a larger neighbourhood 

window size that explores more sub-pixels with local spatial autocorrelation and a 

higher spatial autocorrelation between distant sub-pixels in the W × W neighbourhood 

window, eliminated most of the artefacts more efficiently.  

    In terms of the overall classification accuracy, the map obtained from the MRF 

was less accurate than that from the PSA and HNN. The highest overall accuracy of 

M-MRF was lower than that of M-PSA and M-HNN, and the highest overall 

accuracies of M-PSA-MRF, M-HNN-MRF and M-PSA-HNN-MRF which combined 

the MRF were lower than that of M-PSA-HNN which excluded the MRF. As with the 

simulated data, the results showed that M-SRM which combined the whole set of 

different maps did not always performed better than M-SRM which combined only 

subset of maps with high accuracies, highlighting the need for care in the selection of 

algorithms to use within a multi-classifier system.  



 

#Insert Tables 5-7 here# 

 

 4. Conclusion 

The potential to enhance land-cover mapping from remotely sensed data through the 

combination of multiple sub-pixel maps obtained from a set of SRM analyses was 

explored. In the multiple SRM approach, M-SRM, each sub-pixel is allocated the 

class label which is most frequently predicted for it in the SRM outputs that are 

available. Critically the results of two studies using PSA, HNN and MRF show that 

the M-SRM approach can increase the accuracy of land-cover maps over that 

achieved through the conventional use of a single SRM analysis. The land-cover maps 

generated from the M-SRM were also visually superior to maps from standard single 

SRM analyses, with fewer speckle-like artefacts and linear features such as paths 

more fully connected. Given that researchers often run a SRM algorithm several times 

in order to determine the optimal parameter settings the results show that using, rather 

than discarding, the outputs of these trial runs can sometimes enhance the accuracy of 

SRM. The algorithms selected for use in M-SRM also plays a key role in relation to 

map accuracy. The accuracy of maps obtained from M-SRM that used different 

algorithms was not always higher than that based on the use of a single algorithm.  

    The pixel-based M-SRM which labels a sub-pixel based on the classes depicted 

in the multiple maps for that sub-pixel and the context-based M-SRM which labels a 

sub-pixel based on the classes depicted in the multiple maps for that sub-pixel and its 

neighbouring sub-pixels were assessed. The highest overall accuracies of the 

context-based M-SRM were higher than that of the pixel-based M-SRM for each 

M-SRM. In addition, the performance of the context-based M-SRM was found to be 

dependent on the neighbourhood window size used and the magnitude of the 

parameter r which controls the magnitude of spatial autocorrelations between 

sub-pixels in the W × W neighbourhood window. In the context-based M-SRM, a 

larger W indicates a larger neighbourhood window size that explores more sub-pixels 

with local spatial autocorrelations, and the spatial autocorrelations between distant 

sub-pixels in the W × W neighbourhood window are higher with a larger r than with a 

smaller r. The context-based M-SRM would be expected to better preserve the spatial 



details of land-cover which were not larger than the coarse resolution pixel size with 

small values of W and r. In the simulated image analysis, most land-covers which are 

smaller than the coarse resolution pixel size were reconstructed with W<5 and r<3. In 

addition, the context-based M-SRM would be expected to better eliminate 

speckle-like artefacts with large values of W and r. In the AVIRIS data set the class 

areal proportion image error was large, and the PSA, HNN and MRF maps contained 

many large speckle-like artefacts; most of the speckle-like artefacts were eliminated 

in the context-based M-SRM with W=9 and r 3. In addition, the selection of the 

optimal W and r values in the context-based M-SRM may be affected by the 

geo-reference error between the reference and input images, and the context-based 

M-SRM performed better with relative smaller W and r values in the simulated image 

experiment in which the geo-reference root mean squared error was 0 and with 

relative larger W and r values in the AVIRIS image experiment in which the 

geo-reference root mean squared error was 4.12 m. A comprehensive study on impact 

of geo-reference error on M-SRM should be explored in the future.  
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Table 1. M-SRM names and definitions. 

M-SRM analysis Definition 

M-SRM The multiple SRM algorithm 

Pixel-based 

M-SRM 

M-SRM that determines a sub-pixel label based on the classes 

depicted in the multiple maps for that sub-pixel 

Context-based 

M-SRM 

M-SRM that determines a sub-pixel label based on the classes 

depicted in the multiple maps for that sub-pixel and its 

neighbouring sub-pixels 

M-PSA M-SRM that combines multiple PSA outputs 

M-HNN M-SRM that combines multiple HNN outputs 

M-MRF M-SRM that combines multiple MRF outputs 

M-PSA-HNN M-SRM that combines multiple PSA and HNN outputs 

M-PSA-MRF M-SRM that combines multiple PSA and MRF outputs 

M-HNN-MRF M-SRM that combines multiple HNN and MRF outputs 

M-PSA-HNN-MRF M-SRM that combines multiple PSA, HNN, and MRF outputs 

 

 



Table 2. The accuracies of the simulated image experiment, including the mean values, highest value and standard 

deviations of overall accuracies (%) of PSA, HNN and MRF.  

Method 
Overall accuracy (%) 

Mean value Highest value Standard deviation 

PSA 88.73 90.14 1.08 

HNN 88.11 89.15 0.78 

MRF 88.31 89.76 0.94 

 



Table 3. The accuracies of the simulated image experiment, including the overall accuracies (%) of M-PSA 

(M-SRM that combines multiple PSA outputs), M-HNN (M-SRM that combines multiple HNN outputs), and 

M-MRF (M-SRM that combines multiple MRF outputs). The highest M-SRM overall accuracies were highlighted 

in bold.  

Experimental set up 
Overall accuracy (%) 

M-PSA M-HNN M-MRF 

Pixel-based 

M-SRM W=1 91.52 91.38 91.04 

 
 r=1 r=2 r=3 r=10 r=1 r=2 r=3 r=10 r=1 r=2 r=3 r=10 

Context 

-based 

M-SRM 

W=3 92.20 92.27 92.26 92.25 91.58 91.56 91.55 91.55 91.27 91.22 91.24 91.25 

W=5 92.19 92.11 91.91 91.69 91.59 91.31 91.05 90.71 91.23 90.95 90.67 90.36 

W=7 92.20 91.99 91.29 89.77 91.60 91.06 90.07 88.26 91.22 90.72 89.59 87.54 

W=9 92.20 91.98 90.58 83.56 91.60 91.03 89.36 82.88 91.22 90.64 88.59 82.42 



Table 4.The overall accuracies (%) of M-PSA-HNN, M-PSA-MRF, M-HNN-MRF, M-PSA-HNN-MRF for 

simulated image experiment. The highest M-SRM overall accuracies for each multiple classification analysis were 

highlighted in bold.  

Experimental set up 
Overall accuracy (%) 

M-PSA-HNN M-PSA-MRF 

Pixel-based 

M-SRM W=1 92.15 92.03 

Context 

-based 

M-SRM 

 r=1 r=2 r=3 r=10 r=1 r=2 r=3 r=10 

W=3 92.34 92.28 92.25 92.20 92.02 92.11 92.06 92.06 

W=5 92.32 92.04 91.65 91.49 92.03 91.76 91.54 91.32 

W=7 92.33 91.80 90.87 89.06 92.03 91.61 90.63 88.83 

W=9 92.33 91.77 90.07 83.25 92.03 91.60 89.84 82.87 

 
M-HNN-MRF M-PSA-HNN-MRF 

Pixel-based 

M-SRM W=1 91.59 92.11 

Context 

-based 

M-SRM 

 r=1 r=2 r=3 r=10 r=1 r=2 r=3 r=10 

W=3 91.68 91.60 91.57 91.56 92.12 92.06 92.04 92.06 

W=5 91.67 91.29 90.93 90.63 92.11 91.68 91.48 91.27 

W=7 91.67 91.03 89.97 89.93 92.11 91.56 90.55 88.61 

W=9 91.67 90.95 89.00 82.65 92.11 91.51 89.66 82.92 



Table 5. The accuracies of the AVIRIS image experiment, including the mean values, highest value and standard 

deviations of overall accuracies (%) of PSA, HNN and MRF.  

Method 
Overall accuracy (%) 

Mean value Highest value Standard deviation 

PSA 87.63 88.89 0.65 

HNN 93.19 93.81 0.43 

MRF 82.21 82.70 0.46 

 



Table 6. The accuracies of the AVIRIS image experiment, including the overall accuracies (%) of M-PSA, 

M-HNN and M-MRF. The highest M-SRM overall accuracies were highlighted in bold.  

Experimental set up 
Overall accuracy (%) 

M-PSA M-HNN M-MRF 

Pixel-based 

M-SRM W=1 89.99 94.05 82.92 

 
 r=1 r=2 r=3 r=10 r=1 r=2 r=3 r=10 r=1 r=2 r=3 r=10 

Context 

-based 

M-SRM 

W=3 91.66 92.12 92.20 92.21 94.27 94.34 94.35 94.36 83.66 83.82 83.85 83.86 

W=5 91.75 92.95 93.28 93.53 94.29 94.55 94.65 94.74 83.70 84.17 84.35 84.49 

W=7 91.75 93.25 93.92 94.44 94.29 94.65 94.92 95.37 83.70 84.31 84.68 85.03 

W=9 91.75 93.31 94.26 95.06 94.29 94.67 95.04 95.31 83.70 84.34 85.56 85.51 



Table 7.The overall accuracies (%) of M-PSA-HNN, M-PSA-MRF, M-HNN-MRF, M-PSA-HNN-MRF for 

AVIRIS image experiment. The highest M-SRM overall accuracies for each multiple classification analysis were 

highlighted in bold.  

Experimental set up 
Overall accuracy (%) 

M-PSA-HNN M-PSA-MRF 

Pixel-based 

M-SRM 

W=1 93.57 87.23 

Context 

-based 

M-SRM 

 r=1 r=2 r=3 r=10 r=1 r=2 r=3 r=10 

W=3 93.91 94.00 94.02 94.03 87.75 87.94 87.98 88.00 

W=5 93.93 94.30 94.41 94.49 87.78 88.35 88.53 88.68 

W=7 93.93 94.41 94.69 94.97 87.78 88.48 88.87 89.29 

W=9 93.93 94.44 94.87 95.30 87.78 88.51 89.07 89.80 

 
 

M-HNN-MRF M-PSA-HNN-MRF 

Pixel-based 

M-SRM 

W=1 89.64 91.76 

Context 

-based 

M-SRM 

 r=1 r=2 r=3 r=10 r=1 r=2 r=3 r=10 

W=3 90.14 90.18 90.18 90.18 91.91 91.88 91.87 91.87 

W=5 90.23 90.40 90.47 90.51 91.93 92.00 92.03 92.06 

W=7 90.23 90.49 90.65 90.80 91.93 92.07 92.23 92.37 

W=9 90.23 90.52 91.11 91.01 91.93 92.10 92.61 92.36 



 

Figure 1 The relative magnitude of the weight  , ,h i j lw    with Euclidean distance
 

 , , ,h i j ld    according to different range value r in the W × W neighbourhood 

window centred on , ,h i j
 
in the context-based M-SRM. The weight  , ,h i j lw    

decreases most sharply with the increase of  , , ,h i j ld    for small values of r. 



 

Figure 2. Reference and result maps for the simulated image experiment. (a) 

Simulated multi-spectral image (band 1-2-3), (b) panchromatic image, (c) reference 

map, (d) PSA with the highest overall accuracy, (e) HNN with the highest overall 

accuracy, (f) MRF with the highest overall accuracy, (g) the pixel-based M-PSA, (h) 

the pixel-based M-HNN, (i) the pixel-based M-MRF, (j) the context-based M-PSA 

(w=3,r=2), (k) the context-based M-HNN (w=7,r=1), (l) the context-based M-MRF 

(w=3,r=1), (m) the pixel-based M-PSA-HNN, (n) the pixel-based M-PSA-MRF, (o) 

the pixel-based M-HNN-MRF, (p) the pixel-based M-PSA-HNN-MRF, (q) the 

context-based M-PSA-HNN (w=3,r=1), (r) the context-based M-PSA-MRF 

(w=3,r=2), (s) the context-based M-HNN-MRF (w=3,r=1), (t) the context-based 

M-PSA-HNN-MRF (w=3,r=1). 



 

Figure 3. Scatter plots of linear mixture model accuracy assessment for the simulated 

image experiment. (a) tree, (b) grass, (c) bare earth, (d) path. 

 



 

Figure 4. Reference and result maps for the AVIRIS image experiment in Moffett 

Field site (37°24′54″ N and 122°02′54″ W). (a) AVIRIS hyperspectral image (band 

40-20-15), (b) Google earth image, (c) reference map, (d) PSA with the highest 

overall accuracy, (e) HNN with the highest overall accuracy, (f) MRF with the highest 

overall accuracy, (g) the pixel-based M-PSA, (h) the pixel-based M-HNN, (i) the 

pixel-based M-MRF, (j) the pixel-based M-PSA-HNN, (k) the pixel-based 

M-PSA-MRF, (l) the pixel-based M-HNN-MRF, (m) the pixel-based 

M-PSA-HNN-MRF, (n) the context-based M-PSA (w=9,r=10), (o) the context-based 

M-HNN (w=7,r=10), (p) the context-based M-MRF (w=9,r=3), (q) the context-based 

M-PSA-HNN (w=9,r=10), (r) the context-based M-PSA-MRF (w=9,r=10), (s) the 

context-based M-HNN-MRF (w=9,r=3), (t) the context-based M-PSA-HNN-MRF 

(w=9,r=3). 



 

Figure 5. Scatter plots of multiple endmember spectral mixture analysis accuracy 

assessment for the AVIRIS image experiment. (a) water, (b) grass, (c) dark surface, (d) 

light surface. 

 

  


