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 

Abstract—In this paper, a novel magnetically levitated coreless planar motor with three-layer 

orthogonal overlapping windings is shown to have higher power density and higher space utilization 

compared to other coreless planar motors. In order to achieve maximum forces with minimum cost 

and minimum space, a multi-objective optimization of the novel planar motor is carried out. In order 

to reduce the computational resources required for finite element analyses, a fast but accurate 

analytical tool is developed, based on expressions of the flux density of the permanent magnet array, 

which are derived from the scalar magnetic potential method.  The validity and accuracy is verified by 

3D FE results. Based on the force formulas and the multi-objective function derived from the 

analytical models, a particle swarm optimization (PSO) algorithm is applied to optimize the 

dimensions of the planar motor. The design and optimization of the planar motor is validated with 

experimental results, measured on a built prototype, thus proving the validity of the analytical tools. 
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Index Terms—Analytical modeling, planar motor, overlapping windings, multi-objective 

optimization,. 

 

I. INTRODUCTION 

INEAR actuation for industrial and mobile applications has seen considerable research effort in the last two 

decades, with significant improvements in terms of force density and thermal performances [1~5] being 

achieved. Closely related to the linear machine research field, considerable research on  the development and 

use of magnetically levitated planar motors, especially permanent magnet (PM) planar motors, has also 

increased rapidly[6~11].Potential advantages of such motors include high power density, a simple 

structure[12~14], direct driving, low friction[15，16] and no backlash. This makes the PM planar potentially 

attractive for applications such as semiconductor lithography systems and other high-precision industrial 

applications, although its uptake is limited and published literature shows that the concept has not been taken 

to industrialization yet. 

A novel magnetically levitated PM planar motor with multi-layer orthogonal overlapping windings was 

proposed in [17]. The structure of the planar motor is shown in Fig.1, where the two dimensional (2D) PM 

array is the stator, and the overlapping windings are the mover. The mover consists of two sets of x-direction 

windings and two sets of y-direction windings. The effective areas of both direction windings are equal to the 

full area of the mover section, which results in full utilization of space and magnetic field. By controlling the 

currents in the windings separately, the planar motor can achieve 5 degrees of freedom (DOF), due to the 

decoupled x and y axes forces. From the preliminary studies in [17], its potential, in terms of force density 

when compared to the two-layer windings topology used in [18], is highly promising mainly due to the 

enhanced material utilization. 

L 
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Fig.1. Topology of the planar motor. 

A novel magnetically levitated PM planar motor with multi-layer orthogonal overlapping windings was 

proposed in [17]. The structure of the planar motor is shown in Fig.1, where the two dimensional (2D) PM 

array is the stator, and the overlapping windings are the mover. The mover consists of two sets of x-direction 

windings and two sets of y-direction windings. The effective areas of both direction windings are equal to the 

full area of the mover section, which results in full utilization of space and magnetic field. By controlling the 

currents in the windings separately, the planar motor can achieve 5 degrees of freedom (DOF), due to the 

decoupled x and y axes forces. From the preliminary studies in [17], its potential, in terms of force density 

when compared to the two-layer windings topology used in [18], is highly promising mainly due to the 

enhanced material utilization. 

It is known that the finite element (FE) method is highly appropriate to calculate the magnetic field and 

performance of electrical machines [19]. However, FE analyses are in general very time consuming, 

especially when a large number of design iterations are required. This is more highlighted when the FE 

analysis in question involves 3D modeling. For a design problem such as that of the planar motor, it is 

therefore necessary to derive an accurate analytical model of the planar motor, which permits a high number 

of iterations at a much reduced cost in terms of computational time. This is especially valid for coreless 

machines such as the one under consideration. 

Thus, in this paper, a multi-objective optimization, based on a particle swarm optimization (PSO) 

algorithm of the novel planar motor is proposed and thoroughly investigated. The PSO uses the analytical 
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model to determine the performance and subsequently find the optimal dimensions that result in the best 

force characteristics with minimum cost and maximum efficiency.  

The advantages of the novel planar motor, such as the enhanced high force density and the higher space 

utilization, are then compared to those of other planar motors. 

II. FIELD DISTRIBUTION DUE TO PERMANENT MAGNET 
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Fig.2. Permanent magnet array.  

The 2D PM array used in the proposed planar motor is shown in Fig. 2, which is an innovative 

improvement on the structure proposed in [20]. For the PM array in [20], the remanence of PM2 is only 1 √2⁄  

of the remanence of PM1. For Fig. 2, the PMs are all of one material with remanence Br=1.34T. The 

proposed array has N-pole modules and S-pole modules alternately distributed to increase the field density in 

the air-gap, in which the x-axis distances and y-axis distances between the PM poles are τ. Iron spacers are 

placed  between the N and S modules in order to enhance the flux focusing capability. More details of the 

arrangement can be found in [17]. 

A. Analytical Modelling of the 2D PM Array 

Since there is minimum magnetic saturation in the motor, the analytical solution for the magnetic field can 

be established based on the following assumptions: 

1) The permeability of PMs is equal to that of air, i.e. relative permeability μr = 1. 

2) The effects of the iron spacers are neglected. The effects of eddy currents are also neglected. 
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3) The x and y-axes length of the PM array is infinite so that end-effects are neglected. 

The scalar magnetic potential is used to solve the magnetic system. Since the material of the yoke in Fig.1 

is aluminum, whose relative permeability is approximately 1, the field regions of the planar motor can then be 

assumed to be as shown in Fig. 3. Region I is the air/winding region above the PM array. Region II is the PM 

array region. Region III is the air/aluminum region below the PM array. 

I

II

III

z=+∞

z=-∞

z=ma

z=mb

 

Fig.3. Field regions of planar motors. 

Therefore, the scalar magnetic potential and the field vectors B and H in the air-gap/winding region 

(shown as I and III respectively) and the PM region(II) satisfy the following equations[6,11]: 

1) In region I: 

2

I 0  , I 0 IB H , I I H                                  (1) 

 2) In region II: 

2

II M ,  II 0 II B H M , II II H           (2) 

3) In region III: 

2

III 0  , III 0 IIIB H , III III H                          (3) 

The boundary and interface conditions for the regions are as described in (4) and (5), where ma and mb are 

the z-axis position of the upper and lower surfaces of the PM array respectively. 

I 0z  , III 0z                                                       
(4) 

I II II III

Iy IIy IIy IIIy

Iz IIz IIz IIIz

a a b b

a a b b

a a b b

x z m x z m x z m x z m

z m z m z m z m

z m z m z m z m

H H ,H H

H H ,H H

B B ,B B

   

   

   

 

 

 
                      

(5) 
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In the 2D PM array, the PM poles are magnetized in the z-direction, and the others are magnetized along 

the diagonal direction. As shown in Fig.4,  by decomposing the residual magnetization vector into horizontal 

and vertical directions, the magnetic force of the PM array can be treated as a combination of the magnetic 

forces of three parts (Part 1, Part 2, Part 3)  The equivalent residual magnetization of the PMs in Part 1 and 

Part 2 is M/√2. The equivalent residual magnetization of the PMs in Part 3 is (1 − √2)𝑀.The overall 

diagram of the analytical model of the new PM array is shown in Fig.5. 
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Fig.4. Decomposition of the PM array. 
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Fig.5. Overall diagram of the analytical model. 

a. Flux density of Part1 and Part2 

It is clear that Part 1 and Part 2 are both 1D quasi-Halbach PM arrays. Assuming that the location of the 

origin is as shown in Fig.6, then the magnetization M in the two parts is as described in (6) and (7)[11]. 

 Part 1: x x zx zM M M e e                                              (6) 

       Part 2: y y zy zM M M e e                                              (7) 
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Fig.6. One dimension quasi-Halbach PM array. 

The Fourier series of the magnetization vectors are given by (8) – (11)[11]. 

r

1,2,0

cos( )
2

x n

n

B n
M a x









                                           (8) 

r

1,2,0

sin( )
2

zx n

n

B n
M b x










  

                                      

(9) 

r

1,2,0

cos( )
2

y n

n

B n
M a y








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(10) 

r

1,2,0

sin( )
2

zy n

n

B n
M b y










  

                                   

(11) 

where
4

sin cos
2 4

n

n n
a

n

 


   ， 4

sin sin
2 4

n

n n
b

n

 


  

.
 

Thus, the general solutions of scalar magnetic potential in (1),(2) and (3) can be obtained by (12) – (14) 

where 1 1

2 21 22

z z
K K e K e

 
    . 

1

I 1

1

sin( ) sin( )
z

n

n x n y
K e

  


 






 
    

 


                      
(12) 

1

III 1

1

sin( ) sin( )
z

n

n x n y
K e

  


 






 
    

 


                         
(13) 

II 2

1 0

sin( ) sin( )r n

n

B a n x n y
K

n

  


   





   
      

  


               

(14) 

Combining the boundary conditions (4) and (5), the flux density distribution in the air-gap/winding 

(Section I) can be derived. 

1

0 1 1

1,2,

cos( )z

Ix

n

n x
B K e  

 







   
                             

(15) 

1

0 1 1

1,2,

cos( )z

Iy

n

n y
B K e  

 







   
                            

 (16) 
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1

0 1 1
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( ) sin( ) sin( )z
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n
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(17) 

where: 1

n



 , 1 1

1

1 0

( ) ( )
2 2

a bm m r
n n

B
K e e a b

 

 
    

. 

b. Flux density of Part3 
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Fig.7. Magnetization distribution of N poles. 

 In Fig.4, Part 3 is the compensation part of the array, which only consists of the N and S poles. The 

magnetization distribution of the N poles of Part 3 is shown in Fig.7. The Fourier series of these 

magnetization vectors are given by 

0

1 1

1 1
( cos )( cos )
4 4

z n m

n m

n x m y
M M a a

 

 

 
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(18) 

where: 
0

0

(1 2) rB
M




 , 2

sin( )
4

i

i
a

i




     (i=n,m) 

The resolution of flux density distribution in the air-gap/winding section I due to the N poles can be 

derived as[21]: 

2 4

2 1 2 3

1 1

( sin sin cos )
z z

Ix b b

n m

n x n x m y
B K e K e

   
 
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 

 
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(19) 

3 4

3 2 3 3

1 1

( sin sin cos )
z z

Iy b b

m n

m y m y n x
B K e K e

   
 

  

 
 

 

   
  
(20) 
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4
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1 1
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cos cos

zz

Iz b b b
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 
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 
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 
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
     

(21) 

where:
2

n



 ，

3

m



 ，

2 2 2

4 2

( )m n 





 and 



> IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS  < 

 

9 

0

(1 2)

16
am zr

b

B
K e e

   , 
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   

 Considering the symmetry of the poles, based on the flux density expressions of the N poles (19) to (21), 

then the flux density distribution due to the S poles can be derived by assuming Br of the S poles to be the 

inverse of the N poles. Thus Br becomes –Br and similarly x becomes (τ+x) and y becomes (τ+y). Combining 

the flux density expressions of the N and S poles leads to the flux density expressions of Part 3.  

c. Flux density of the PM array 

Finally, by adding the expressions of the three parts up together, the flux density expressions of the 2D PM 

array can be obtained as shown below. 

2 4

2 1 1 2 3 3

1 1

( sin sin cos )
z z

Ix b b

n m

n x n x m y
B K C e K C e

   
 
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 
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   
   

(22) 

3 4

3 2 2 3 3 3

1 1
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z z

Iy b b
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 
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32

4

2 1 1 3 2 2

1 1

4 3 3

1 1

cos cos

cos cos

zz

Iz b b

n m

z

b

n m

n x m y
B K C e K e C

n x m y
K C e





 
 

 

 
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 

 


 

 


 

    


             

(24) 

where 1 1 cos( )C n  , 2 1 cos( )C m  , 

3 1 cos( )cos( )C n m    

B. Comparison with 3D Finite Element Model 

In order to validate the analytical model presented above, then a 3D FE model of the PM array is also built. 

The main parameters of the 2D PM array are given in Table. I. 
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Fig.8 shows the air-gap flux density distributions of the proposed magnet array in the x-y plane.  Fig. 7(a) 

is the flux density calculated by the analytical model, while Fig. 7(b) is the flux density calculated by the 3D 

FE model. This accounts for the end-effects and the magnetic non-linearity of the iron spacers.  The 

analytical model results are very similar to those of the FE model in the central area of the machine. Toward 

the end parts of the machine the FE results are slightly lower than those of the analytical model.  The 

difference of the peak values between the two methods is about 0.034 T, which is approximately 5% of the 

peak value. This is due to the reasons mentioned above.  

 

(a)  

 

(b)  

Fig.8. Air-gap flux density distribution. (a)  Analytical result. (b) FE result. 

TABLE I 

PARAMETERS OF THE PM ARRAY 

Item Symbol Value 

Poles number of PM P 13 

-50

0

50

-50

0

50

-1

-0.5

0

0.5

1

y(mm)x(mm)

B
z
(T

)

-50

0

50

-50

0

50

-1

-0.5

0

0.5

1

y(mm)x(mm)

B
z
(T

)
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arrays 

Pole pitch Τ 20mm 

Thickness of PM hm 10mm 

The remanence of PM Br 1.32T 

The relative permeability 

of PM 

μr 1.2 

Considering that the length of the windings is a multiple of 2τ,to uncouple the thrusts between the x-axis 

and y-axis, (according to the symmetric nature of the PM array), (25) and (26) can be identified. 

_

1

2
zav y zB B dy



 
  , 

_

1

2
zav x zB B dx



 
 

                     
(25) 

1

2
xav xB B dy



 
  ,

1

2
yav yB B dx



 
 

                            
(26) 

Quantifiable measure of the characteristics of the PM array and its influence on the performances of the 

motor can be achieved by considering the average values of the expressions above. 

Fig. 9 shows the variation of the fundamental wave amplitude of the Bzav relative to the height of air-gap, 

in which, the model 1 analytical curve represents the results of the new array calculated by analytical method, 

the model 1 FEM curve represents the results of the new array calculated by FEM and the model 2 FEM 

curve represents the results of the PM array reported in [20] calculated by FEM. It can be found that the 

results of analytical method are in good agreement with those of the 3D FEM. The fundamental amplitude of 

the flux density generated by the new array is more than 30% higher than the flux density generated by the 

PM array reported in [20] based on the same dimensions and same PM1 materials as shown in Fig.2. The 

space utilization is improved and as shown in Fig.10, the harmonic presence in the new configuration is also 

decreased, especially the 3
rd

 harmonic, which is about 33% lower than that of the array reported in [20].The 

ignoring of the iron spacers and the permeability of the PMs cause the relatively large harmonic in the 

analytical model compared to the FEM models. 
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Fig.9. Amplitude of fundamental wave in Bzav. 

 

Fig.10. Comparison of the harmonics in Bzav(airgap=2mm). 

III. EMF AND FORCE CALCULATION 

Based on the flux density distribution, the equations of the back-EMF and the forces for the proposed 

motor can also be derived.  The equations help to evaluate the performance of the motor and can be used to 

achieve an optimized design and an improved control system.  

In order to achieve higher force density values and higher material utilization, a three layer winding 

topology is adopted in the planar motor. In the topology, the first and third layers windings are both 

configured for the same direction, which are connected in series and both have a thickness hc1. The windings 

in the secondary layer make up the other direction and have a thickness of 2hc1. The main dimensions of the 

windings are shown in Fig.11 and Table.II. When the number of pole pairs of the planar motor is 2, the 

number of the windings in x(y)-direction is 6. 
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Fig.11. Diagram of the windings. 
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Fig. 12. Distribution of three-layer windings.  

A. Electromotive Force Calculation 

With a three-layer windings topology as shown in Fig.11 and Fig.12, the coil flux-linkage in the 

y-direction windings ϕy and x-direction windings ϕx can be calculated by the following integrations, where p 

is the number of pole pairs of the x-direction or the y-direction windings. 

 1 1

1 1

L
2

2 2
L

2
2 2

2
z c z c

z c z c

c

c

x h h h h

z z
h h h hx

w

wy p B dzdxdy B dzdxdy
  

  
    

    
(27) 

1

1

L

2 2
L

2 2

2
z c

z c

c

c

y h h

z
y

w

x
h

w
h

p B dzdydx
 

 
   

                                    
(28) 

Considering the length of the windings is a multiple of period of Bz(2τ), then as to (25), the forces equation 

can be re-written as shown in (29, 30). 

 1 1

1 1

2
2

_ _
2

2

2
z c z c

z c c

c

z
c

x h h h h

zav y zav y
h h h h

w

x
wy pL B dzdx B dzdx
  

 
   

   
(29) 

1

1

2
_

2

2
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c
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y h h
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h

x
h

w

w
y

pL B dzdy
 


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(30) 
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Since the harmonic presence is smaller than 4%, the harmonics of the air-gap flux density can safely be 

ignored.  

_ cos( )zzav y mBB x , _ cos( )zzav x mBB y
                          

(31) 

Hence, the inducted EMF per phase can be simplified as: 

1 18 sin( )
y

y c z

d x
e N ph LB K v

dt

 


  

                             
(32) 

1 28 sin( )x

x c z

d y
e N ph LB K v

dt

 


                                (33) 

where, N is the turns of the winding per phase, v is the linear velocity, sin( )sin( )
2 2

c cb w
K

 

 
 ,

1

1
2

1

1

2

z c

z c

h h

z zm
h h

c

dzB B
h




  and 

 1 1

1 1

2

1
2

1

1

2

z c z c

z c z c

h h h h

z zm zm
h h h h

c

B B dz B dz
h

 

 
   . 

B. Electromagnetic Force Calculation 

 For a three-layer winding topology, considering the equation ( )
v

F J B dv   , the Lorentz force generated 

in one set of y-direction windings can be expressed as: 

Thrust force: 

 1 1

1 1

L
2

2 2
L

2
2 2

2
z c z c

z c z c

c

c

x h h h h

y z y z

w

h h h h
wx

x
F p J B dzdxdy J B dzdxdy

  

  
     (34) 

Normal force: 

 1 1
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L
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2 2
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2
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1 2
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z c z c

c

c
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wz x x
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F p J B dzdxdy J B dzdxdy
  

  
    

    
(35) 

Therefore, the force generated in one set of the x-direction windings can be expressed as 

Thrust force: 
1

1

L

2 2
L

2 2

2
z c

z c

c

c

y h h

x z
h h

w

w
y

y p J B dzdydxF
 

 
               (36) 

Normal force: 
1
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y h h

x
h hy

w

wz yp J B dzdydxF
 

 
           (37) 
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By considering  

sin( )xmxavB B x , sin( )ymyavB B y                                 (38) 

1

1
1

1

1

2

z c

z c

h h

y ym
h h

c

dzB B
h




 

                                                   
(39) 
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z c z c
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h h h h

x xm xm
h h h h

c
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 

 
  

                        
(40) 

 

Then (34 – 37) can be simplified as described by (41) – (44), where θx and θy are the electrical angle between 

the current synthetic vector of the y-direction windings and x-direction windings with their d-axis 

respectively. 

1 112
sin( )

c z y

x x

ph LB J
F K





                                        (41)  

1 212
sin( )c z x

y y

ph LB J
F K





                                        (42)  

1 1

1

12
cos( )

c x y

z x

ph LB J
F K





                                       (43)  

1 1

2

12
cos( )

c y x

z y

ph LB J
F K





                                          (44)  

C. Comparison of Force Characteristics 

In order to identify the advantages of the proposed novel winding topology, its force characteristics is 

compared to those of two typical winding topologies (Fig.13). The topology in Fig.13(a) is presented in [22], 

where the concentric windings also consist of the x-direction windings and the y-direction windings, 

however  the effective area of one direction windings is only ½  that  of the mover surface. The latter one is 

presented in [23],where the windings consist of nine-phase windings. The advantage of the topology is that 

all the windings can generate x and y direction forces. Similar to the novel overlapping winding topology, 

almost100% of the mover surface in [23] is used to generate the one-direction thrust.  

Table II compares the force characteristics of the three different winding topologies, such as the maximum 

thrust force, utilization of the copper and the force density. According to the results, it can be found that the 
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proposed, novel motor has the highest force density D and can provide the highest force C with same copper 

loss.  However the DOF is lower than the motor in [22].  

τc

bc

bc

τc

 

(a)                                                          (b) 

Fig.13. Winding topology of (a) Compter [22], (b) Kou [23]. 

TABLE II 

DIMENSION PARAMETERS OF THE WINDINGS 

Winding 

Topology 

Proposed Compter

[20] 

Kou[21] 

Degree of 

Freedom 

5 6 3 

Number of pole 

pairs of the 

whole windings 

p 

4 4 4 

Coil pitch τc 4τ/3 4τ/3 4τ/3 

Bundle width bc τ/3 0.55 τ 1.4τ/3 

Coil width wc τ 0.783 τ 2.6τ/3 

Coil effective 

length 

8 τ 4 τ 2.6τ/3 

Number of coils 24 12 36 
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Thickness of           

one-direction 

coil 

hc/2 hc hc 

Minimum 

Mover size S 

8.33 

τ*8.33 τ 

8.55τ*8.

55τ 

8τ*8τ 

Maximum 

Thrust F 

215.287 z cB h J  210.92 z cB h J  213 z cB h J  

Copper lossPloss 
2 236 ch J   2 231.57 ch J   2 258.24 ch J   

loss

F
C

P
  0.425 zB J   0.346 zB J  0.223 zB J  

F
D

S
  

0.220 z cB h J  0.149 z cB h J  0.203 z cB h J  

IV. OPTIMIZATION OF THE PLANAR MOTOR 

A. Objective Function 

In this paper, the objective is to maximize the output force of the planar motor for the same current density 

while minimizing the cost and maximizing the efficiency. Since the side lengths of the sides of the magnet 

cube in the array are all equal to τ/2, the height of the PM is determined with a certain τ. The main dimensions 

need to be optimized in the planar motor are the pole pith of the magnet array τ, the length of the windings L 

and the height of the windings hc.  

According to the analytical model of the PM array(15)~(17) and (22)~(24), the flux density  decreases 

exponentially with the height of air-gap. For the fundamental, the exponential factor is -π/τ. The attenuation 

of the flux density is lowered with the increment of τ. It means that a higher electromagnetic force will be 

generated with bigger pole pitch τ with fixed length L. But at the same time, the increment of τ will enhance 

the height of the PM array τ/2 and the bundle width of the windings τ/3. The volume of the PM array and the 

volume of the end-part windings also will be increased. Therefore, there is a tradeoff between the forces and 

the space and cost of the PM. 
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 With the fixed winding length L and the fixed pole pitch τ, the increment of the height of the windings hc 

will enhance the forces, at the cost of weight. This indicates that to achieve the highest levitation force 

possible an optimal value of hc exists.   

There are numerous methods for multi-objective optimization. One of the most adopted ones is to 

aggregate all objective functions to create a composite single-objective function to minimize and then use 

optimization algorithms to obtain an optimal solution. According to the optimization goal, the objective 

function is defined as 

L

m loss

F
OF

V P




                                                              
 (45) 

where LF is the parameter to represent the force characteristic of the motor, which is set such that

L Lmean LgmF F F  . LmeanF is the mean value of the levitation force in the entire suspension stroke, LgmF is the value 

of the levitation force with the mover in the middle of the suspension stroke. mV is the volume of the PM array 

in the planar motor, which determines  the space and the cost of the planar motor. lossP is the loss of the planar 

motor,
4

2

1

loss i i

i

P I R


 , where i is the number of the windings, which determines  the efficiency of the planar 

motor. 

To get an eligible solution, some constraints are involved during the optimization.  These are: 

max

2 ( 1)

L set

p n n

F F

 


                                                                
(46) 

where maxLF is the maximum of the levitation force, which should be bigger than the required force setF . Since 

the pole pairs of each set of windings is an integer n, the total p of the windings should be 2n.  

B. PSO optimization 

The PSO is a population-based stochastic optimization algorithms inspired by the social behavior of 

flocking organisms, such as swarms of honeybees and fish shoals. It uses a population of individuals 

(particles) to probe and assess promising regions of the search space. In the movement, each particle 

memories the best position it ever encountered and the moving velocity is dynamically adjusted according to 
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the relationship between its previous best position and the best position ever attained by all particles. 

Therefore, the particles have the tendency to move toward the increasingly better search area over the whole 

course of the search process [24~28]. 

When there are k dimensions to be optimized the PSO algorithm starts with N sets of k-dimensional 

particles randomly scattered over a k-dimensional searching space. The ith particle can be represented by a 

k-dimensional vector,  

1 2[ , , , ]T

i i i ikX x x x  

The velocity of the ith particle is also a k-dimension vector: 

1 2[ , , , ]T

i i i ikV v v v  

The best position that is encountered by the ith particle, i.e. the existing minimum value of the ith particle 

in the objective function, is: 

1 2[ , , , ]T

i i i ikP p p p  

The best position in P1~PN is  

1 2[ , , , ]T

g g g gkP p p p
 

When the N sets of particles are searching for the optimum, the particles update their velocities according 

to the best positions at each generation. For the s+1 generation, the velocity of the ith particle should be[28]: 

1 1

2 2

( 1) ( ) ( ( ) ( ))

( ( ) ( ))

id id id id

gd id

v s v s C r P s x s

C r P s x s

   

 
                       

(47) 

( 1) ( ) ( 1)id id idx s x s v s    (48) 

Where ω is the inertia, χ is constriction factor,C1 and C2denote the cognitive and social parameters,r1 and 

r2are random numbers uniformly distributed in the interval [0,1]. 

C. Optimization Results 

 A preliminary analytical design exercise was done in order to identify an appropriate starting value for N. 

Thus, for the optimization of the planar motor, initially N in the PSO is set to be 30, k is set to be 3,the inertia 

ω is set to be 0.7298, the cognitive and social parameters C1 and C2 are set to be 1.4962 and the constriction 
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factor χ is set to be 1. The three dimensions of the particles correspond to the main three dimensions of the 

planar motor, i.e. the pole pitch τ, the length of the windings L and the thickness of the windings hc1.When the 

required force setF is set to be 10N, the levitation stroke is from 2mm to 6mm. With these specifications, the 

evolution algorithm is completed after 48 iterations with the objective function as shown in (45).  

The variation of the fitness is shown in Fig.14. The corresponding positions of the particles, the variation 

of three dimensions, are shown in Fig.15. It is clear that the PSO has an excellent convergence rate. The 

particles flock together towards the best position within 25 iterations. The optimal dimensions are thus found 

to be τ=9.975mm, L=79.8mm, hc1=1.18mm. 

When the required force setF is set to be 1000N, the levitation stoke is from 3mm to 9mm. For these 

conditions the evolution is completed after 60 iterations, relative to the objective function shown in (45). The 

optimization dimensions are τ=52.06mm, L=416.5mm, hc1=3.8mm. 

 

Fig.14.  The variation of the fitness. 
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(b)   

 

(c) 

Fig.15. The positions of the particles. (a)  Pole pitch. (b)  Length of the windings. (c)  Thickness of the 

windings. 

V. SIMULATION AND EXPERIMENT 

Based on the optimized results presented above, a prototype of the three-layer planar motor with 

dimensions τ=10mm, L=80mm, hc1=1mm has been manufactured. The prototype and the experiment system 

are shown in Fig.16.  

By using a gauss meter, the flux density distribution in the plane with g=2mm is measured, which is shown 

in Fig.17(a). Fig.17(b) is the difference between the flux density results obtained by experimental 

measurements and the analytical method where the mean difference is smaller than 0.03T. The results of the 

analytical method are in good agreement with the experimental results. The high difference near the edges is 

because end-effects are not considered in the analytical method.  However when the range of the mover’s 

motion isn’t bigger than the PM area, the influence of the end-effect can safely be ignored.  
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(a)                                              (b)  

 

(c)  

Fig.16.  The prototype of the planar motor.(a) Permanent magnet array. (b) Multi-layer Windings. (c) 

Experiment system. 
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Fig.17.  Experimental results of air-gap flux density distribution. (a) Measurement result. (b) Difference 

between the results of two methods. 

Four linear guides are placed on the angles of the resin board to provide an improved translational 

accuracy.  The relationship between the levitation height and windings current is shown in Fig.18. When the 

levitation height is 5mm and the movers is driven in x-direction with a velocity of 0.17m/s, the back-EMF 

curve generated in one turn of y-direction windings is shown in Fig.19. In Fig.18 and Fig.19, the simulation 

results are derived from the 3D FEM results. The similarity between the experimental and the FE results 

indicate the validity of the analytical models. Because of the slight fluctuation of the velocity in the 

experiment, the measured back-EMF curve is not as smooth as the analytical results. The amplitude of the 

measured back-EMF is 8.18mV and the amplitude of the EMF calculated by the analytical method is 8.1mV. 

The difference between the results is only 1%. 

 

Fig.18.  Relationship between levitation height and current. 

 

Fig. 19.  EMF curves. 
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VI. CONCLUSION 

In this paper, a multi-objective optimization of a planar motor with three-layer overlapped windings has 

been proposed with the main objective of achieving maximum force density with minimum cost. Instead of 

3D FE analysis, the optimization of the planar motor is based on the analytical expressions of the flux density 

of the PM array and the formulas of forces. According to the dynamic process of the optimization based on 

the PSO algorithm, the proposed multi-objective optimization method is shown to be timesaving and to have 

the capability to find the best results with quick convergence. 

By comparing with other planar motors, the advantages of this novel planar motor, such as high force 

density and high space utilization have been validated. The flux density generated by the improved PM array 

is 33% higher than that of the original one. The force density of the novel winding topology is 22.5% higher 

than that of other two classic winding topologies. An important conclusion from this work is the exponential 

damping relationship between the flux density and the height of air-gap that was identified and validated by 

experimental results. 

A fast but accurate analytical tool for design and optimization of planar motors has been developed, based 

on expressions of the flux density of the PM array. Its accuracy has been validated by the FE results and also 

by the experiment results of the prototype. This tool will serve to facilitate future work regarding such planar 

motors. 

As future work, intelligent, nonlinear control strategies based on the analytical model will be further 

investigated to realize improved high-precision control and positioning. 
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