
ASPHERICITY OF A LENGTH FOUR
RELATIVE GROUP PRESENTATION

Abstract

We consider the relative group presentation P = 〈G,x|r〉 where x = {x} and

r = {xg1xg2xg3x
−1g4}. We show modulo a small number of exceptional cases exactly

when P is aspherical. If H = 〈g−1
1

g2, g
−1
1

g3g1, g4〉 ≤ G then the exceptional cases

occur when H is isomorphic to one of C5, C6, C8 or C2 × C4.
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1 Introduction

A relative group presentation is a presentation of the form P = 〈G, x|r〉 where G is a
group, x a set disjoint from G and r is a set of cyclically reduced words in the free product
G ∗ 〈x〉 where 〈x〉 denotes the free group on x. If G(P) denotes the group defined by P
then G(P) is the quotient group G ∗ 〈x〉/N where N denotes the normal closure in G ∗ 〈x〉
of r. A relative presentation is defined in [2] to be aspherical if every spherical picture over
it contains a dipole. If P is aspherical then statements about G(P) can be deduced and the
reader is referred to [2] for a discussion of these; in particular torsion in G(P) can easily
be described.

We will consider the case when both x and r consists of a single element. Thus r = {r}
where r = xε1g1 . . . xεkgk where gi ∈ G, εi = ±1 and gi = 1 implies εi + εi+1 6= 0 for
1 ≤ i ≤ k, subscripts mod k. If k ≤ 3 or if r ∈ {xg1xg2xg3xg4, xg1xg2xg3xg4xg5} then,
modulo some open cases, a complete classification of when P is aspherical has been obtained
in [1], [2], [7] and [10]. The case r = (xg1)

p(xg2)
q(xg3)

r for p, q, r > 1 was studied in [11]
and r = xng1x

−1g2 (n ≥ 4) was studied in [5]. The authors of [9] used results from [7]
in which r = xg1xg2x

−1g3 to prove asphericity for certain LOG groups. In this paper we
continue the study of asphericity and consider r = xg1xg2xg3x

−1g4. Observe that r = 1
if and only if x−1g−1

2 x−1g−1

1 x−1g−1

4 xg−1

3 = 1 so replacing x−1 by x it follows that we can
work modulo g1 ↔ g−1

2 and g3 ↔ g−1

4 . A standard approach is to make the transformation
t = xg1 and then consider the subgroup H of G generated by the resulting coefficients.
In our case r becomes t2g−1

1 g2tg
−1

1 g3g1t
−1g4 and so H = 〈g−1

1 g2, g
−1

1 g3g1, g4〉. One then
usually proceeds according to either when H is non-cyclic or when H is cyclic. (Note
that 〈g−1

1 g2, g
−1

1 g3g1, g4〉 is cyclic if and only if 〈g2g
−1

1 , g2g
−1

4 g−1

2 , g−1

3 〉 is cyclic.) The latter
case seems to be the more complicated – indeed the open cases referred to in the above
paragraph almost all involve H being cyclic. Our results reflect this difference in difficulty.
When H is non-cyclic we obtain a complete answer except for the following case (modulo
g1 ↔ g−1

2 , g3 ↔ g−1

4 ) in which H ∼= C2 × C4:
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(E) |g3| = 2; |g4| = 4; g−1

1 g2 = 1; g−1

1 g3g1g4 = g4g
−1

1 g3g1

where we use |a| to denote the order of the element a.

Theorem 1.1 Let P be the relative presentation

P = 〈G, x|xg1xg2xg3x
−1g4〉,

where gi ∈ G (1 ≤ i ≤ 4), g3 6= 1, g4 6= 1 and x /∈ G. Let H = 〈g−1

1 g2, g
−1

1 g3g1, g4〉
and assume that H is non-cyclic and the exceptional case (E) does not hold. Then P is
aspherical if and only if (modulo g1 ↔ g−1

2 , g3 ↔ g−1

4 ) none of the following conditions
holds:

(i) |g4| < ∞ and g3g1g
−1

2 = 1;

(ii) |g−1

1 g2| < ∞, |g3| = |g4| = 2 and g−1

1 g3g1g4 = g2g
−1

4 g−1

2 g−1

3 = 1;

(iii)
1

|g−1

1 g2|
+

1

|g3|
+

1

|g4|
+

1

|g2g4g
−1

1 g−1

3 |
> 2.

Now let H be cyclic. Before stating the theorem we make a list of exceptions (modulo
g1 ↔ g−1

2 , g3 ↔ g−1

4 ).

(E1) |g4| = 5; g−1

1 g2 = g2
4; g−1

1 g3g1 = g3
4.

(E2) |g4| = 6; g−1

1 g2 = 1; g−1

1 g3g1 = g2
4.

(E3) |g4| = 6; g−1

1 g2 = 1; g−1

1 g3g1 = g4
4.

(E4) |g4| = 8; g−1

1 g2 = 1; g−1

1 g3g1 = g4
4.

Observe that (E1) implies H ∼= C5; (E2) and (E3) imply H ∼= C6; and (E4) implies
H ∼= C8.

Theorem 1.2 Let P be the relative presentation

P = 〈G, x|xg1xg2xg3x
−1g4〉

where gi ∈ G (1 ≤ i ≤ 4), g3 6= 1, g4 6= 1 and x /∈ G. Let H = 〈g−1

1 g2, g
−1

1 g3g1, g4〉 be
a cyclic group. Suppose that none of the exceptional conditions (E1)–(E4) holds. Then
P is aspherical if and only if either H is infinite or H is finite and (modulo g1 ↔ g−1

2 ,
g3 ↔ g−1

4 ) none of the following conditions holds:

(i) g3g1g
−1

2 = 1; (vi) |g3| = 2; g−1

1 g3g2g4 = (g−1

1 g2)
2g−1

4 = 1;
(ii) g−1

3 g1g
−1

2 = g2g
−1

4 g−1

1 g−1

3 = 1; (vii) g−1

1 g2 = 1; g−1

1 g3g1g
±1

4 = 1;
(iii) g−1

3 g1g
−1

2 = g4g
−1

2 g1 = 1; (viii) g−1

1 g2 = 1; |g3| = 2; |g4| = 3;
(iv) |g3| = 2; |g4| = 2; (ix) g−1

1 g2 = 1; 4 ≤ |g3| ≤ 5; g−1

1 g2
3g1g4;

(v) |g3| = 2; g−1

1 g3g2g4 = g−1

1 g2g
−2

4 = 1; (x) g−1

1 g2 = 1; |g3| = 6; g−1

1 g3
3g1g4.
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In Section 2 we discuss pictures and curvature; in Section 3 there are some preliminary
results; Theorem 1.1 and Theorem 1.2 are proved in Sections 4 and 5.

Acknowledgement: the authors thank R M Thomas for his helpful comments concerning
this paper.

2 Pictures

The definitions of this section are taken from [2]. The reader should consult [2] and [1] for
more details.

A picture P is a finite collection of pairwise disjoint discs {∆1, . . . , ∆m} in the interior
of a disc D2, together with a finite collection of pairwise disjoint simple arcs {α1, . . . , αn}
embedded in the closure of D2 −

⋃m

i=1
∆i in such a way that each arc meets ∂D2 ∪

⋃m

i=1
∆i

transversely in its end points. The boundary of P is the circle ∂D2, denoted ∂P . For
1 ≤ i ≤ m, the corners of ∆i are the closures of the connected components of ∂∆i−

⋃n

j=1
αj,

where ∂∆i is the boundary of ∆i. The regions of P are the closures of the connected

components of D2 −
(

⋃m

i=1
∆i ∪

⋃n

j=1
αj

)

.

An inner region of P is a simply connected region of P that does not meet ∂P . The
picture P is non-trivial if m ≥ 1, is connected if

⋃m

i=1
∆i ∪

⋃n

j=1
αj is connected, and is

spherical if it is non-trivial and if none of the arcs meets the boundary of D2. The number
of edges in a region ∆ is called the degree of ∆ and is denoted by d(∆). If P is a spherical
picture, the number of different discs to which a disc ∆i is connected is called the degree
of ∆i, denoted by deg(∆i).

With P = 〈G, x|r〉 define the following labelling: each arc αj is equipped with a normal
orientation, indicated by a short arrow meeting the arc transversely, and labelled by an
element of x ∪ x−1. Each corner of P is oriented anticlockwise (with respect to D2) and
labelled by an element of G. If κ is a corner of a disc ∆i of P , then W (κ) is the word
obtained by reading in an anticlockwise order the labels on the arcs and corners meeting
∂∆i beginning with the label on the first arc we meet as we read the anticlockwise corner κ.
If we cross an arc labelled x in the direction of its normal orientation, we read x, otherwise
we read x−1.

A picture P is called a picture over the relative presentation P if the above labelling satisfies
the following conditions.

(1) For each corner κ of P , W (κ) ∈ r∗, the set of all cyclic permutations of the members
of r ∪ r−1 which begin with a member of x.

(2) If g1, . . . , gl is the sequence of corner labels encountered in a clockwise traversal of
the boundary of an inner region ∆ of P , then the product g1 . . . gl = 1 in G. We say
that g1 . . . gl is the label of ∆.
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A dipole in a labelled picture P over P consists of corners κ and κ′ of P together with
an arc joining the two corners such that κ and κ′ belong to the same region and such
that if W (κ) = Sg where g ∈ G and S begins and ends with a member of x ∪ x−1, then
W (κ′) = S−1h−1. The picture P is reduced if it does not contain a dipole. A relative
presentation P is called aspherical if every connected spherical picture over P contains a
dipole.

The star graph Pst of a relative presentation P is a graph whose vertex set is x ∪ x−1 and
edge set is r∗. For R ∈ r∗, write R = Sg where g ∈ G and S begins and ends with a
member of x∪x−1. The initial and terminal functions are given as follows: ι(R) is the first
symbol of S, and τ(R) is the inverse of the last symbol of S. The labelling function on the
edges is defined by λ(R) = g−1 and is extended to paths in the usual way. A non-empty
cyclically reduced cycle (closed path) in Pst will be called admissible if it has trivial label
in G. Each inner region of a reduced picture over P supports an admissible cycle in Pst.

As described in the introduction we will consider spherical pictures over P = 〈G, t|r〉 where
r = t2g−1

1 g2tg
−1

1 g3g1t
−1g4. For ease of presentation we introduce the following notation:

a = 1, b = g−1

1 g2, c = g−1

1 g3g1 and d = g4 and consider tatbtct−1d. Exception (E) and
conditions (i)–(iii) of Theorem 1.1 can then be re-written as

(E) |c| = 2; |d| = 4; b = 1; cd = dc.

(i) |d| < ∞ and cab−1 = 1;

(ii) |a−1b| < ∞, |c| = |d| = 2 and a−1cad = bd−1b−1c−1 = 1;

(iii)
1

|a−1b|
+

1

|c|
+

1

|d|
+

1

|bda−1c−1|
> 2.

The exceptions (E1)–(E4) and conditions (i)–(x) of Theorem 1.2 can be rewritten as

(E1) |d| = 5; b = d2; c = d3;

(E2) |d| = 6; b = 1; c = d2;

(E3) |d| = 6; b = 1; c = d4;

(E4) |d| = 8; b = 1; c = d4;

(i) cab−1 = 1; (vi) |c| = 2; cbda−1 = (a−1b)2d−1 = 1;
(ii) c−1ab−1 = cadb−1 = 1; (vii) a−1b = 1; cad±1a−1 = 1;
(iii) c−1ab−1 = db−1a = 1; (viii) a−1b = 1; |c| = 2; |d| = 3;
(iv) |c| = |d| = 2; (ix) a−1b = 1; 4 ≤ |c| ≤ 5; c2ada−1 = 1;
(v) |c| = 2; cbda−1 = a−1bd−2 = 1; (x) a−1b = 1; |c| = 6; c3ada−1 = 1.
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Figure 2.1: vertices and star graph

Let P be a reduced connected spherical picture over P. Then the vertices (discs) of P are
given by Figure 2.1(i) and (ii) where x̄ denotes x−1 for x ∈ {a, b, c, d}; and the star graph
Γ is given by Figure 2.1(iii).

We make the following assumptions.

(A1) P has a minimum number of vertices.

(A2) If |c| = 2 then, subject to (A1), P has a maximum number of regions of degree 2
with label c±2.

Observe that (A1) implies that cε1wcε2, dε1wdε2 where ε1 = −ε2 = ±1 and w = 1 in G
cannot occur as sublabels of a region. For otherwise a sequence of bridge moves [4] can
be applied to produce a dipole which can then be deleted to obtain a picture with fewer
vertices. Moreover if |c| = 2 then (A2) implies that c±2 cannot be a proper sublabel and
cεwcε where ε = ±1, w = 1 in G cannot be a sublabel of a region in P . For otherwise
bridge moves can be applied to increase the number of regions labelled c±2 while leaving
the number of vertices unchanged.

To prove asphericity we adopt the approach of [6]. Let each corner in every region of P be
given an angle. The curvature of a vertex is defined to be 2π less the sum of the angles at
that vertex. The curvature c(∆) of a k-gonal region ∆ of P is the sum of all the angles of
the corners of this region less (k − 2)π. Our method of associating angles is to give each
corner at a vertex of degree d an angle 2π/d. This way the vertices have zero curvature and
we need consider only the regions. Thus if ∆ is a k-gonal region of P (a k-gon), denoted
by d(∆) = k, and the degree of the vertices of ∆ are di (1 ≤ i ≤ k) then

c(∆) = c(d1, d2, . . . , dk) = (2 − k)π + 2π
k

∑

i=1

(1/di).

In fact since each di = 4 (1 ≤ i ≤ k) we obtain

c(∆) = π(2 − k/2)

so if d(∆) ≥ 4 then c(∆) ≤ 0.
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It follows from the fundamental curvature formula that
∑

c(∆) = 4π is where the sum is
taken over all the regions ∆ of P . Our strategy to show asphericity will be to show that
the positive curvature that exists in P can be sufficiently compensated by the negative
curvature. To this end, as a first step, we located the regions ∆ of P satisfying c(∆) > 0,
that is, of positive curvature. For each such ∆ we distribute all of c(∆) to regions ∆̂ near ∆.
For such regions ∆̂ of P define c∗(∆̂) to equal c(∆̂) plus all the positive curvature ∆̂ receives
in the distribution procedure mentioned above with the understanding that if ∆̂ receives
no positive curvature then c∗(∆̂) = c(∆̂). Observe then that the total curvature of P is
at most

∑

(c∗(∆̂)) where the sum is taken over all regions ∆̂ of D that are not positively
curved regions. Therefore to prove P is aspherical it suffices to show that c∗(∆̂) ≤ 0 for
each ∆̂.

Using the star graph Γ of Figure 2.1(iii) we can list the possible labels of regions of small
degree (up to cyclic permutation and inversion).

d(∆) = 2 ⇒ l(∆) ∈ S2 = {c2, d2, a−1b}

d(∆) = 3 ⇒ l(∆) ∈ S3 = {c3, cab−1, c−1ab−1, d3, db−1a, d−1b−1a}

Allowing each element in S2 ∪ S3 to be either trivial or non-trivial yields 512 possibilities.
This number can be reduced without any loss as follows.

1. Work modulo T-equivalence, that is, a ↔ b−1, c ↔ d−1. (So, for example, the case
|c| = 3, |d| > 3, a−1b 6= 1, c±1ab−1 6= 1, db−1a = 1, d−1b−1a 6= 1 is equivalent to
|d| = 3, |c| > 3, a−1b 6= 1, d±1b−1a 6= 1, c−1ab−1 = 1, cab−1 6= 1.

2. Delete any combination that implies c = 1 or d = 1.

3. Delete any combination that yields a contradiction (for example c2 = 1, cab−1 = 1,
c−1ab−1 6= 1.

4. Delete any combination that yields |d| < ∞ and cab−1 = 1 or |c| < ∞ and d−1b−1a = 1
(see Lemma 3.1(i)).

5. When H = 〈b, c, d〉 is cyclic it can be assumed that H is finite (see Lemma 3.4(i)).

It can be readily verified that there remain 23 cases partitioned according to the existence
in P of regions of degree 2 and are listed below.

Case A: There are no regions of degree two.

(A0) |c| > 3, |d| > 3, a−1b 6= 1, c±1ab−1 6= 1, d±1b−1a 6= 1.
(A1) |c| = 3, |d| > 3, a−1b 6= 1, c±1ab−1 6= 1, d±1b−1a 6= 1.
(A2) |c| = 3, |d| = 3, a−1b 6= 1, c±1ab−1 6= 1, d±1b−1a 6= 1.
(A3) |c| > 3, |d| > 3, a−1b 6= 1, cab−1 = 1, c−1ab−1 6= 1, d±1b−1a 6= 1.
(A4) |c| > 3, |d| > 3, a−1b 6= 1, cab−1 6= 1, c−1ab−1 = 1, d±1b−1a 6= 1.
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(A5) |c| = 3, |d| > 3, a−1b 6= 1, cab−1 = 1, c−1ab−1 6= 1, d±1b−1a 6= 1.
(A6) |c| = 3, |d| > 3, a−1b 6= 1, cab−1 6= 1, c−1ab−1 = 1, d±1b−1a 6= 1.
(A7) |c| = 3, |d| > 3, a−1b 6= 1, c±1ab−1 6= 1, db−1a = 1, d−1b−1a 6= 1.
(A8) |c| = 3, |d| = 3, a−1b 6= 1, cab−1 6= 1, c−1ab−1 = 1, d±1b−1a 6= 1.
(A9) |c| = 3, |d| = 3, a−1b 6= 1, cab−1 6= 1, c−1ab−1 = 1, db−1a = 1, d−1b−1a 6= 1.
(A10) |c| > 3, |d| > 3, a−1b 6= 1, cab−1 6= 1, c−1ab−1 = 1, db−1a = 1, d−1b−1a 6= 1.

Case B: Regions of degree two are possible.

(B1) |c| = 2, |d| > 3, a−1b 6= 1, c±1ab−1 6= 1, d±1b−1a 6= 1.
(B2) |c| = 2, |d| = 2, a−1b 6= 1, c±1ab−1 6= 1, d±1b−1a 6= 1.
(B3) |c| = 2, |d| = 3, a−1b 6= 1, c±1ab−1 6= 1, d±1b−1a 6= 1.
(B4) |c| = 2, |d| > 3, a−1b 6= 1, c±1ab−1 = 1, d±1b−1a 6= 1.
(B5) |c| = 2, |d| > 3, a−1b 6= 1, c±1ab−1 6= 1, db−1a = 1, d−1b−1a 6= 1.
(B6) |c| = 2, |d| = 3, a−1b 6= 1, c±1ab−1 6= 1, db−1a = 1, d−1b−1a 6= 1.
(B7) |c| > 3, |d| > 3, a−1b = 1, c±1ab−1 6= 1, d±1b−1a 6= 1.
(B8) |c| = 2, |d| > 3, a−1b = 1, c±1ab−1 6= 1, d±1b−1a 6= 1.
(B9) |c| = 3, |d| > 3, a−1b = 1, c±1ab−1 6= 1, d±1b−1a 6= 1.
(B10) |c| = 2, |d| = 2, a−1b = 1, c±1ab−1 6= 1, d±1b−1a 6= 1.
(B11) |c| = 2, |d| = 3, a−1b = 1, c±1ab−1 6= 1, d±1b−1a 6= 1.
(B12) |c| = 3, |d| = 3, a−1b = 1, c±1ab−1 6= 1, d±1b−1a 6= 1.

3 Preliminary results

Lemma 3.1

(a) If any of the following conditions holds then P fails to be aspherical:

(i) |d| < ∞ and cab−1 = 1;

(ii) |d| < ∞ and c−1ab−1 = bd−1a−1c−1 = 1;

(iii) |d| < ∞ and a−1b = cad−1b−1 = 1.

(b) If bda−1c−1 = 1 and (f1, f2, f3) is any of the following then P fails to be aspherical.

(i) (2, 2, < ∞);

(ii) (< ∞, 2, 2, );

(iii) (2, 3, k) (3 ≤ k ≤ 5);

(iv) (3, 2, l) (4 ≤ l ≤ 5);
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(v) (k, 2, 3) (3 ≤ k ≤ 5);

where (f1, f2, f3) = (|a−1b|, |c|, |d|).

(c) If a−1b = 1 and (f1, f2, f3) is any of the following then P fails to be aspherical.

(i) (2, 2, < ∞);

(ii) (2, < ∞, 2);

(iii) (2, l, 3) (4 ≤ l ≤ 5);

(iv) (3, k, 2) (3 ≤ k ≤ 5);

(v) (2, 3, k) (3 ≤ k ≤ 5),

where (f1, f2, f3) = (|c|, |d|, |bda−1c−1|).

Proof

In all cases we have found a spherical picture over P. (The interested reader can view these
at http://arxiv.org/abs/1604.00163.) �

It follows from Theorem 1(2) in [1] that if |t| < ∞ in G(P) then P fails to be aspherical.
We apply this fact in the proof of the next lemma.

Lemma 3.2 If any of the following conditions hold then P fails to be aspherical.

(i) |a−1b| < ∞, |c| = |d| = 2 and a−1cad = bdb−1c = 1.

(ii) |d| < ∞ and c−1ab−1 = db−1a = 1.

(iii) |d| < ∞ and a−1b = cada−1 = 1.

(iv) c2 = cbda−1 = a−1bd−2 = 1.

(v) c2 = cbda−1 = (a−1b)2d−1 = 1.

(vi) a−1b = c2 = d3 = 1 and cada−1cad−1a−1 = 1.

(vii) a−1b = c2ada−1 = 1 and 4 ≤ |c| ≤ 5.

(viii) a−1b = c3ada−1 = 1 and |c| = 6.

Proof

8



cc

c

a

a

a

a

a

ad d

d

d

d

d

d

b

b

b

b

b

b

ba

a

a

d
d

d

c

c

c

c

c

c

b

b

b

a

a

a

b

bd

d

b

b

b a

c d
c

ca

a

d

d

c

c c

d a

d

a

a
d

b
a

c
b

d

bd

b
a

b
d

a
b

c

a

a

a

b

d

b d

b

d
d

(i) (ii)

d

d d

b

bb

c

c c

b

b

b

a

a

a

a

aa

a

aa

c

c
c

d

d

d

d

d

d

b

b

b

db

db

b

a

aa
cb

d
c

b

b

d

d

a

aa b

d b

b d

d

c

d
a

b
c

b
a

cdd
a

b
c

c

c

c

b

b
a

a

a

d

d

d

b

c

a

a

c

ac

d

Figure 3.1: spherical pictures

(i) It is enough to show that the group G = 〈b, d, t | d2 = bk = 1, bd = db, t2btdt−1d = 1〉
has order 2k(32k − 1). Now G = 〈d, t | d2, t−2d−1td−1t−1dtdt−1dt2d−1, (t3dt−1d)k〉 and
G/G′ = 〈d, t | d2 = t2k = [d, t] = 1〉. Let K denote the covering 2-complex associated
with G′ [3]. Then K has edges t0j , t1j , dj0, dj1 (1 ≤ j ≤ 2k) and 2-cells dj0dj1,
t0jd1−jt

−1

1j d2−j , ti1ti2 . . . ti2k where 1 ≤ i ≤ 2 and 1 ≤ j ≤ 2k and the d subscripts
are mod 2k. Collapsing the maximal subtree whose edges are dj0 (1 ≤ j ≤ 2k),
t0l (2 ≤ l ≤ 2k) and using the lifts of d2 shows that G′ = 〈t01, t1j (1 ≤ j ≤ 2k)〉.
Using the lifts of the second relator it is easily shown that G′ = 〈t01, t11, t12〉 where

t11t
−1

01 = t−32k−1

12 and, finally, using the lift of the third relator (t3dt−1d)k one can show
that G′ = 〈t12 | tr12〉 where r = 1

2
(32k − 1). We omit the details.

(ii) It is enough to show that G = 〈d, x | dk, t2dtd−1t−1d〉 has order 2k(1 + 4 + 42 +
. . . + 4k−1). Now G = 〈u, t | (ut−2)k, tut−1u−2〉 and G/G′ = 〈u, t | u = t2k = 1〉.
Let L denote the covering complex associated with G′. Then L has edges tj, uj

(1 ≤ j ≤ 2k) and 2-cells t1t2 . . . t2k, uj (1 ≤ j ≤ 2k). Collapsing the maximal tree
whose edges are t1, . . . , tk−1 implies G′ = 〈t2k, uj (1 ≤ j ≤ 2k)〉. The lifts of tut−1u−2

yield the relators ul = u2l−1

1 for 2 ≤ l ≤ 2k and t2ku1t
−1

2k u−4k

1 . The lifts of (ut−2)k

yield the relators t−1

2k =
∏k−1

i=0
u2i+1 =

∏k

i=1
u2i. It follows that G′ = 〈u1 | ur

1〉 where
r = 1 + 4 + 42 + . . . + 4k−1.

(iii) Here r = t3dt−1d−1 and if |d| = k < ∞ then t = dktd−k which implies t = t3
k

and so
|t| < ∞.
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(iv) – (v) A spherical picture for (iv), (v) is shown in Figure 3.1(i), (ii) (respectively).
(Note that when drawing figures the discs (vertices) will often be represented by
points; the edge arrows shown in Figure 2.1 will be omitted; and regions with label
c±2, d±2 will be labelled simply by c±1, d±1.)

(vi) – (viii) For these cases we use GAP [8]. For (vi), r = t3ct−1d together with the
conditions yields |t| ≤ 12; for (vii) r = t3ct−1c−2 and |c| = 4, 5 implies |t| ≤ 8, 10
(respectively); and for (viii) r = t3ct−1c−3 and |c| = 6 implies |t| ≤ 24. �

Lemma 3.3 If any of the conditions (i)–(iii) of Theorem 1.1 or (i)–(x) of Theorem 1.2
holds then P fails to be aspherical.

Proof Consider Theorem 1.1. If (i) holds then P fails to be aspherical by Lemma 3.1(a)(i).
If (ii) holds then P fails to be aspherical by Lemma 3.2(i). This leaves condition (iii). If
a−1b 6= 1 and bda−1c−1 6= 1 then (iii) does not hold; and if a−1b = bda−1c−1 = 1 then H
is cyclic. Let a−1b = 1. Since (|c|, |d|, |bda−1c−1|) is T -equivalent to (|d|, |c|, |bda−1c−1|) it
can be assumed without any loss that |c| ≤ |d|. The resulting ten cases are dealt with by
Lemma 3.1(c). Let bda−1c−1 = 1. Since (|a−1b|, |c|, |d|) is T -equivalent to (|a−1b|, |d|, |c|)
it can again be assumed without any loss that |c| ≤ |d|. The resulting ten cases are dealt
with by Lemma 3.1(b). Now consider Theorem 1.2. If (i) holds then P is aspherical by
Lemma 3.1(a)(i); if (ii) holds then by Lemma 3.1(a)(ii); if (iii) holds then by Lemma 3.2(ii);
if (iv) holds then by Lemma 3.2(i); if (v) holds then by Lemma 3.2(iv); if (vi) holds then
by Lemma 3.2(v); if (vii) holds then by Lemmas 3.1(a)(iii) and 3.2(iii); if (viii) holds then
by Lemma 3.2(vi); if (ix) holds then by Lemma 3.2(vii); and if (x) holds then by Lemma
3.2(viii). �

A weight function α on the star graph Γ of Figure 2.1(iii) is a real-valued function on the
set of edges of Γ. Denote the edge labelled a, b, c, d by ea, eb, ec, ed (respectively). The
function α is weakly aspherical if the following two conditions are satisfied:

(1) α(ea) + α(eb) + α(ec) + α(ed) ≤ 2;

(2) each admissible cycle in Γ has weight at least 2.

If there is a weakly aspherical weight function on Γ then P is aspherical [2].

Lemma 3.4 If any of the following conditions holds then P is aspherical.

(i) |c| = |d| = ∞;

(ii) 1 < |b| < ∞ and |d| = ∞;

(iii) |c| < ∞, |d| < ∞ and |b| = ∞.

Proof The following functions α are weakly aspherical.
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(i) α(ea) = α(eb) = 1, α(ec) = α(ed) = 0.

(ii) α(ea) = α(eb) = 1

2
, α(ec) = 1, α(ed) = 0.

(iii) α(ea) = α(eb) = 0, α(ec) = α(ed) = 1. �

The following lemmas will be useful in later sections.

Lemma 3.5 Let d(∆̂) = k where ∆̂ is a region of the spherical picture P over P.

(i) If ∆̂ receives at most π
6

across each edge and k ≥ 6 then c∗(∆̂) ≤ 0.

(ii) If ∆̂ receives at most π
4

across at most two-thirds of its edges, nothing across the

remaining edges and k ≥ 6 then c∗(∆̂) ≤ 0.

(iii) If ∆̂ receives at most π
2

across at most half of its edges, nothing across the remaining

edges and k ≥ 7 then c∗(∆̂) ≤ 0.

(iv) If ∆̂ receives at most π
2

across at most three-fifths of its edges, nothing across the

remaining edges and k ≥ 8 then c∗(∆̂) ≤ 0.

Proof The statements are easy consequences of the fact that c(∆̂) = π(2 − k/2). �

Remark We will use the above lemmas as follows. Suppose that ∆̂ receives positive
curvature across its edge ei. If we know that it then never receives curvatures across ei−1

or across ei+1 then we can apply the “half” results; or if we know that it receives positive
curvature across at most one of ei−1, ei+1 then we can apply the “two-thirds” results.

Let ∆̂ be a region of P and let e be an edge of ∆̂. If ∆̂ receives no curvature across e then
e is called a gap; if it receives at most π

6
then e is called a two-thirds gap; and if it receives

at most π
4

then e is called a half gap.

Lemma 3.6 (Four Gaps Lemma) If ∆̂ has a total of at least four gaps (in particular,
four edges across which ∆̂ does not receive any curvature) and the most curvature that
crosses any edge is π

2
then c∗(∆̂) ≤ 0.

Proof By assumption ∆̂ has a full gaps, b two-thirds gaps and c half-gaps where aπ
2
+ bπ

3
+

cπ
4
≥ 2π. It follows that c∗(∆̂) ≤ π

(

2 − k
2

)

+ k π
2
−

(

aπ
2

+ bπ
3

+ cπ
4

)

≤ 0. �

Checking the star graph shows that we will have the following LIST for the labels of regions
of degree k where k ∈ {2, 3, 4, 5, 6, 7}:

If d(∆) = 2 then l(∆) ∈ {c2, a−1b, d2}.

If d(∆) = 3 then l(∆) ∈ {c3, cab−1, c−1ab−1, db−1a, d−1b−1a, d3}.

If d(∆) = 4 then l(∆) ∈ {d4, d2a−1b, d2b−1a, c2ab−1, c2ba−1, c4, ab−1ab−1, d{a−1, b−1}
{c, c−1}{a, b}}.
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If d(∆) = 5 then l(∆) ∈ {d5, d3a−1b, d3b−1a, c3ab−1, c3ba−1, c5, cab−1ab−1, cba−1ba−1,
da−1ba−1b, db−1ab−1a, d2{a−1, b−1}{c, c−1}{a, b}, c2{a, b}{d, d−1}{a−1, b−1}}.

If d(∆) = 6 then l(∆) ∈ {d6, d4a−1b, d4b−1a, c4ab−1, c4ba−1, c6, ab−1ab−1ab−1, d2a−1

ba−1b, d2b−1ab−1a, c2ab−1ab−1, c2ba−1ba−1, d3{a−1, b−1}{c, c−1}{a, b}, d2{a−1, b−1}
{c2, c−2}{a, b}, d{a−1, b−1}{c3, c−3}{a, b}, c{ab−1, ba−1}{c, c−1}{ab−1, ba−1}, d{a−1

b, b−1a}{d, d−1}{a−1b, b−1a}, c{ab−1a, ba−1b}{d, d−1}{a−1, b−1}, c{a, b}{d, d−1}{a−1ba−1, b−1ab−1}}.

Where, for example d2{a−1, b−1}{c, c−1}{a, b} yields the eight labels d2a−1c±1a, d2a−1c±1b,
d2b−1c±1a, d2b−1c±1b.

We will use the Four Gaps Lemma and the above LIST throughout the following sections
often without explicit reference.

4 Proof of Case A

In this section we consider Theorems 1.1 and 1.2 for Case A, that is, we make the following
assumptions:

|c| > 2, |d| > 2 and a−1b 6= 1.

This implies that d(∆) ≥ 3 for each region ∆ of the spherical diagram P . If d(∆) = 3 then
we will fix the names of the fifteen neighbouring regions ∆i (1 ≤ i ≤ 15) of ∆ as shown in
Figure 4.1(i).

If (A0) holds (see Section 2) then d(∆) > 3 for all regions ∆. Since the degree of each
vertex equals 4 it follows that c(∆) = (2 − d(∆))π + d(∆)2π

4
≤ 0 and so P is aspherical.

If (A5) holds and |d| < ∞ then there is a sphere by Lemma 3.1(a)(i), otherwise |d| = ∞
and P is aspherical by Lemma 3.4(ii). If (A9) or (A10) holds then H is cyclic and, since
we then assume |d| < ∞, P is aspherical by Lemma 3.2(ii).

(A2) |c| = 3, |d| = 3, a−1b 6= 1, c±1ab−1 6= 1, d±1b−1a 6= 1.
If d(∆) = 3 then ∆ is given by Figures 4.1(ii) and 4.1(iv). If d(∆) = 4 and l(∆) ∈
{bdω, caω} then l(∆) ∈ S = {bda−1c±1, bdb−1c±1, cad±1a−1, cad±1b−1} (see the LIST of
Section 3) otherwise there is a contradiction to one of the assumptions. (Throughout this
case unless otherwise stated this means one of the (A2) assumptions.)

The cases to be considered are (where for example case (ii) means bda−1c is the only member
of S to equal 1):

(i) bda−1c±1 6= 1, bdb−1c±1 6= 1, cad±1a−1 6= 1, cadb−1 6= 1; (ii) bda−1c = 1; (iii) bda−1c−1 =
1; (iv) bdb−1c = 1; (v) bdb−1c−1 = 1; (vi) cada−1 = 1; (vii) cad−1a−1 = 1; (viii) cadb−1 = 1;
(ix) bdb−1c = 1, cada−1 = 1; (x) bdb−1c = 1, cad−1a−1 = 1; (xi) bdb−1c−1 = 1, cada−1 = 1;
(xii) bdb−1c−1 = 1, cad−1a−1 = 1.

12



a

b

b
c

c c

d

d
d

a b a

π/6

π/6π/6

b
ac

d

∆8

a
b

c
d

∆8 a
c d

∆8

b
ac

d

b

a

b

b
c

c c

d

d
d

a b a

π/4

π/4

∆

∆6

∆4 ∆2∆3

∆1∆5

∆

∆

∆∆∆

∆

7

8

91011

12∆

13∆

14∆ 15

(i) (ii)

π/6

π/6π/6

d
d

da

a

a
c

c

c

b

bb

a

b

b
c

c c

d

d
d

a ab
π/6

c
a

b
d

a

b

b
c

c c

d

d
d

a ab

π/6
∆7

a
bc

d

a

b

b
c

c c

d

d
d

a ab

π/6
∆7

(iii)

(iv) (vi)(v) (vii)

Figure 4.1: the region ∆ and curvature distribution for Case (A2)

Note that any other combination of these conditions gives a contradiction to one of the
assumptions. Moreover, (ii) is T-equivalent to (viii); (iv) is T-equivalent to (vi); (v) is
T-equivalent to (vii); and (x) is T-equivalent to (xi). So it remains to consider (i), (ii),
(iii), (iv), (v), (ix), (x) and (xii).

Now let c(∆) > 0 and so l(∆) ∈ {c3, d3}. In cases (i), (ii), (iv) and (v) add 1

3
c(∆) = π

6

to c(∆i) for i ∈ {1, 3, 5} as shown in Figures 4.1(ii) and 4.1(iv). If d(∆i) > 4 then no
further distribution takes place. Suppose without any loss of generality that d(∆1) = 4.
This cannot happen in case (i); in case (ii) ∆1 is given by Figure 4.1(v) and so add the
π
6

from c(∆) to c(∆7) across the bd and bd−1 edges noting that d(∆7) > 4 otherwise
l(∆7) ∈ {bd−2a−1, bd−1a−1c±1, bd−1b−1c±1} which contradicts one of the assumptions; in
case (iv) ∆1 is given by Figure 4.1(vi) and so add the π

6
from c(∆) to c(∆2) across the

bd and ad edges noting that d(∆2) > 4 otherwise l(∆2) ∈ {ad2b−1, ada−1c±1, ad−1b−1c±1}
which contradicts one of the assumptions or yields case (ix) or (x); and in case (v) ∆ is
given by Figure 4.1(vii) and so add the π

6
from c(∆) to c(∆7) across the bd and d−1a−1 edges

noting d(∆7) > 4 otherwise l(∆7) ∈ {d−2a−1b, d−1a−1c±1a, d−1a−1c±1b} which contradicts
one of the assumptions or yields case (xi) or (xii). Therefore if the region ∆̂ receives positive
curvature then it receives π

6
across each edge and so if d(∆̂) ≥ 6 then c∗(∆̂) ≤ 0 by Lemma

3.5(i). This leaves the case when d(∆̂) = 5. After checking for vertex labels that contain
the sublabels (bd), (ca), (ad) and (bd−1) corresponding to the edges crossed in Figures
4.1(ii) and 4.1(iv)–(vii) we obtain c∗(∆̂) ≤ π

(

2 − 5

2

)

+ 3.π
6

= 0. This completes cases (i),
(ii), (iv) and (v).
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Figure 4.2: curvature distribution for Case (A2)

Consider case (iii), bda−1c−1 = 1. If b2 = 1 then we obtain a sphere by Lemma 3.1(b)(iii).
Note also that H is non-cyclic in this case otherwise we obtain b = 1, a contradiction.
Suppose then that b2 6= 1. First let l(∆) = c3. Add 1

3
c(∆) = π

6
to c(∆i) for i ∈ {1, 3, 5}

as in Figure 4.1(ii). If d(∆i) > 4 then no further distribution takes place. Suppose that
d(∆1) = 4. Then add π

6
from c(∆) to c(∆6) across the bd and ab−1 edges as shown in

Figure 4.2(i) noting that d(∆6) > 4, otherwise l(∆6) ∈ {b−1ab−1a, b−1ad±2} which is a
contradiction either to b2 6= 1 or to one of the assumptions; and if d(∆3) = 4 or d(∆5) = 4
in Figure 4.1(ii) then similarly add π

6
to ∆2 or ∆4. Secondly, let l(∆) = d3. Add 1

3
c(∆) = π

6

to c(∆i) for i ∈ {1, 3, 5} as in Figure 4.1(iv). If d(∆i) > 4 then no further distribution
takes place. Suppose without any loss of generality that d(∆1) = 4. Then add π

6
from

c(∆) to c(∆2) across the ca and ba−1 edges as shown in Figure 4.2(ii), noting d(∆2) > 4,
otherwise l(∆2) ∈ {ba−1ba−1, ba−1c±2} which is a contradiction either to b2 6= 1 or to one
of the assumptions. If d(∆3) = 4 or d(∆5) = 4 then similarly add π

6
to ∆4 or ∆6. If ∆̂

receives positive curvature and d(∆̂) ≥ 6,it follows by Lemma 3.5(i) that c∗(∆̂) ≤ 0. It
remains to check d(∆̂) = 5. After checking for vertex labels that contain the sublabels
(bd),(ca),(b−1a) and (ba−1) corresponding to the edges crossed in Figures 4.1(ii), (iv) and
4.2(i), (ii) we obtain c∗(∆̂) ≤ π

(

2 − 5

2

)

+ 3.π
6

= 0 or l(∆̂) ∈ {bda−1ba−1, cab−1ab−1} and

this contradicts one of the assumptions. Therefore c∗(∆̂) ≤ 0.

Consider case (ix), bdb−1c = 1 and cada−1 = 1. If d(∆i) > 4 for at least two of ∆i where
i ∈ {1, 3, 5}, say ∆1 and ∆3,then add 1

2
c(∆) = π

4
to each of c(∆1) and c(∆3) across the bd

and ca edges as shown in Figures 4.1(iii) and 4.2(iii). By symmetry it can be assumed that
d(∆1) = d(∆3) = 4. The two possibilities are given in Figures 4.2(iv) and 4.2(v) and
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Figure 4.3: curvature distribution for Case (A2) and regions of degree 5

in both cases add 1

2
c(∆) = π

4
to c(∆2) across the bd, ad or ca, bd−1 edges as shown. If

d(∆5) > 4 then add the remaining 1

2
c(∆) = π

4
to c(∆5); or if d(∆5) = 4 then apply the above

to ∆1 and ∆5 to distribute the remaining 1

2
c(∆) = π

4
similarly to c(∆6). Now observe that

if ∆1 receives positive curvature from ∆ then it does not receive positive curvature from
∆2; and if ∆2 receives positive curvature from ∆ (as in Figures 4.2(iv) and 4.2(v)) then it
does not receive positive curvature from ∆3. It follows that if the region ∆̂ receives positive
curvature then it does so across at most two-thirds of its edges and therefore if ∆̂ receives
positive curvature and if d(∆̂) ≥ 6 then c∗(∆̂) ≤ 0 by Lemma 3.5(ii). Note that d(∆2) > 4
in Figures 4.2(iv) and 4.2(v) otherwise l(∆2) ∈ {c−1ada−1, c−1adb−1, cbd−1a−1, cbd−1b−1}
which contradicts one of the assumptions. So there remains the case d(∆̂) = 5 and l(∆̂) ∈
{bdω, caω, c−1adω, cbd−1ω}. Checking shows that in each case c∗(∆̂) ≤ π(2− 5

2
) + 2.π

4
= 0.

Consider (x), bdb−1c = 1 and cad−1a−1 = 1. First consider l(∆) = d3. If at least two of the
∆i where i ∈ {1, 3, 5} have degree greater than four, say ∆1 and ∆3, then add 1

2
c(∆) = π

4

to c(∆1) and c(∆3) as shown in Figure 4.2(iii). So assume otherwise and without any loss
of generality let d(∆1) = d(∆3) = 4 as shown in Figure 4.2(vi) where d(∆2) > 4 otherwise
l(∆2) = a−1bd−2 which contradicts d−1b−1a 6= 1. So add 1

2
c(∆) = π

4
to c(∆2) as shown

in Figure 4.2(vi). If d(∆5) > 4 in Figure 4.2(vi) add the remaining 1

2
c(∆) = π

4
to c(∆5)

otherwise use the same argument as above for ∆1 and ∆5 and add 1

2
c(∆) = π

4
to c(∆6).

Now consider l(∆) = c3. If at least two of the ∆i where i ∈ {1, 3, 5} have degree > 4, say,
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∆1 and ∆3, then add 1

2
c(∆) = π

4
to c(∆1) and c(∆3) as in Figure 4.1(iii). Suppose exactly

two of the ∆i have degree = 4, say, ∆1 and ∆3. Add 1

2
c(∆) = π

4
to c(∆5). If d(∆2) > 4

then add the remaining 1

2
c(∆) = π

4
to c(∆2) as in Figure 4.2(iv). If d(∆2) = 4 then add

1

2
c(∆) = π

4
to c(∆10) as in Figure 4.2(vii). If now d(∆10) = 4 then l(∆10) = ba−1ba−1

and so add the 1

2
c(∆) = π

4
to c(∆9) as in Figure 4.3(i). Observe that l(∆9) = ad−1d−1w

forces d(∆9) > 4 otherwise there is a contradiction to d−1b−1a 6= 1. Finally suppose that
d(∆i) = 4 for i ∈ {1, 3, 5}. Then 1

2
c(∆) = π

4
is added to either ∆2, ∆10 or ∆9 exactly as

above; similarly 1

2
c(∆) = π

4
is added to ∆6, ∆7 or ∆15 as shown in Figure 4.3(i).

Now observe that in Figures 4.2(iii) and 4.1(iii) ∆1 does not receive positive curvature
from ∆2; in Figures 4.2(vi) and 4.2(iv) ∆2 does not receive positive curvature from ∆3; in
Figure 4.2(vii) ∆10 does not receive positive curvature from ∆11; and in Figure 4.3(i) ∆9

does not receive positive curvature from ∆2. Observe that if ∆̂ receives positive curvature
then d(∆̂) ≥ 5. It follows from Lemma 3.5(ii) that if d(∆̂) ≥ 6 then c∗(∆̂) ≤ 0 so let
d(∆̂) = 5. If ∆̂ receives across at most two edges then c∗(∆̂) ≤ 0 so it remains to check
if ∆̂ receives curvature from more than two edges. From the above we see that positive
curvature is transferred across (ca), (bd), (bd−1), (ad), (ba−1), (ad−1)-edges. The only two
labels that contain more than two such sublabels and do not yield a contradiction are
a−1ccad and a−1cadd as shown in Figures 4.3(ii)–(iii). Let l(∆) = a−1ccad = 1 as in Figure
4.3(ii). Here ∆ receives nothing from ∆̂1 or ∆̂5. If d(∆̂2) > 3 then ∆ receives nothing from
∆̂2 and so c∗(∆̂) ≤ 0. If d(∆̂2) = 3 then d(∆̂3) > 3 and ∆ receives nothing from ∆̂3 via
∆̂4 as in Figure 4.2(iv) and again c∗(∆̂) ≤ 0. Let l(∆) = a−1cadd = 1 as in Figure 4.3(iii).
Here ∆ receives nothing from ∆̂4 or ∆̂5. If d(∆̂1) > 3 then ∆ receives nothing from ∆̂1

and so c∗(∆̂) ≤ 0. If d(∆̂1) = 3 then d(∆̂2) > 3 and ∆ receives nothing from ∆̂2 via ∆̂3

and again c∗(∆̂) ≤ 0.

Finally consider case (xii), bdb−1c−1 = cad−1a−1 = 1. Then c = d and so bdb−1d2 = 1. If
now b2 = 1 then we obtain bdbd2 = 1 and H = 〈bd〉 is cyclic. Assume first that H is non-
cyclic so, in particular, |b| > 2. Add 1

3
c(∆) = π

6
to c(∆i) for i ∈ {1, 3, 5} as in Figures 4.1(ii)

and 4.1(iv) across the bd and ca edges. If, say, d(∆1) > 4 then no further distribution takes
place. If d(∆1) = 4 then the 1

3
c(∆) = π

6
is added to c(∆2) if l(∆) = c3 across the bd and

ab−1 edges, or to c(∆6) if l(∆) = d3 across the ca and a−1b edges as shown in Figures 4.3(iv),
(v). Observe that d(∆2) > 4 and d(∆6) > 4. If ∆̂ receives positive curvature and d(∆̂) ≥ 6,
it follows by Lemma 3.5(i) that c∗(∆̂) ≤ 0. It remains to check d(∆̂) = 5. After checking
for vertex labels that contain the sublabels (bd),(ca),(ab−1) and (a−1b) corresponding to
the edges crossed in Figures 4.1(ii), 4.1(iv) and 4.3(iv), (v) it follows either that ∆̂ receives
at most 3.π

6
and so c∗(∆̂) ≤ 0 or l(∆̂) ∈ {bda−1ba−1, cab−1ab−1} which in each case yields

a contradiction to H non-cyclic. Now assume that H is cyclic. If at least two of the ∆i

where i ∈ {1, 3, 5} have degree greater than four, say ∆1 and ∆3, then add 1

2
c(∆) = π

4
to

each of c(∆1) and c(∆3) as shown in Figures 4.1(iii) and 4.2(iii). By symmetry assume
then that d(∆1) = d(∆3) = 4. The two possibilities are in Figures 4.3(vi) and 4.2(vi) and
in each case add 1

2
c(∆) = π

4
to c(∆2) as shown. If d(∆5) > 4 then add the remaining

1

2
c(∆) = π

4
to c(∆5); or if d(∆5) = 4 then similarly distribute the remaining 1

2
c(∆) = π

4

via ∆5 to ∆4 or ∆6. Now observe that if ∆1 receives positive curvature from ∆ it does not
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receive curvature from ∆2; and if ∆2 receives positive curvature from ∆ it does not receive
positive curvature from ∆1 in Figure 4.3(vi) or from ∆3 in Figure 4.2(vi). It follows that if
d(∆̂) ≥ 6 then c∗(∆) ≤ 0 by Lemma 3.5(ii). Now d(∆2) > 4 in Figures 4.3(vi) and 4.2(vi)
so there remains the case d(∆̂) = 5 and d(∆̂) ∈ {bdw, caw, c−1aw, bd−1w}. But checking
shows that in all cases c∗(∆̂) ≤ π

(

2 − 5

2

)

+ 2.π
4

= 0.

In conclusion P fails to be aspherical in case A2 if and only if b2 = bda−1c−1 = 1 (and H
is non-cyclic).

The proofs of the remaining cases are similar to the one given for A2 and we omit them.
(For details of these proofs see http://arxiv.org/abs/1604.00163.) Indeed if A1 holds then
P fails to be aspherical if and only if b2 = bda−1c−1 = 1 and |d| ∈ {4, 5}, in particular,
H is non-cyclic; if A3 holds P is aspherical if and only if |d| = ∞; if A4 holds then,
assuming that the exceptional case E1 does not hold, P fails to be aspherical if and only
if db−1ca = 1, in particular, H is cyclic; if A6 or A8 holds then P is aspherical; and if A7
holds then P fails to be aspherical if and only if bda−1c = 1, in particular, H is cyclic.

It follows from the above that either P is aspherical or modulo T -equivalence one of the con-
ditions from Theorem 1.1(i), (iii) or Theorem 1.2(i), (ii), (iii) is satisfied and so Theorems
1.1 and 1.2 are proved for Case A.

5 Proof of Case B

In this section we prove Theorems 1.1 and 1.2 for Case B, that is, we make the following
assumption: at least one of c2, d2, a−1b equals 1 in H .

If d(∆) = 2 then we will fix the names of the four neighbouring regions ∆i (1 ≤ i ≤ 4) of
∆ as shown in Figure 5.1(i).

Remark Recall that if c2 = 1 then c±2 cannot be a proper sublabel. This fact will be
used often without explicit reference.

(B1) |c| = 2, |d| > 3, a−1b 6= 1, c±1ab−1 6= 1, d±1b−1a 6= 1.
If d(∆) = 2 then ∆ is given by Figure 5.1(ii). Observe that if d(∆i) = 4 for i ∈ {1, 2}
then l(∆i) = {bdda−1, bda−1c±1, bdb−1c±1}. But bdb−1c±1 = 1 implies |d| = |c|, a contra-
diction. Observe further that at most one of bd2a−1, bda−1c±1 equals 1 otherwise there is a
contradiction to |d| > 3. This leaves the following cases: (i) bd2a−1 6= 1, bda−1c±1 6= 1; (ii)
bd2a−1 = 1, bda−1c±1 6= 1; (iii)bda−1c±1 = 1, bd2a−1 6= 1.

Consider (i) bd2a−1 6= 1, bda−1c±1 6= 1. In this case d(∆i) > 4 for ∆i (1 ≤ i ≤ 2) of Figure
5.1(ii) so add 1

2
c(∆) = π

2
to each of c(∆i) (1 ≤ i ≤ 2). Observe from Figure 5.1(ii) that

∆i does not receive positive curvature from ∆j for j ∈ {3, 4}. It follows that if ∆̂ receives

positive curvature then it does so across at most half of its edges and so d(∆̂) ≥ 7

17



a b
cd∆8

a

b

cc

d

d
a

b

π/2

π/2

a b

cda

c

d

b
a

b
c

d

b

cc

d

b

cd

a

d
a

b

a

∆10

bc
a

d

∆7

∆9π/3

2π/3

∆5 ∆8

a b
cd

cb

da

a

b

cc

d

d
a

b

π/2

π/2

a

c

d

b

a

b

cc

d

cd

a

d
a

b

π/2

π/2

∆5
b

∆

∆

∆

∆∆

1

3

2

4 aa cc
b

b

d

d

π/2

π/2

(iv) (v) (vi)

(i) (ii) (iii)

Figure 5.1: the region ∆ and curvature distribution for Case (B1)

implies that c∗(∆̂) ≤ 0 by Lemma 3.5(iii). Checking (the LIST of Section 3) shows that
if d(∆̂) = 5 then ∆̂ receives positive curvature across at most one edge and so c∗(∆̂) ≤ 0.
Also if d(∆̂) = 6 then checking shows ∆̂ receives positive curvature across at most two
edges and so c∗(∆̂) ≤ 0.

Consider (ii) bd2a−1 = 1, bda−1c±1 6= 1. Suppose that l(∆) = bd2a−1 = 1, bda−1c±1 6= 1. If
d(∆1) > 4 and d(∆2) > 4 then add 1

2
c(∆) = π

2
to c(∆1) and c(∆2) as in Figure 5.1(ii). If

say d(∆2) = 4 as in Figure 5.1(iii) then l(∆2) = bdda−1 which forces l(∆3) = caω. First
assume that cadb−1 6= 1. Then d(∆3) > 3 and so add π

2
to c(∆3) via ∆2. If d(∆1) = 4

then add π
2

to c(∆4) via ∆1 in a similar way. Observe that ∆1 does not receive positive
curvature from ∆3 or ∆4 in Figure 5.1(ii); and ∆3 does not receive positive curvature from
∆1 or ∆5 in Figure 5.1(iii). It follows that if ∆̂ receives positive curvature then it does
so across at most half of its edges and so d(∆̂) ≥ 7 implies that c∗(∆̂) ≤ 0 by Lemma
3.5(iii). It remains to study 5 ≤ d(∆̂) ≤ 6. Checking shows that if d(∆̂) = 5 then either
the label contradicts |c| 6= 1 or ∆̂ receives positive curvature across at most one edge and
so c∗(∆̂) ≤ 0. Also if d(∆̂) = 6 then checking shows that ∆̂ receives positive curvature
across at most two edges and so c∗(∆̂) ≤ 0. Now assume that cadb−1 = 1, in which case
c = d3, b = d−2 and |d| = 6. The distribution of curvature is exactly the same except
when d(∆3) = 4 in Figure 5.1(iii). In this case add 2

3
c(∆) = 2π

3
to c(∆1) and 1

3
c(∆) = π

3

to c(∆5) via ∆3 as shown in Figure 5.1(iv). Together with the observations above (which
still hold) we also have that ∆1 does not receive positive curvature from ∆3, ∆4 or ∆7

and that ∆5 does not receive positive curvature from ∆9 or ∆10 in Figure 5.1(iv). An
argument similar to those for Lemma 3.5 now shows that if d(∆̂) ≥ 8 then c∗(∆̂) ≤ 0;
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and that if l(∆̂) does not involve (cbd)±1 then c∗(∆̂) ≤ 0 for d(∆̂) ≥ 7 by Lemma 3.5(iii).
The conditions on b, c and d imply that if 2 < d(∆̂) < 6 then l(∆̂) ∈ {d2a−1b, db−1c±1a}
so if l(∆̂) does not involve (cbd)±1 it remains to consider d(∆̂) = 6. But checking shows
that l(∆̂) will then either involve at most two non-adjacent occurrences of (bd)±1, (ca)±1

or (ba−1)±1 and so c∗(∆̂) ≤ 0 or l(∆̂) = (ab−1)3 in which case c∗(∆̂) ≤ c(∆̂) + 3(π
3
) = 0.

Finally if l(∆̂) = cbdω and d(∆̂) ≤ 7 then l(∆̂) ∈ {cbda−1ba−1, cbdb−1ab−1, cbd3b−1} and
c∗(∆̂) ≤ c(∆̂) + 2π

3
+ π

3
= 0.

Consider (iii) bda−1c±1 = 1, bd2a−1 6= 1. Now suppose that l(∆) = bda−1c±1 = 1, bd2a−1 6=
1. First assume that |b| ≥ 3. Add 1

2
c(∆) = π

2
to c(∆1) and c(∆2) as in Figure 5.1(ii). If

say d(∆2) = 4 then l(∆2) = bda−1c±1. First let l(∆2) = bda−1c as in Figure 5.1(v). This
forces l(∆4) = adω and so d(∆4) = 4 forces l(∆4) = addb−1. But if b = d2 then c = d3

and there is a sphere by Lemma 3.2(iv), so it can be assumed that d(∆4) > 4. So add π
2

to c(∆4) via ∆2 as shown. Suppose now that l(∆2) = bda−1c−1 as in Figure 5.1(vi). This
forces l(∆4) = ab−1ω and so d(∆4) > 4, otherwise there is a contradiction to |b| ≥ 3. So
add π

2
to c(∆4) via ∆2 as shown. Similarly add 1

2
c(∆) = π

2
to c(∆3) if d(∆1) = 4. Observe

that ∆1 does not receive positive curvature from ∆3 or ∆4 in Figure 5.1(ii); ∆2 does not
receive positive curvature from ∆3 or ∆4 in Figure 5.1(ii); and ∆4 does not receive positive
curvature from ∆1 or ∆8 in Figures 5.1(v), (vi). It follows that if ∆̂ receives positive
curvature then it does so across at most half of its edges and so d(∆̂) ≥ 7 implies that
c∗(∆̂) ≤ 0 by Lemma 3.5(iii). It remains to study 5 ≤ d(∆̂) ≤ 6.

If |b| > 3 then checking shows that if d(∆̂) = 5 then either the label contradicts one of
the (B1) assumptions or ∆̂ receives positive curvature across at most one edge and so
c∗(∆̂) ≤ 0. Checking shows that if d(∆̂) = 6 then ∆̂ receives positive curvature across at
most two edges or l(∆̂) = (ab−1)3 contradicting |b| > 3, and so c∗(∆̂) ≤ 0.

Let |b| = 3. If H is cyclic then bdc = 1 implies b = d2 and we obtain a sphere as before,
so assume that if bdc = 1 then H is non-cyclic. If |b| = 3 and |d| ∈ {4, 5} then we obtain
a sphere by Lemma 3.1(b)(iv). So let |b| = 3, |d| ≥ 6. Distribute curvature from ∆ as
shown in Figure 5.1(ii), (v) and (vi). Checking shows that if d(∆̂) = 5 then either the
label contradicts |b| = 3 or |d| ≥ 6 or ∆̂ receives positive curvature across at most one edge
and so c∗(∆̂) ≤ 0. Checking shows that if d(∆̂) = 6 then ∆̂ receives positive curvature
across at most two edges and so c∗(∆̂) ≤ 0 except when l(∆̂) = ba−1ba−1ba−1. This case is
shown in Figure 5.2(i) where c∗(∆̂) = π

2
and so add 1

3
c∗(∆̂) = π

6
to c(∆̂i) for i ∈ {1, 2, 3}

across the edge ad−1. If d(∆̂i) = 4 then l(∆̂i) ∈ {ad−1b−1c−1, ad−1b−1c}. Suppose that
l(∆̂1) = ad−1b−1c−1 as in Figure 5.2(ii). Then l(∆̂4) = d2b−1ω and d(∆̂4) > 4 otherwise
there is a contradiction to H non-cyclic. So add π

6
to c(∆̂4) across the edge db−1. If

l(∆̂1) = ad−1b−1c as in Figure 5.2(iii) then l(∆̂4) = d3ω and d(∆̂4) > 4 otherwise there is a
contradiction to |d| ≥ 6. So add π

6
to c(∆̂4) across the edge d2. Observe that if ∆̂ receives

positive curvature then it receives π
2

across the edges ab−1, ad or bd; and receives π
6

across
the edges ad−1, db−1 or dd. Thus there is a gap (see Section 3) preceding c±1, b, a and a
gap after c±1, b−1, a−1 and there is a two-thirds gap across the edges ad−1, db−1 and dd.
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Figure 5.2: curvature distribution for Case (B1) from regions of degree 6

Also there is always a gap between two d’s (other than when the subword is d±2). Now
since c2 cannot be a proper sublabel it follows that if there are at least two occurrences
of c±1 then we obtain four gaps and c∗(∆̂) ≤ 0 by Lemma 3.6. Suppose now that there
is at most one occurrence of c±1. If there is exactly one occurrence of c and either no
occurrences of b or no occurrences of d then H is cyclic, a contradiction; and if there
are no occurrences of c and exactly one occurrence of d or of b then again H is cyclic, a
contradiction. So assume otherwise. It follows that l(∆̂) contains at least four gaps or
l(∆̂) ∈ {c±1ad±1a−1ba−1, c±1bd±1a−1ba−1, c±1ad±1b−1ab−1, c±1bd±1b−1ab−1,
d(a−1b)±1d±1(a−1b)±1}. But since c = bd each of these labels contradicts H non-cyclic,
|d| ≥ 6 or |b| = 3 except when l(∆̂) = da−1bda−1b. In this case if c∗(∆̂) > 0 then it can
be assumed without loss of generality that ∆̂ is given by Figure 5.2(iv) and ∆̂ receives
1

3
c∗(∆̂1) = π

6
from c(∆̂1). This implies that l(∆̂3) = a−1c−1bd and l(∆̂4) = ad−1d−1ω. So

add π
6

from c(∆̂) to c(∆̂4). Since this π
6

is across an ad−1 edge and since l(∆̂4) = ad−2ω it

follows from the above that c∗(∆̂4) ≤ 0. If l(∆̂2) = b−1ab−1ab−1 in Figure 5.2(iv) then a
similar argument applies to c(∆̂5).

Finally let |b| = 2. In particular, H is non-cyclic for otherwise d2 = 1, a contradiction. If
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Figure 5.3: curvature distribution for Case (B3)

|d| < ∞ then we obtain a sphere by Lemma 3.1(b)(i) and if |d| = ∞ then P is aspherical
by Lemma 3.4(ii). In conclusion P is aspherical in this case except when H is non-cyclic,
bda−1c±1 = 1 and either |b| = 3, |d| ∈ {4, 5} or |b| = 2, |d| < ∞; or when H is cyclic,
b = d2, c = d3 and |d| = 6.

(B3) |c| = 2, |d| = 3, a−1b 6= 1, c±1ab−1 6= 1, d±1b−1a 6= 1.
If d(∆) = 2 then ∆ is given by Figure 5.1(ii). If d(∆) = 3 then ∆ is given by Figure 4.1(iv).
Moreover, if d(∆i) = 4 and l(∆i) = bdw or caw then
l(∆i) ∈ {bd2a−1, bda−1c±1, bdb−1c±1, cad±1a−1, cad±1b−1}. But each of bd2a−1 = 1,
bdb−1c±1 = 1 and cad±1a−1 = 1 implies a contradiction to one of the (B3) assumptions.
Thus we have the following cases: (i)bda−1c±1 6= 1, cadb−1 6= 1; (ii)bda−1c±1 = 1, cadb−1 6=
1; (iii)cadb−1 = 1, bda−1c±1 6= 1.

Consider (i) bda−1c±1 6= 1, cadb−1 6= 1. In this case d(∆1) > 4 and d(∆2) > 4 in Figure
5.1(ii), so add 1

2
c(∆) = π

2
to each of c(∆1) and c(∆2). In Figure 4.1(iv) d(∆1) > 4,

d(∆3) > 4 and d(∆5) > 4 so add 1

3
c(∆) = π

6
to each of c(∆1), c(∆3) and c(∆5). Observe

that ∆1 and ∆2 do not receive positive curvature from ∆3 or ∆4 in Figure 5.1(ii). Also ∆1,
∆3 and ∆5 do not receive positive curvature from ∆m for m ∈ {2, 4, 6} in Figure 4.1(iv).
It follows that if ∆̂ receives positive curvature then it does so across at most half of its
edges and so d(∆̂) ≥ 7 implies that c∗(∆̂) ≤ 0 by Lemma 3.5(iii). It remains to study
5 ≤ d(∆̂) ≤ 6. Checking shows that if d(∆̂) = 5 then either the label contradicts cab−1 6= 1
or ∆̂ receives positive curvature across at most one edge and so c∗(∆̂) ≤ 0. Also if d(∆̂) = 6
then ∆̂ receives positive curvature across at most two edges and so c∗(∆̂) ≤ 0.
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Consider (ii) bda−1c±1 = 1, cadb−1 6= 1. In this case the labels bda−1c±1 can occur. If H
is cyclic then d = b2, c = b3 and there is a sphere by Lemma 3.2(v), so assume that H is
non-cyclic. If |b| ∈ {2, 3, 4, 5} then we obtain spheres by Lemma 3.1(b)(i), (v), so assume
that |b| ≥ 6. In Figure 5.1(ii) if d(∆1) > 4 and d(∆2) > 4 then add 1

2
c(∆) = π

2
to c(∆1)

and c(∆2) as shown. If say d(∆1) > 4 and d(∆2) = 4 as in Figure 5.3(i) then add π
2

to
c(∆1). This implies that l(∆2) = bda−1c±1 as shown. This forces l(∆3) = b−1aω and so
d(∆3) > 4, otherwise there is a contradiction to |b| ≥ 6 so add π

2
to c(∆3) via ∆2 as shown.

If d(∆1) = d(∆2) = 4 then add π
2

to c(∆j) for j ∈ {3, 4} as shown in Figure 5.3(ii). The
one exception to the above is when l(∆1) = bda−1ω and d(∆1) > 4. Then d(∆4) > 4 and
in this situation add the π

2
from c(∆) to c(∆4) via ∆1 as shown in Figure 5.3(iii). The

same applies to ∆2. In Figure 4.1(iv) if d(∆1) > 4, d(∆3) > 4 and d(∆5) > 4 then add
1

3
c(∆) = π

6
to each of c(∆1), c(∆2) and c(∆5). If say d(∆1) = 4, d(∆3) > 4 and d(∆5) > 4

then l(∆2) = ba−1ω and d(∆2) > 4 otherwise there is a contradiction to |b| ≥ 6 so add π
6

to c(∆2), c(∆3) and c(∆5) as shown in Figure 5.3(iv). Now suppose that d(∆1) = 4 and
d(∆3) = 4. This implies that l(∆2) = l(∆4) = ba−1ω as shown in Figure 5.3(v). So add π

6

to c(∆2), c(∆4) and c(∆5). If d(∆1) = d(∆3) = d(∆5) = 4 then similarly add π
6

to c(∆m)
for m ∈ {2, 4, 6}.

We now see that if ∆̂ receives positive curvature then it receives at most π
2

across (bd)±1

and (b−1a)±1; and it receives at most π
6

across (ca)±1 and (ab−1)±1. Thus there is always
a gap immediately preceding c and d−1; and there is a gap immediately after c−1 and d.
This implies that if there are at least four occurrences of c±1 or d±1 then l(∆̂) contains at
least four gaps and so c∗(∆̂) ≤ 0. Suppose that there are at most three occurrences of c±1

or d±1 in l(∆̂). Observe that in addition to the four gaps mentioned above the following
sublabels yield gaps: (cb)±1 and (ad)±1 each yields a gap; (bda−1)±1 yields two gaps (see
Figure 5.3(iii)); and (ca)±1 and (ab−1)±1 each yields the equivalent of a two-thirds gap.
If l(∆̂) = (b−1a)±n where n ≥ 1 then l(∆̂) obtains at least four gaps since |b| ≥ 6. If
l(∆̂) ∈ {d±1(b−1a)±n, (ab−1)±nc±1} then H is cyclic so it can be assumed that l(∆̂) involves
either two or three occurrences of c±1 or d±1. It follows that if there are three occurrences
then c∗(∆̂) ≤ 0; or if exactly two occurrences then either c∗(∆̂) ≤ 0 or
l(∆̂) ∈ {d±1b−1ada−1b, d±1b−1ada−1ba−1b, d±1b−1ab−1ada−1b, cba−1bd±1b−1, cbd±1b−1ab−1}.
But each of these labels forces H cyclic or |b| < 6 or a (B3) contradiction, therefore
c∗(∆̂) ≤ 0 by Lemma 3.6.

Consider (iii) cadb−1 = 1, bda−1c±1 6= 1. In this case the label cadb−1 can occur. First
assume that H is non-cyclic. In Figure 5.1(ii) d(∆1) > 4 and d(∆2) > 4 otherwise there is a
contradiction to |c| = 2 or |d| = 3, so add 1

2
c(∆) = π

2
to c(∆1) and c(∆2). In Figure 4.1(iv)

if d(∆1) > 4, d(∆3) > 4 and d(∆5) > 4 add 1

3
c(∆) = π

6
to each of c(∆1), c(∆2) and c(∆5). If

say d(∆1) = 4 only then add π
4

to c(∆3) and c(∆5). Now suppose that d(∆1) = d(∆3) = 4.
This implies that their label is cadb−1 which forces l(∆2) = cba−1ω as shown in Figure
5.3(vi). So add π

4
to c(∆2) via ∆1 and to c(∆5). Finally if d(∆1) = d(∆3) = d(∆5) = 4

then in a similar way add π
6

to c(∆m) for m ∈ {2, 4, 6}. Observe that ∆1 does not receive
positive curvature from ∆3 and ∆2 does not receive positive curvature from ∆4 in Figure
5.1(ii). In Figure 4.3(i) ∆1 does not receive positive curvature from ∆2. In Figure 5.3(vi)
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Figure 5.4: curvature distribution for Case (B3)

∆2 does not receive positive curvature from ∆3. Since ∆̂ receives π
2

across the bd edge

and π
4

across the ca, ba−1 edges it follows that ∆̂ receives an average of π
4

across each

of its edges, so d(∆̂) ≥ 8 implies that c∗(∆̂) ≤ 0. It remains to study 5 ≤ d(∆̂) ≤ 7.
Checking shows that if d(∆̂) = 5 then either the label contradicts |d| = 3 or H non-cyclic
or ∆̂ receives positive curvature across at most one edge and so c∗(∆̂) ≤ 0, except when
l(∆̂) = bdda−1c−1 as in Figure 5.4(i). In this case ∆̂ receives π

2
from c(∆̂1) and π

4
from

c(∆̂2). If |b| > 2 then this implies that d(∆̂3) > 4 and so add π
4

to c(∆̂3) noting that this
is a similar edge to the one crossed in Figure 5.3(vi) so there is no change to the above
argument and c∗(∆̂) ≤ 0 in this case. Suppose now that |b| = 2 and l(∆̂3) = ab−1ab−1 as
in Figure 5.4(ii). If d(∆̂4) > 5 then add π

4
to c(∆̂4) across the da−1 edge. If d(∆̂4) = 5

then l(∆̂4) = da−1c−1bd which implies that l(∆̂5) = caω and so if d(∆̂5) > 5 then add π
4

to c(∆̂5) as in Figure 5.4(iii). If d(∆̂5) ∈ {4, 5} then l(∆̂5) ∈ {cadb−1, cad−2b−1} and this
forces l(∆̂6) = c−1ba−1ω and so d(∆̂6) > 5 otherwise there is a contradiction to |c| 6= 1. So
add π

4
to c(∆̂6) again as shown in Figure 5.4(iii).

Observe that ∆̂4 in Figure 5.4(ii) can now receive π
4

from c(∆̂), however it receives no

positive curvature from ∆̂3 or any other region across the da−1 edge. Moreover, it is clear
from Figure 5.4(iii) that ∆̂5 receives only the π

4
from ∆̂4 across its ca edge; and ∆̂6 receives
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only the π
4

from ∆̂5 across its ba−1 edge. Finally observe that Figures 5.4(ii)–(iii) do not
alter the fact that ∆1 does not receive positive curvature from ∆3 and ∆2 does not receive
positive curvature from ∆4 in Figure 5.1(ii). Therefore the average positive curvature that
∆̂ receives across each edge is still π

4
and so if d(∆̂) ≥ 8 then c∗(∆̂) ≤ 0. It remains to

check 6 ≤ d(∆̂) ≤ 7 for the sublabels (bd)±1(π/2) and (ca)±1, (ab−1)±1, (da−1c−1)±1(π/4).
Checking shows that if d(∆̂) = 6 then the most curvature that ∆̂ can receive is either 2(π

2
)

or π
2
+2(π

4
) or 4(π

4
) and so c∗(∆̂) ≤ 0. If d(∆̂) = 7 then the most curvature received is 3(π

2
)

or 2(π
2
) + 2(π

4
) or π

2
+ 4(π

4
) or 6(π

4
) and c∗(∆̂) ≤ 0 except for l(∆̂) = da−1c−1bda−1b; but

this implies cd = 1, a contradiction.

Now let H be cyclic. Then d = b4 and c = b3. Again add 1

2
c(∆) = π

2
to each of c(∆1), c(∆2)

as in Figure 5.1(ii). In Figure 4.1(iv) if say d(∆1) > 5 then add c(∆) = π
2

to c(∆1) and so
it can be assumed that d(∆i) ≤ 5 for i ∈ {1, 3, 5} in which case l(∆i) ∈ {cadb−1, cad−2b−1}.
If say d(∆1) = 4 then add c(∆) = π

2
to c(∆6) via ∆1 as shown in Figure 5.4(iv). It can

be assumed then that d(∆i) = 5 for i ∈ {1, 3, 5} in which case add 1

3
c(∆) = π

6
to each

c(∆̂) via ∆i where i ∈ {1, 3, 5} as shown in Figure 5.4(v). If say ∆̂ = ∆̂1 and d(∆̂1) = 5
then repeat the above, that is, add the π

6
from c(∆) across another ca edge and continue

in this way until π
6

is eventually added to a region ∆̂k where either d(∆̂k) > 5 (and so the

process terminates) or d(∆̂k) = 4 in which case the π
6

from c(∆) is added to c(∆̂k+1) as

shown in Figure 5.4(vi), where k = 3. If d(∆̂k+1) > 5 then the process terminates (and
note that l(∆̂k+1) = d−1b−1c−1w); otherwise l(∆̂k+1) = d−1b−1c−1ad−1 and the π

6
from c(∆)

is added to c(∆̂k+2) where ∆̂k+2 is the region shown in Figure 5.4(vi) with k = 3. Observe
that l(∆̂k+2) = ba−1c−1w so d(∆̂k+2) > 5 and the process terminates. This completes
the distribution of curvature that occurs. It follows that if ∆̂ receives positive curvature
across an edge ei say then ∆̂ does not receive any curvature across the adjacent edges ei−1,
ei+1 except when ∆̂ is given by ∆̂k+1 = ∆̂4 in Figure 5.4(vi). Therefore if l(∆̂) does not
involve (cbd)±1 then Lemma 3.5(iii) applies and c∗(∆̂) ≤ 0 for d(∆̂) ≥ 7; and if d(∆̂) = 6
then checking for (bd)±1, (ca)±1 and (cba−1)±1 shows that ∆̂ receives positive curvature
across at most two edges and c∗(∆̂) ≤ 0. Finally if l(∆̂) = cbdw then we see from Figure
5.4(vi) that the maximum amount ∆̂ receives is on average π

3
across 2

3
of its edges and so

if d(∆̂) ≥ 8 then c∗(∆̂) ≤ 0 by Lemma 3.5(iv). Checking shows that if 6 ≤ d(∆̂) ≤ 7 then
l(∆̂) ∈ {cbdb−1ab−1, cbda−1bdb−1, cbda−1c−1ba−1, cbda−1cba−1} and so if d(∆̂) = 6, 7 then ∆̂
receives curvature across at most 2, 3 edges (respectively) and c∗(∆̂) ≤ 0.

In conclusion P fails to be aspherical in this case when H is non-cyclic, bda−1c−1 = 1 and
|b| ∈ {2, 3, 4, 5}; or when H is cyclic and bda−1c±1 = 1.

(B8) |c| = 2, |d| > 3, a−1b = 1, c±1ab−1 6= 1, d±1b−1a 6= 1.
If d(∆) = 2 then ∆ is given by Figures 5.1(ii) and 5.4(vii). In Figure 5.4(vii) l(∆1) =
b−1cω and l(∆2) = ad−1ω. This implies that d(∆1) > 4,d(∆2) > 4, otherwise there
is a contradiction to |d| > 3 so add 1

2
c(∆) = π

2
to c(∆1) and c(∆2). In Figure 5.1(ii)

l(∆1) = l(∆2) = bdω. This similarly implies that d(∆1) > 4 and d(∆2) > 4, so add
1

2
c(∆) = π

2
to c(∆1) and c(∆2). Observe that in Figure 5.4(vii) ∆1 does not receive
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positive curvature from ∆4; and ∆2 does not receive positive curvature from ∆4. Observe
also that if ∆̂ receives positive curvature then it does so across the edges b−1c, ad−1 or bd.
Thus there is always a gap immediately preceding c−1 and a; and there is a gap after c and
a−1. This implies that if there are at least four occurrences of c±1 then l(∆̂) contains at
least four gaps and so c∗(∆̂) ≤ 0. We will proceed according to the number of occurrences
of c±1 in l(∆̂). If there are no occurrences of c±1 then either l(∆̂) = (ab−1)k where |k| ≥ 2
and there are four gaps, or l(∆̂) = d(ab−1)k1 . . . d(ab−1)km where ki ∈ Z (1 ≤ i ≤ m). But
since there is always at least one gap between any two occurrences of d±1 it follows that
again there are four gaps or |d| ≤ 3, a contradiction. So c∗(∆̂) ≤ 0 in this case.

Assume first that H is non-cyclic. If there is exactly one occurrence of c±1 in l(∆̂) then
H is cyclic so suppose that there are either two or three occurrences of c±1. Then either
the label contains at least four gaps or it contradicts one of the (B8) assumptions or one
of the following cases ∆̂i (1 ≤ i ≤ 9) occurs:

(1) cad−1b−1cad−1b−1;

(2) cad−1b−1cbd−1b−1;

(3) cad−1b−1c−1ad−1b−1;

(4) cad−1b−1c−1bd−1b−1;

(5) cad−1b−1cbda−1;

(6) cad−1b−1cbdb−1;

(7) cad−1b−1c−1bda−1;

(8) cad−1b−1c−1bdb−1;

(9) (bda−1c−1)3.

If any of (1)–(4) occurs with any of (5)–(8) or with (9) then |d| = 2, a contradiction. Also
if any of (5)–(8) occurs with (9) then c = d3 and H is cyclic, so assume otherwise.

Consider (1)–(4). These yield the relator (cd)2 and it follows that cdk = d−kc for k ∈ Z.
Moreover if |d| < ∞ then there is a sphere by Lemma 3.1(c)(ii) so it can be assumed that
|d| = ∞. In case (1) ∆̂1 is given by Figure 5.5(i) where, given that c∗(∆̂1) > 0, it can
be assumed that d(∆1) = d(∆2) = 2 and at least one of d(∆3), d(∆4) equals 2. Add π

2

from c(∆̂1) to c(∆̂10) as shown in Figure 5.5(i); and if d(∆3) = d(∆4) = 2 add a further
π
2

of c(∆̂1) to c(∆̂12) as shown. In cases (2)–(4) c∗(∆̂) ≤ π
2

where ∆̂ ∈ {∆̂2, ∆̂3, ∆̂4} and
π
2

is added from c(∆̂) to c(∆̂10) as shown in Figure 5.5(ii). Observe that x 6= b in Figure
5.5(i), (ii) for otherwise c2 would be a proper sublabel, and so x ∈ {a, d}. If x = a then the
sublabel ad yields a gap so let x = d. Then either dd yields a gap or ∆̂11 ∈ {∆̂i : 1 ≤ i ≤ 4}
and π

2
is added to c(∆̂10) from c(∆̂11). Continuing this way, since |d| = ∞, eventually we
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Figure 5.5: curvature distribution for Case (B8)

get a sublabel ad or dd which contributes a gap. Consider l(∆̂10). If it contains an odd
number of occurrences of c then cdk = d−kc implies that c ∈ 〈d〉 and H is cyclic. This leaves
the case when there are exactly two occurrences of c and cdα1cdα2 = 1 for α1, α2 ∈ Z\{0}.
If |α1|, |α2| > 1 then there are four gaps and c∗(∆̂10) ≤ 0; and if |α1| > 1, |α2| = 1 this
implies |d| < ∞, a contradiction.

Consider (5)–(8). These yield the relator cdcd−1 and H is Abelian. Observe that |d| = 4
yields (E), so assume otherwise. In each case add c∗(∆̂) = π

2
to c(∆̂13) as shown in Figure

5.5(iii)–(vi). Observe that ∆̂13 receives no curvature from ∆1 or ∆2; that l(∆̂13) = adw
implies d(∆̂13) > 4 otherwise there is a contradiction to |d| > 3; and there is still a gap
between each pair of occurrences of d. If l(∆̂13) contains an odd number of occurrences
of c then H is cyclic so it can be assumed that l(∆̂13) yields the relator cdβ1cdβ2. If
|β1| > 1 and |β2| > 1 then there are four gaps and if (β1, β2) ∈ {(2, 1), (2,−1), (1, 1)} then
|d| ≤ 3, so this leaves the case β1 = 1, β2 = −1. Again there are four gaps except when
l(∆̂13) = adb−1cad−1b−1c and this is shown in Figure 5.5(vii): add c∗(∆̂13) = π

2
to c(∆̂14)

and observe that ∆̂14 does not receive positive curvature from ∆. Consider l(∆̂14) = bddw.
If there are at least four occurrences of c then c∗(∆̂4) ≤ 0; and if there is an odd number of
occurrences then H is cyclic. Suppose firstly that there are no occurrences of c in l(∆̂14).
Since |d| ≥ 5, if there is one occurrence of b then l(∆̂4) = a−1bdk (k ≥ 5) and there are four
gaps; and since each (a−1b)±1 yields a gap and each (bdl)±1 (l ≥ 2) yields a gap it follows
that if there are at least two occurrences of b then again c∗(∆̂14) ≤ 0. Suppose finally that
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there are two occurrences of c and so cdβ1cdβ2 = 1 where β1 ≥ 2 and |β2| ≥ 0. If |β2| > 1
then there are four gaps; and if |β2| = 1 then β1 ≥ 4, otherwise there is a contradiction to
|d| > 4, and again there are four gaps, so c∗(∆̂14) ≤ 0.

Finally consider case (9). In this case ∆̂9 is given by Figure 5.5(viii). Suppose that
c∗(∆̂9) > 0. Then it can be assumed that d(∆i) = 2 for 1 ≤ i ≤ 6 and c∗(∆̂) = π

2
so add

1

3
c∗(∆̂) = π

6
to c(∆̂l) for l ∈ {15, 16, 17}. In this case if |d| ∈ {4, 5} then we obtain a sphere

by Lemma 3.1(c)(iii). Now if |d| ≥ 6 then as shown in Figure 5.5(viii) l(∆l) = d−2ω and
d−2 will contribute two-thirds of a gap. If there are now at least two occurrences of c then
either |d| < 6 or H is cyclic, a contradiction, or there are four gaps; if there is exactly one
occurrence of c then this contradicts H non-cyclic; and if there are no occurrences of c then
l(∆l) = dk1(b−1a)m1 . . . dkn(b−1a)mn where mi ∈ Z,ki ≥ 1. Since k1 + . . . + kn ≥ 6 it follows
that there are at least four gaps and c∗(∆̂l) ≤ 0.

Now let H be cyclic. If c = d2 or c = d3 then there is a sphere by T -equivalence and
Lemma 3.2(vii), (viii); and c = d4 is (E4), so assume otherwise. In particular, |d| > 4.
We follow the same argument as above and so if l(∆̂) contains no occurrences or at least
four occurrences of c then, as before, c∗(∆̂) ≤ 0; and if l(∆̂) contains an odd number of
occurrences of c then c = dk for some k ≥ 4 which implies there are at least four gaps and
c∗(∆̂) ≤ 0. Suppose then that l(∆̂) involves c exactly twice. Subcases (1)–(4) imply d2 = 1
and (9) implies c = d3, a contradiction. This leaves subcases (5)–(8).

Add c∗(∆̂) = π
2

to c(∆̂13) as in Figure 5.5(iii)-(vi). Since there is still a gap between each
pair of occurrences of d it follows from the above paragraph and the previous argument
that c∗(∆̂13) ≤ 0 except when l(∆̂13) = adb−1cad−1b−1c. Again add c∗(∆̂13) = π

2
to c(∆̂14)

as shown in Figure 5.5(vii). If l(∆̂14) = bddw involves at least three occurrences of c then,
since ∆̂4 does not receive positive curvature from ∆ in Figure 5.5(vii), there are at least
four gaps and c∗(∆̂4) ≤ 0. Otherwise checking the possible labels for l(∆̂4) = bddw shows
that there are four gaps or a contradiction to |d| > 4 or c /∈ {d3, d4}.

In conclusion P is aspherical except when |cd| = 2, |d| < ∞ or when |cd| = 3, |d| ∈ {4, 5}
or when H is cyclic and c = d2 or d3.

If B4 holds then either |d| < ∞ and there is a sphere by Lemma 3.1(a)(i) or |d| = ∞ and
P is aspherical by Lemma 3.4(ii). The proofs for the remaining cases are similar to those
given above so we omit them. (Again for full details see http://arxiv.org/abs/1604.00163.)
Indeed if B2 holds then P fails to be aspherical either when H is cyclic or when H is
non-cyclic, |b| < ∞ (by Lemma 3.4(iii)) and either bda−1c−1 = 1 or bdb−1c−1 = a−1cad = 1;
if B5 holds then P is aspherical if and only if bda−1c 6= 1; if B6 holds then P is aspherical;
if B7 holds then P is aspherical except when either c = d±1 or c5 = 1 and c = d2 or
d5 = 1 and d = c2; if B9 holds then, assuming that the exceptional cases E2 and E3 do
not hold, P is aspherical except when H is non-cyclic, |c−1d| = 2 and |d| ∈ {4, 5}; if B10
holds then P is aspherical if and only if |cd| = ∞; if B11 holds then P is aspherical except
when H is non-cyclic and |cd| ∈ {2, 3, 4, 5} or when H is cyclic; and if B12 holds then
P is aspherical except when H is cyclic or when H is non-cyclic and |cd| = 2. It follows
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that either P is aspherical or modulo T -equivalence one of the conditions of Theorem 1.1
(i)–(iii) or Theorem 1.2 (i), (ii), (iv)–(x) is satisfied and so Theorems 1.1 and 1.2 are proved
for Case B.
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