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Three-dimensional Heisenberg critical behavior in the highly disordered dilute
ferromagnetic semiconductor (Ga,Mn)As
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We present detailed studies of critical behavior in the strongly site-disordered dilute ferromagnetic semi-
conductor (Ga,Mn)As. (Ga,Mn)As has a low saturation magnetization and relatively strong magnetocrystalline
anisotropy. This combination of properties inhibits domain formation, thus removing a principal experimental
difficulty in determining the critical coefficients β and γ . We find that there are still a large number of problems
to overcome in terms of measurement procedures and methods of analysis. In particular, the combined effects of
disorder and inhomogeneity limit the accessible critical region. However, we find that accurate and reproducible
values of the critical exponents β and γ can be obtained from Kouvel-Fisher plots of remanent magnetization
and magnetic susceptibility for our (Ga,Mn)As samples. The values of β and γ obtained are consistent with
those of the three-dimensional Heisenberg class, despite the very strong disorder present in this system, and they
are inconsistent with mean field behavior. Log-log plots of M(H ) data for our samples are consistent with the
three-dimensional Heisenberg value of the critical exponent δ, but accurate values of δ could not be obtained for
our samples from these plots. We also find that accurate values of the critical exponent α could not be obtained
by fitting to the measured temperature derivative of resistivity for our samples. We find that modified Arrott plots
and scaling plots are not a practical way to determine the universality class or critical exponents, though they
are found to be in better agreement with three-dimensional Heisenberg values than mean field values. Below
the critical temperature range, we find that the magnetization shows power-law behavior down to a reduced
temperature of t ∼ 0.5, with a critical exponent β ∼ 0.4, a value appreciably lower than the mean field value of
β = 0.5. At lower temperatures, Bloch 3/2 law behavior is observed due to magnons.
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I. INTRODUCTION

Close to the critical point of second-order phase transitions,
such as the ferromagnetic-paramagnetic transition, power-law
relationships between the thermodynamic variables of the
system are observed. The critical power-law exponents depend
on the symmetry and dimensionality of the system and on
the symmetry and dimensionality of the order parameter.
The symmetry and dimensionality are considered “relevant
parameters” [1]. The critical exponents are insensitive to the
microscopic details of the system (irrelevant parameters). The
range of the interactions driving the phase transition is gen-
erally a relevant parameter. Diverse examples of second-order
phase transitions observed in very different physical systems
are found to belong to a relatively small number of universality
classes. The universality classes are named after simple model
systems that have the relevant parameters characterizing the
universality class. The three-dimensional Heisenberg model
considers three-dimensional vector magnetic moments in-
teracting on a three-dimensional lattice with “short-range”
interactions. Often, numerical simulations are done con-
sidering only nearest neighbor interactions, but the same
universal behavior is obtained when the interaction range is
beyond nearest neighbor, provided that the strength of the
interaction decreases sufficiently rapidly with distance [2,3].

The renormalization group theoretical result known as the
Harris criterion [4] shows that the three-dimensional Heisen-
berg critical exponents should be independent of disorder.
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This has been verified by several theoretical and experimental
studies [5,6]. However, these same studies show that increasing
disorder reduces the range around the critical temperature
over which critical behavior can be observed. This leads to
difficulties for both numerical simulations and experimental
studies. Generally, theoretical and experimental studies have
focused on relatively weak disorder [5].

Priour and Das Sarma [7] considered the strongly dis-
ordered case theoretically. They focused on (Ga,Mn)As as
a model strongly disordered system. (Ga,Mn)As is a dilute
magnetic semiconductor in which several percent of Mn
substitutes for Ga. Mn is believed to substitute randomly for
Ga in the lattice, leading to strong site disorder. Based on
a model RKKY interaction with parameters consistent with
the measured properties of (Ga,Mn)As, Priour and Das Sarma
concluded that only nearest neighbor interactions needed to
be considered, since the damping length is comparable with
the lattice constant. Despite the strong disorder, the numerical
calculations obtained three-dimensional Heisenberg behavior,
but only very close to the Curie temperature (TC).

(Ga,Mn)As, one of the most interesting and widely studied
dilute magnetic semiconductors [8–11], is a model system that
has been used to demonstrate a variety of novel phenomena
during the last 20 years, such as gateable ferromagnetism [12],
tunneling anisotropic magnetoresistance [13], current-induced
domain wall motion [14], strain control of domain wall motion
[15], and spin injection [16]. Despite the values of the highest
Curie temperatures (TC) achieved being well below room
temperature [17–19], it is a valuable test ground for spintronics
applications. Ferromagnetism in (Ga,Mn)As is due to the
coupling of the dilute magnetic moments via delocalized holes.
The Mn dopant is an acceptor when it substitutes for Ga and
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provides both the local moments and the holes. Since it is a
dilute ferromagnet, with Mn randomly substituting for Ga on
the Ga lattice sites, this material is an extreme example of a
disordered ferromagnetic system.

There have been several studies of critical behavior in
(Ga,Mn)As. Most of these have focused on the critical
contribution to the resistivity close to TC [20]. In dense
moment ferromagnetic semiconductors, the moment density is
much larger than the carrier density, and only long-wavelength
spin fluctuations scatter carriers effectively. This leads to the
resistivity having a peak at TC [21]. In dilute ferromagnetic
semiconductors such as (Ga,Mn)As [18,22] and ferromagnetic
metals [23], the carrier and moment densities are comparable.
This leads to the temperature derivative of resistance having
a peak at TC, which has the same functional form as that of
the specific heat [24]. A few experimental studies have tried
to determine critical exponents for (Ga,Mn)As [25–28], and,
as discussed later, these have generally produced imprecise
and contradictory results. Stefanowicz et al. [29] carried out
a detailed study of critical behavior in the related dilute
ferromagnetic semiconductor (Ga,Mn)N. They found that
inhomogeneity played a major role in this material leading
to temperature-dependent “effective critical exponents.”

(Ga,Mn)As has several properties that make it well
suited to the study of critical behavior at the ferromagnetic-
paramagnetic transition. (Ga,Mn)As layers grown by molec-
ular beam epitaxy (MBE) on GaAs substrates can have
very high crystalline quality. They generally show excellent
micromagnetic properties that are well understood on the
basis of both phenomenological and microscopic theories
[30]. The low moment density of (Ga,Mn)As makes shape
anisotropy very weak, and the relatively strong spin-orbit
coupling leads to magnetocrystalline anisotropy dominating
the magnetic behavior. (Ga,Mn)As epilayers, grown by MBE
on GaAs, have in-plane compressive strain. This breaks the
cubic symmetry, leading to biaxial 〈100〉 in-plane easy axes
in most (Ga,Mn)As materials at low temperature. (Ga,Mn)As
epilayers grown on GaAs also have a competing [11̄0] in-plane
uniaxial easy axis for which several explanations have been
proposed [31]. For typical (Ga,Mn)As materials with relatively
low Mn concentrations, one observes a smooth transition from
biaxial 〈100〉 in-plane easy axes to a [11̄0] in-plane uniaxial
easy axis with increasing temperature [32]. However, materials
with high Mn concentration and high TC, such as those used
in the present studies, show strong uniaxial behavior at all
temperatures. Together, these properties lead to the samples
studied behaving as single domain uniaxial magnets. This is
particularly beneficial for the study of the critical behavior of
the magnetization, since domain formation is suppressed.

Here, we present a detailed study of the critical behavior of
the magnetic properties of high quality, high homogeneity,
uniaxial (Ga,Mn)As close to TC. Within relatively small
experimental uncertainties, we observe three-dimensional
Heisenberg behavior despite the very strong disorder.

II. POWER LAWS AND THE CRITICAL
TEMPERATURE REGION

Close to TC, all the magnetic properties of ferromagnetic
materials are determined by critical fluctuations and show

power-law behavior [33]. It is useful to introduce the reduced
temperature t = (1 − T/TC), the reduced magnetic field h =
μ0μBH/kBTC , and the reduced magnetization m, which is the
magnetization divided by the T = 0 saturation magnetization.
In the critical region just below a ferromagnetic/paramagnetic
transition (t � 1), for h = 0, the reduced magnetization is
given by

m ∝ tβ . (1)

Just above TC, (−t � 1), the magnetic susceptibility,
χ ∝ m/h, in the limit h → 0, is given by

χ ∝ m/h ∝ (−t)−γ . (2)

At TC (t = 0), the magnetization, in the limit h → 0, is
given by

m ∝ h
1/δ. (3)

The magnetic contribution to the specific heat close to TC,
(|t | � 1), for h = 0, is given by

CM ∝ |t |−α. (4)

As discussed in Sec. I, in dilute ferromagnetic semiconduc-
tors such as (Ga,Mn)As [18] and ferromagnetic metals [23],
the temperature derivative of resistance close to TC should have
the same power-law behavior as that of the specific heat [24].

The specific values of the critical exponents are charac-
teristic of the universality class. For mean field behavior,
β = 0.5, γ = 1, δ = 3, and α = 0. The calculation of accurate
exponent values is challenging for most other classes, but
accurate values of β = 0.369, γ = 1.396, δ = 4.783, and
α = −0.133 have been obtained for the three-dimensional
Heisenberg universality class [33].

The critical exponents are not independent. From critical
scaling analysis [1,33], it is established that

δ = 1 + γ

β
, (5)

and

α = 2(1 − β) − γ, (6)

and that the magnetic thermodynamic variables must be related
by the equation

m(h,t)

tβ
= f±

(
h

tβ+γ

)
, (7)

where f± are two scaling functions for temperatures above
and below TC, respectively.

Equations (1) to (3) are consistent with the approximate
equation of state first proposed by Arrott and Noakes [34] for
the limit of small t , m, and h/m [33]:(

h

m

)1/γ

= at + bm1/β, (8)

where a and b are assumed to be temperature-independent
coefficients related to the critical amplitudes. This equation
of state was originally proposed as a partially empirical
expression that fitted to earlier magnetization measurements
on nickel, for which the critical exponents are close to the
three-dimensional Heisenberg values. Equation (8) reduces to
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Eq. (1) for H → 0, Eq. (2) for M → 0, and Eq. (3) for t = 0.
It is also consistent with Eqs. (5) and (7). For the mean field
exponents, Eq. (8) is

(
h

m

)
= at + bm2. (9)

The critical exponents β and γ are only exact in the limit of
“small” t (the critical region), even in the absence of disorder.
For the three-dimensional Heisenberg class, disorder does not
modify these exponents, but it reduces the extent of the critical
region. In experimental studies of a range of disordered fer-
romagnetic materials showing three-dimensional Heisenberg
behavior, it was found that the critical region is of the order
of a few percent of TC [5]. Trying to obtain critical exponents
from data more than a few percent away from TC may lead to
apparent deviations from the true critical exponents. This sets
an upper limit on |t |, above which accurate critical exponents
cannot be obtained.

Additionally in experimental studies, there is the particular
problem that there will always be some large length scale
inhomogeneity and corresponding variation of TC in real
samples. This removes the singularities at “TC” and produces
apparent deviations from power-law behavior (see for example
[35]). This sets a lower limit on |t |, below which accurate
values of the critical exponents β, γ , and α cannot be obtained.
It also implies that determining δ at “TC” could be problematic.

Hence, for disordered ferromagnetic materials with signif-
icant inhomogeneity, it may not be possible to experimentally
obtain the true critical exponents. As discussed below, this can
potentially be a serious issue for (Ga,Mn)As materials.

III. DATA ANALYSIS METHODS

A. Log-log plots

One can attempt to obtain the power-law exponents for
the magnetization and susceptibility by simply plotting the
appropriate data set as a log(M) (log(m)) or log(χ ) vs log |t |
graph and taking the gradient close to TC as the exponent.
Unfortunately, this method immediately runs into a number
of problems that are not easily resolved. The main problem
associated with this method is that one needs to know TC to
calculate t .

While theoretically remanent magnetization should fall to
zero at TC, real measurements always display a tail “above
TC” due to sample inhomogeneity and the presence of finite
magnetic fields arising from Earth’s field and small remanent
fields within magnetometer coils. The calculated exponent
values are very sensitive to the value of TC used, and we find in
our studies of (Ga,Mn)As that changing TC by ∼ 0.5% using
log-log plots can easily shift the inferred exponents between
values expected for different universality classes.

Often when log-log plots are used, no attempt is made to in-
dependently obtain TC, and both the exponent and the TC value
are used as free fitting parameters to obtain the best straight-
line behavior, or an arbitrary value of TC is chosen. From our
studies of (Ga,Mn)As, we find that this can be very misleading
and introduce large uncertainties that are hard to quantify.

Equation (3) suggests that one can obtain the critical
exponent δ from a plot of log(M) against log(H ) (or log(m)

against log(h)) at TC. However, this requires the value of TC

to be accurately known. In practice, the value of the critical
exponent δ obtained can be a rapidly varying function of the
TC used, and so, in the absence of some independent means
of measuring TC, one anticipates that obtaining values of the
exponent δ in this way will not give reliable values.

B. Arrott-Noakes plots

Often the TC values required to make the log-log plots
are obtained experimentally using standard or modified Arrott
plots [36]. Arrott plots assume that the equation of state
(8) is correct. Plotting m1/β against (h/m)1/γ should then
give parallel straight lines for each t , with that for t = 0
passing through the origin. However, to make such a plot,
one must assume the exponent values. Given this requirement,
the log-log plot plus Arrott plots approach is not a viable
option when studying the critical phenomena because each
of the steps requires the result of the other. The only real
use for the modified Arrott plots in this case is therefore as
a TC consistency check after the determination of β and γ .
Arrott plots of this type have been used to obtain TC values
for (Ga,Mn)As samples [37], assuming mean field exponent
values without any justification.

C. Scaling plots

In principle, Eq. (7) can be used to find the critical exponent
from measured M(H,T ) (m(h,t)) data. Plotting t(h,t)/tβ as a
function of h/tβ+γ should lead to all data falling onto one curve
above TC and one different curve below TC for the correct β

and γ values. However, using TC, β, and γ as fitting parameters
in this type of plot is not, in practice, a viable way to obtain
their values. In this respect, such scaling plots present the same
difficulties as the Arrott-Noakes method. However, such plots
do not rely on a specific approximate equation of state and
so may have a larger range of validity. Such plots can still be
useful for checking the consistency of the parameters obtained
from other methods.

D. Kouvel-Fisher plots

An alternative and relatively simple method to avoid the
problems of log-log plots, Arrott plots, and scaling plots is to
use Kouvel-Fisher plots [38]. From Eqs. (1) and (2) and the
definition of reduced magnetization, it follows that

(
dlnM

dT

)−1

= − 1

β
(TC − T ), (10)

and

(
dlnχ

dT

)−1

= − 1

γ
(T − TC). (11)

Therefore, plots of (dlnM/dT )−1 or (dlnχ/dT )−1 against
T yield the β and γ values from the gradients and the value of
the TC from the intercept on the T axis. These Kouvel-Fisher
plots are established as the best approach for the determination
of the critical temperature.
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IV. SAMPLES AND EXPERIMENTAL METHODS

A. Materials and samples

The samples studied were 25-nm-thick (Ga,Mn)As layers
grown on semi-insulating GaAs(001) substrates by low-
temperature molecular beam epitaxy, with nominal manganese
concentration from 6 to 12%. The growth procedures used
produce materials with highly uniform substitutional Mn
concentration [17] and excellent micromagnetic properties
[39]. As-grown (Ga,Mn)As epilayers have relatively low TC

due to self-compensation by interstitial Mn. However, the
interstitial Mn is relatively mobile and can be removed by low
temperature annealing [40] to produce material in which the
carrier and moment compensation is very low [41]. As-grown
(Ga,Mn)As has a gradient in the interstitial Mn concentration
in the growth direction due to partial annealing during MBE
growth and a corresponding gradient in TC [42]. The samples
used in these studies were annealed in air for 48 hours at
180°C, a procedure which has been shown to increase the
homogeneity [43] and the critical temperature TC [17].

B. Magnetic measurements

The magnetic properties of the (Ga,Mn)As samples were
measured in a Quantum Design superconducting quantum
interference device (SQUID) magnetometer with the recip-
rocating sample option (RSO). It is obviously important to
accurately know the applied field in M(H ) measurements. It
is also crucially important to minimize background magnetic
fields in measurements of remanent magnetization, since
these can significantly modify the behavior close to TC.
The magnetization vs temperature data of Fig. 1 show that the
sensitivity to small applied fields is relatively low if one is more
than about 1 K above or below TC, but that a magnetic field
as small as 1 Oe can dramatically change the magnetization
very close to the Curie temperature. One therefore needs to
minimize trapped flux within the superconducting coils of the
SQUID system. To do so, the applied magnetic field during the

FIG. 1. Measured reduced magnetization (i.e., the magnetiza-
tion divided by the T = 0 saturation magnetization) of the 12%
(Ga,Mn)As sample for small applied magnetic fields. The value
of TC we obtain for this sample from remanent magnetization
Kouvel-Fisher plots is 183.5 K.

remanent magnetization measurements has to be as small as
possible, but the field needs to be large enough to saturate the
samples’ magnetization. Magnetic fields of 300 Oe or less were
therefore used throughout the measurements. Oscillatory de-
magnetization of the magnet coils was also carried out between
data set measurements and when changing samples. Even with
these precautions, it is not possible to totally eliminate trapped
flux in a superconducting magnet system. For the sample of
Fig. 1, we obtained TC = 183.5 K (see Sec. V F). The behavior
of m(T ) for nominally zero applied fields suggests that fields
of a fraction of an Oersted were present.

Because the diamagnetic signal from the GaAs substrate
on which the (Ga,Mn)As epilayers were grown can give a
large contribution to the total magnetic moment and shift
the magnetic susceptibility, it is necessary to remove this
background precisely in critical behavior studies. To minimize
the diamagnetic background from the substrate and sample
holder, the sample was mounted on a thin strip of silicon and
abutted on either side with strips of GaAs of the same thickness
and width as the substrate [Fig. 2(a)]. Both the silicon mount
and the GaAs strips extend much further than the position of
the detection coils of the SQUID magnetometer. This leads
to the magnetic flux due to substrate and sample mount that
is detected by the magnetometer being very small. As an
example, Fig. 2(b) shows the magnetization vs temperature
on cooling in a 300 Oe applied field, with and without the
GaAs strips in place. The negative shift of the black points
is the result of the substrate diamagnetic background. This is
almost completely removed when the GaAs strips are used.

Detailed measurements and analysis were performed on
two samples, with nominal Mn concentrations of 11% and
12%, respectively. The approximate TC value was established
in initial measurements. Remanent magnetization was mea-
sured by first field cooling from room temperature to 2 K at
300 Oe, and then measuring the sample magnetization while
warming in zero applied field with a 1 K temperature step.
A temperature step size of 0.1 K was used from 10 K below
the established approximate TC value to increase the number
of data points over the critical region and to improve thermal
equilibrium in this region. Kouvel-Fisher analysis of the data
was then used to obtain the β critical exponent and TC.

Two full sets of DC M(H ) hysteresis loop measurements
were carried out on each sample. The first set was taken over
a temperature range from just below the approximate TC up
to 10 K above at intervals of 0.5 K. These were then used to
calculate the susceptibility χ as a function of temperature by
averaging both the up and down sweeps, and linearly fitting
around H = 0. Both fit and sweep range of each measurement
were increased with temperature, with a maximum sweep
range of ±200 Oe from roughly 5 K above TC. Kouvel-Fisher
analysis of the susceptibility data was used to obtain the γ

critical exponent, and it also provided a consistency check on
the value of TC.

Further M(H,T ) measurements were taken at temperatures
above and below the expected TC over a range of ±3 K and
for magnetic fields up to ±20 Oe. In this case, rather than
using a constant temperature step size, decreasing temperature
intervals were used down to 0.1 K upon approaching the
approximate TC. These M(H,T ) data were used to produce
standard and modified Arrott plots with the mean field and
three-dimensional Heisenberg exponent values, respectively.
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FIG. 2. (a) A diagram of the SQUID probe and the sample mounting. (b) Field-cooling data at 300 Oe for the 12% (Ga,Mn)As sample with
(red) and without (black) the use of the additional GaAs rods to remove the negative diamagnetic background.

Linear fitting to each of the isotherms was then used to
calculate a value of TC for both models. The same data sets
were also used to try to obtain the critical exponent δ and to
produce scaling plots with mean field and three-dimensional
Heisenberg models with the relevant TC values obtained from
the Arrott plots.

V. RESULTS

In this section, we will present the results of detailed, high-
resolution studies of two high-quality (Ga,Mn)As samples
with Mn concentrations of 11% and 12%, respectively. We
also present some results of lower-resolution studies of a
large number of annealed samples with a wide range of Mn
concentrations (from 6% to 12%) and TC values (from 117 K
to 180 K).

A. Measured remanent magnetization

Figures 3(a) and 3(b) show the temperature dependencies
of the projected magnetization along the [11̄0] crystalline axis
measured on cooling through TC in a 300 Oe magnetic field,
and then warming under zero applied field for the 12% and 11%
Mn samples, respectively. Annealed (Ga,Mn)As materials with
high Mn content have strong [11̄0] uniaxial anisotropy, and
they are in a single domain state after field cooling, so the
total spontaneous magnetization is equal to the projection of
remanent magnetization along the [11̄0] easy axis. This can be
seen from the comparison of the remnant and field-cooled mea-
surements, which are almost identical, except very close to TC.

B. Measured remanent magnetization just below TC:
Obtaining the critical exponent β

The Kouvel-Fisher analysis was carried out on the remanent
magnetization for both samples. Numerical differentiation was

carried out using nearest neighbor least-squares smoothing to
reduce the amplification of noise produced by the differen-
tiation. Figures 3(c) and 3(d) show the Kouvel-Fisher plots
with linear fitting performed over the reduced temperature
ranges 0.025 > |t | > 0.005 for the 12% and 11% Mn samples,
respectively. This range was chosen because the Kouvel-Fisher
plots are reasonably linear in this range. At larger |t | (further
below TC), the data become much noisier, and, as discussed in
Sec. V C, the plots become nonlinear. At lower |t | (very close to
TC), the Kouvel-Fisher plots are very nonlinear, with a marked
drop-off close to TC. These apparent drop-offs and associated
apparent increase in the exponent β just below TC are the result
of sample inhomogeneity [22]. Taking the observable critical
range to be 0.025 > |t | > 0.005 gives β = 0.361 ± 0.005 and
0.373 ± 0.007, respectively, for the 12% and 11% samples.
These values are consistent with the value of 0.369 predicted by
the three-dimensional Heisenberg model [33] and inconsistent
with the mean field value of 0.5. The corresponding values of
TC are 183.7 ± 0.1 K and 169.0 ± 0.1 K. Figure 3(e) shows
the Kouvel-Fisher plots for both samples shifted by their
respective calculated TC values. The two data sets overlay
very well in the range from TC down to about 8 K below TC.
Fitting to the combined data set in Fig. 3(e) over the range
0.025 > |t | > 0.005 gives β = 0.366 ± 0.003, i.e., a value
close to the three-dimensional Heisenberg value with a small
fitting uncertainty. However, as discussed below, one must also
consider the influence of the fitting range used on the value
obtained.

To test the sensitivity of the value of β obtained from the
Kouvel-Fisher plots, we show in Fig. 4 the effect of changing
the reduced temperature (t) fitting range on the obtained
value of β. The upper bound is fixed at tupper = 0.005, and
β is plotted as a function of the value of the lower bound
tlower. Black squares and red circles are for the 12% and
11% samples, respectively. The horizontal dark blue line is
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FIG. 3. (a, b) The projection of the temperature-dependent remanent (green solid line) and field-cooled (black dashed line) magnetization
along the [11̄0] crystalline axis for the 12% and 11% Mn samples. (c, d) The Kouvel-Fisher plots of (d ln M/dT )−1 for the 12% and 11% Mn
samples. The green lines are the linear fits to the data in the range 0.025 > |t | > 0.005 (marked by filled symbols). (e) Combined Kouvel-Fisher
plots for both samples using the TC values obtained from the individual plots of (c, d). The green line is the linear fit within the range
0.025 > |t | > 0.005 for the combined data set.

the three-dimensional Heisenberg exponent β = 0.369. In the
range 0.025 < tlower < 0.035, there is a transition from the
three-dimensional Heisenberg value to an apparent value of

FIG. 4. Dependence of the value of β obtained from Kouvel-
Fisher plots on the lower bound of the fitting window. The upper
bound is fixed at tupper = 0.005. Black squares and red circles are for
the 12% and 11% samples, respectively. The horizontal dark blue line
is the three-dimensional Heisenberg exponent β = 0.369. The light
blue dashed line and purple dotted line are the behavior calculated for
the Heisenberg exponent β = 0.369 using Eq. 13 for �/TC0 values
of 0.0038 and 0.0055, respectively.

β ∼ 0.4. As discussed in Sec. V C, this value is observed down
to values of T well below TC and well outside the critical
range. For values of tlower < 0.02, the apparent value of β

decreases. However, as discussed in Sec. V E, this behavior
is broadly consistent with that calculated for the Heisenberg
exponent β = 0.369 in the presence of quite small degrees of
inhomogeneity.

We also obtained β values from Kouvel-Fisher analysis
of lower-resolution remanent magnetization data for a large
number of samples with a wide range of Mn concentrations.
Figure 5 shows typical data for three different samples.
Figure 6(a) is a histogram of the β values. The distribution
is quite wide, and there are a number of outliers. The red
line is a Gaussian fit to the main peak, which gives a β value
of 0.36 ± 0.01. The mean of all the data gives a β value of
0.37 ± 0.02. Both values are consistent with the value of 0.369
predicted by the three-dimensional Heisenberg model [33] and
inconsistent with the mean field value of 0.5.

Figure 6(b) shows that no significant dependence of the
apparent value of β on the Mn concentration (or TC, which
increases monotonically with the Mn concentration for these
samples) is observed.

C. Measured remanent magnetization at lower temperatures

Figure 7 shows that at temperatures well below TC, the
Kouvel-Fisher plots are approximately linear down to t ∼ 0.5.
Fitting in this region gives an exponent β ∼ 0.4. It is not
clear why this behavior is observed, since one expects a
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FIG. 5. Lower resolution remanent magnetization Kouvel-Fisher
plots for samples with nominal Mn concentration of (a) 12%, (b)
10%, and (c) 6%. Fitting was performed to the data range indicated
by filled squares. The blue lines are the resulting linear fits.

transition into mean field behavior with β = 0.5. Khazen
et al. [26] obtained a similar value of β from log-log plots
of magnetization fitting down to t = 0.35 with a data point
separation of 5 K. We conclude that the upper limit of the
accessible critical range is t ∼ 0.025. The value obtained by
Khazen et al. is therefore consistent with the value we obtain
below the critical range.

Below this temperature range, the Kouvel-Fisher plots
become strongly nonlinear. For T well below TC, the effects
of spin-wave excitations are expected to dominate, with the
remanent magnetization following Bloch’s 3/2 law [44]:

M(T ) − M(0)

M(0)
= AT 3/2, (12)

where A is a parameter related to the spin stiffness.
Figure 8 shows M/M0 vs T 3/2 plots of both the 11% and 12%
Mn (Ga,Mn)As samples. It shows clear linear behavior below
50 K.

FIG. 6. (a) Histogram of β values calculated from lower-
resolution Kouvel-Fisher plots for (Ga,Mn)As samples with a range
of Mn concentrations, layer thicknesses, and growth conditions. The
Mn concentration is indicated in the color key. The red line is a
Gaussian fit to the main peak, which gives a β value of 0.36 ± 0.01.
The mean of all the data gives a β value of 0.37 ± 0.02. (b) Diagram
showing the lack of a significant dependence of the obtained b on the
Mn concentration for these samples.

The low-temperature behavior of the magnetization was
investigated for a series of (Ga,Mn)As samples by Sperl et al.
[45]. It was reported that the normalized spin wave coefficient
A3/2 = AT

3/2
C is enhanced compared to conventional 3d

ferromagnets. This was attributed to the effects of impurity
disorder and spin clustering. For both the 11% and 12%
samples, we obtain values of A3/2 of around 0.6, which is
consistent with the values obtained by Sperl et al. [45].

D. Measured magnetic susceptibility just above TC:
Obtaining the critical exponent γ

Figures 9(a) and 9(b) show that the measured in-
verse susceptibilities are clearly not linear (mean-field-like).
Figures 9(c) and 9(d) show the Kouvel-Fisher plots of the
measured susceptibilities. Linear fitting over the temperature
range 0.025 > |t | > 0.005 gives values of γ of 1.47 ± 0.07
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FIG. 7. Shifted Kouvel-Fisher plots of larger step-size remanent
magnetization data over a wide temperature for 12% and 11% Mn
samples. Linear fitting was performed in the range −90 K < T −
TC < −3 K.

and 1.51 ± 0.10 for the 12% and 11% Mn samples, respec-
tively. These values are consistent with the value of 1.396
predicted by the three-dimensional Heisenberg model [33]
and inconsistent with the mean field value of 1.0. The cor-
responding values of TC are 184.0 ± 0.1 K and 170.0 ± 0.2 K.
These are 0.3 ± 0.2 K and 1.0 ± 0.3 K higher, respectively,
than the values obtained from the remanent magnetization
Kouvel-Fisher plots. The latter difference is clearly significant.
How such discrepancies can arise due to inhomogeneity is
discussed in Sec. V E. Figure 9(e) shows that the Kouvel-Fisher
plots for the two samples shifted by their respective calculated
TC values overlay very well in the range 0.025 > |t | > 0.005,
which we are taking to be the observable critical range. The
value of γ for the combined data set over this range of |t |

FIG. 8. M/M0 against T 3/2 for 12% (squares) and 11% (triangles)
samples. The green lines are the linear fit between 20 K and 50 K.

is 1.47 ± 0.05, a value consistent with the three-dimensional
Heisenberg model. At higher temperatures, the susceptibility
becomes very small and comparable with the resolution of the
SQUID measurement system.

E. The effects of inhomogeneity on the measured remanent
magnetization and susceptibility

We have noted that, in real samples, there will always be
some large length-scale inhomogeneity and a corresponding
variation of TC that removes the singularities at “TC” and sets
a lower limit on |t |, below which accurate values of the critical
exponents β and γ cannot be obtained. We now quantify these
effects and compare the measured results to those expected in
the presence of inhomogeneity.

The effect of broadening on M(T ) was modelled in an
approach similar to that of Kuz’min and Tishin [35] and
Stefanowicz et al. [29]. In these previous studies, a Gaussian
distribution of magnetic impurities or TC was used. We have
previously studied the distribution of TC values as a function of
position on our MBE-grown wafers. We find that the samples,
which are rotated during growth, have small variations of
TC across a 2 inch (∼5 cm) wafer, and that the variation is
radial, due to small differences in the fluxes and substrate
temperature between the center and edge of the wafer [17]. In
this circumstance, we expect a small and approximately linear
variation of TC across the 4-mm-sized samples used in this
study. We therefore assume a rectangular distribution of TC

with a half-width �. M(T ) is then given by

M(T ) = M0

2�

∫ TC0+�

TC0−�

f (T ,TC)dTC, (13)

where

f (T ,TC) =
(

1 − T

TC

)β

for T < TC and f (T ,TC) = 0

for T > TC.

We find that the specific form of the TC distribution does
not substantially influence the predicted behavior for small
inhomogeneity (see below). Figure 10(a) shows calculated
magnetization vs temperature, using the three-dimensional
Heisenberg critical exponent β = 0.369 and the mean critical
temperature TC0 = 183.7 K obtained from the Kouvel-Fisher
plot for the 12% Mn sample, for various values of the
broadening half-width �. This indicates that the measured
behavior of M(T ), close to TC, for the 12% Mn sample
is similar to that expected for a broadening of order � =
0.5 K. The corresponding Kouvel-Fisher plots are shown in
Fig. 10(b). This value of � corresponds to a value of t = 0.003.

The effect of inhomogeneity on the magnetic susceptibility
can be similarly estimated using the same probability dis-
tribution of TC as in Eq. (13). Within this model, χ (T ) is
given by

χ (T ) = χ0

2�

∫ TC0+�

TC0−�

(
T

TC
− 1

)−γ

dTC, (14)

where χ (T ) is evaluated for T > TC0 + � to avoid the singu-
larity at TC implied by this functional form. The susceptibility
Kouvel-Fisher plots for various values of the broadening
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FIG. 9. (a, b) The measured inverse susceptibility for the 12% and 11% Mn samples. (c, d) The Kouvel-Fisher plots of (d ln χ/dT )−1 for
the 12% and 11% Mn samples. The green lines are the linear fits to the data in the range 0.025 > |t | > 0.005 (marked by filled symbols). (e)
Combined Kouvel-Fisher plots for both samples using the TC values obtained from the individual plots of (c, d). The green line is the linear fit
within the range 0.025 > |t | > 0.005 for the combined data set.

half-width �, calculated using the three-dimensional Heisen-
berg exponent γ = 1.396 and a mean critical temperature
TC0 = 183.7 K, are compared to the measured result for the
12% Mn sample in Fig. 11(a).

To illustrate the effects of inhomogeneity on the values of
TC and the critical exponents obtained from Kouvel-Fisher
plots, Eqs. (13) and (14) were evaluated for TC0 = 183.7 K,
β = 0.369, and γ = 1.396, and � over the range 0–1.5 K.
Figures 11(b) and 11(c) show the values of TC, β, and γ that
result from fitting to the Kouvel-Fisher plots derived from the
calculated M(T ) and χ (T ). The fitting was performed over the
range of t = (1 − T/TC0) given by 0.005 < |t | < 0.025. With
increasing broadening, the fitted values of both the critical
exponents, βfit and γfit, decrease from their true values, while
the values of the critical temperature obtained from the magne-
tization and susceptibility Kouvel-Fisher plots, TC,fit, diverge
from each other. This illustrates the importance of highly
homogeneous samples when studying critical phenomena. The
observed differences in TC between the magnetization and
susceptibility data of 0.3 ± 0.2 K and 1.0 ± 0.3 K for the 12%
and 11% samples, respectively, are consistent with broadening
half-widths of 0.5 ± 0.2 K and 1.0 ± 0.3 K, respectively.

The dependence of the apparent β on the lower limit of
the t fitting range for the calculated Kouvel-Fisher plots is
shown in Fig. 4, together with the experimental data. As with
the experimental curves, the upper limit of the fitting range
was fixed at tupper = −0.005. Consistent with the experimental
result, the apparent β is below the real value of β = 0.369
used in the calculation, and it falls significantly as |tlower|
is reduced. Good agreement with the results for the 11%

and 12% samples is found in the critical region (i.e., below
t ∼ 0.025) for relative broadenings of around �/TC0 = 0.006
and �/TC0 = 0.004, respectively. The precise dependence
on inhomogeneity depends on the details of the broadening
included in the calculation.

F. Standard and modified Arrott plots

The measurements of M(H,T ) used to produce the Arrott
plots of this section and the critical scaling plots of the next
section were carried out several months after the measurements
of remanent magnetization and susceptibility presented in
Secs. V A–V E. For the 12% Mn sample, it was found that
the TC value had reduced by about 0.2 K between these
different sets of measurements. This is apparent in Fig. 12,
where the remanent magnetization is shown for the earlier and
later data sets. No significant shift was found for the 11%
sample.

Figure 13 shows both standard mean field Arrott plots
and modified Arrott plots (Arrott-Noakes plots) using three-
dimensional Heisenberg exponents for the 12% and 11%
Mn samples. The reduced magnetization, m, is the measured
M divided by M(2K), and h = μ0μBH/kBTC . These were
produced by averaging the up and down m(h) sweeps and
the positive and negative field regions and then plotting m1/β

against (h/m)1/γ . First, it should be noted that since our data
are measured close to TC for small applied fields, the basic
conditions for the validity of these plots (t , m, and h/m � 1)
are satisfied.
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FIG. 10. (a) Experimental magnetization vs temperature for 12%
Mn sample (squares) compared to calculated critical behavior for
a rectangular broadening half-width � = 0 (black continuous line),
� = 0.5 K (red dashed line), � = 1.0 K (green dot-dashed line), and
� = 1.5 K (magenta dotted line). (b) Kouvel-Fisher plots for the data
in (a).

It is clear from Fig. 13 that the measured data are in
much better agreement with Eq. (8) with three-dimensional
Heisenberg exponents than with the equivalent mean field,
Eq. (9). We emphasize two important points about Fig. 13.
First the plots using mean field exponents are significantly less
linear than those using three-dimensional Heisenberg exponent
values for both samples. In particular, while reasonable straight
line fits to all the data are possible for the three-dimensional
Heisenberg exponents, the behavior for the mean field expo-
nents (the standard Arrott plots) is far from linear at small
h/m. A superlinear fall in m2 at small h/m in standard Arrott
plots is often ascribed to domain formation. However, linear
behavior down to the smallest h/m is observed in the modified
Arrott plots, indicating that the nonlinearity at small h/m in the
standard Arrott plots is due to the non-mean-field-like critical
exponents. Second, the modified Arrott plots show very little
change in gradient below the expected Curie temperatures,
i.e., in Eq. (8), b is almost constant (while, if allowed to vary,
a shows small variations). For the standard Arrott plots, the
gradients of the fitted straight lines vary significantly below
TC. This is a problem that is often overlooked in standard
Arrott plots, as the critical amplitudes a and b in Eqs. (8) and
(9) should be constants. Above TC, a and b are found to vary
significantly for both types of plot.

FIG. 11. (a) Kouvel-Fisher plot for the measured susceptibility
of 12% Mn sample, compared to calculations for a rectangular
broadening half-width � = 0 (black continuous line), � = 0.5 K
(red dashed line), � = 1.0 K (green dot-dashed line), and � = 1.5 K
(magenta dotted line). (b) TC extracted from the Kouvel-Fisher plots of
the calculated critical behavior of the magnetization (black line) and
susceptibility (red line) as a function of the rectangular broadening
of half-width �. (c) Critical exponents β (black line, left axis) and γ

(red line, right axis) extracted from the calculated magnetization and
susceptibility, respectively, vs �.

The Curie temperatures were calculated from both sets of
plots by performing a linear fit to each isotherm and plotting
the resulting y-intercepts against temperature. The sample TC

values shown in Figs. 13(a) and 13(c) were calculated by fitting
to the linear regions below the expected Curie temperatures.
The resulting TC value for the 12% sample obtained from
the three-dimensional Heisenberg plot is 183.5 K, while the
value obtained from the β-Kouvel-Fisher plot is 183.7 K. This
0.2 K difference is consistent with the shift in TC apparent
in Fig. 12(a) due to aging of the sample. The TC value
for the 11% sample obtained from the three-dimensional
Heisenberg plot is 169.1 K, while the value obtained from the
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FIG. 12. (a) Thermoremnant magnetization for the 12% sample
(red circles) and remanence obtained from M vs H hysteresis loops
for the same sample some months later (black squares). (b) Same as
(a) but for the 11% sample.

β-Kouvel-Fisher plot is 169.0 K. This 0.1 K difference is not
significant given the uncertainties. The mean field Arrott plots
produce TC values of 183.7 K and 169.4 K, which are only
slightly higher than those obtained using three-dimensional
Heisenberg exponents. Thus, even though these plots show
that the behavior is significantly more consistent with three-
dimensional Heisenberg behavior than mean field behavior,
use of a standard (mean field) Arrott plots yield TC values
close to the true values.

G. Critical scaling plots

Figure 14 shows the scaling plots of the magnetic data for
both samples using both the three-dimensional Heisenberg and
mean field exponents, with relevant TC values obtained from
the standard and modified Arrott plots, respectively. The data
collapse roughly onto two branches corresponding to T > TC

and T < TC over several orders of magnitude. For T < TC,
the scaling is slightly improved using Heisenberg rather than
mean field exponents (compare in particular the upper curves
in Figs. 14(a) and 14(b)). For example, fitting to a smooth
curve for the data of 12% Mn sample yielded an adjusted R-

squared value of 0.971 for the three-dimensional Heisenberg
model and 0.888 for the mean field model. However, for
T > TC, the three-dimensional Heisenberg exponents do not
give significantly better behavior than the mean field values.
It is clear that one cannot determine the universality class or
exponent values from our data using this type of plot.

H. The critical exponent δ

Figures 15(a) and 15(b) show log(M) against log(H ) plots
for a series of temperatures around TC for the two samples. The
plots are reasonably linear close to the TC values obtained from
the three-dimensional Heisenberg Arrott plots. Figures 15(c)
and 15(d) show the dependence of the gradient of the log-log
plots as a function of T . The value of δ obtained varies very
rapidly with T , and one would need to know TC with a high
degree of accuracy and confidence to obtain δ from such a plot.
However, the values obtained are consistent with the three-
dimensional Heisenberg value of 4.783 [33] at the TC values
of 183.5 K and 169.1 K obtained from the three-dimensional
Heisenberg Arrott plots. The plots are also significantly more
linear at the three-dimensional Heisenberg value of δ than at
the mean field value.

Using the experimental values of β and γ obtained from
the Kouvel-Fisher plots and Eq. (5) gives δ = 5.0 ± 0.2 for
both the 11% and 12% samples, which is consistent with the
three-dimensional Heisenberg value of 4.783 [33].

I. The critical exponent α

As noted in Sec. II, close to TC, the temperature derivative
of resistivity should have the same power-law behavior as
that of the specific heat in (Ga,Mn)As. We have demonstrated
previously that there is indeed a peak in the temperature
derivative of resistivity close to TC [18], but generally the
peak is shifted to a temperature slightly below TC due to
inhomogeneous broadening [19]. We find that even in our most
homogeneous samples, the peak in the temperature derivative
of resistivity is quite broad, and it is not possible to obtain
meaningful values for the exponent α by fitting to the measured
data.

Using the experimental values of β and γ obtained from the
Kouvel-Fisher plots and Eq. (6) gives α = −0.19 ± 0.07 for
the 12% sample and α = −0.25 ± 0.10 for the 11% sample.
These values, which have large fractional uncertainties, are
consistent with the three-dimensional Heisenberg value of
−0.133 [33].

Yuldashev et al. [27] presented specific heat data for two
(Ga,Mn)As samples. The samples were not annealed, and the
measured remanent magnetization was found to vary quite
slowly with temperature around the inferred TC values, as
is typical for strongly inhomogeneous samples. Despite this,
remarkably sharp cusps in the specific heat were observed at
the inferred TC values, with the specific heat varying rapidly on
temperature scales of ∼ 0.1 K (t ∼ 0.002). It is unclear how
the observed behavior of the specific heat and the remanent
magnetization can be consistent. Fitting to the observed
specific heat for the two samples gives values of α = 0.09
and 0.50 (without quoted uncertainties). These values are
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FIG. 13. Heisenberg modified Arrott plots for (a) 12% and (c) 11% Mn sample and standard mean field Arrott plots for (b) 12% and (d)
11% Mn sample. The straight lines in (a) and (c) are fits to the full data sets at each temperature. The straight lines in (b) and (d) are fits
excluding the red points at low h/m.

inconsistent with both the three-dimensional Heisenberg value
of −0.133 and the mean field value of 0.

VI. COMPARISON WITH PREVIOUS PAPERS

As noted in Sec. I, most previous studies of critical behavior
in (Ga,Mn)As have focused on the critical contribution to
the resistivity close to TC [20]. The few experimental studies
that have tried to determine critical exponents for (Ga,Mn)As
[18,25–28] have produced imprecise and contradictory results.

Earlier papers, by some of the present authors and others,
focused on the influence of scattering by critical fluctuations on
the measured resistivity in (Ga,Mn)As. While demonstrating
that the temperature derivative of resistivity had a clear
maximum at TC, in agreement with expectations [18,19], it
was concluded that it was not possible to infer information
about the universality class from the functional form of the
temperature derivative of resistivity, which should follow that
of the magnetic contribution to the specific heat. In an earlier
paper by some of the present authors, an estimated value of
β of 0.3 to 0.4 [18], based on preliminary log-log plots, was
given due to the problematic nature of this type of analysis,
and the paper highlighted the need for a much more in-depth
study of the critical region to obtain accurate exponent values.
Khazen et al. [26] obtained a value of β = 0.407 based on

a log-log plot analysis of magnetization data for (Ga,Mn)As.
However, as pointed out in Sec. V C, the critical exponent in
Ref. [26] was obtained by fitting down to t = 0.35 with a data
point separation of 5 K, while we conclude that the upper limit
of the accessible critical range is t <∼ 0.025. The value (but
not the uncertainty, which is very small) quoted by Khazen
et al. is consistent with the value we obtain below the critical
range and does not provide information on critical behavior in
(Ga,Mn)As.

Jiang et al. [25] attempted to obtain values of the crit-
ical exponents β and γ by measurements of anomalous
Hall effect in a 2% Mn (Ga,Mn)As sample. They stated
that their measurements provide strong evidence of mean
field behavior in the sample studied. They inferred the
behavior of magnetization and susceptibility by assuming
that the anomalous Hall resistivity, ρxy , has the specific
form

ρxy = Cρn
xxM. (15)

It was further assumed that C is a magnetic field– and
temperature-independent constant and that n = 2. However,
there are a series of problems with the approach used.
(i) Generally the n in Eq. (15) is system and disorder
dependent, often having a value between 1 [46] and 2 [47].
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FIG. 14. Scaling plots for (a, b) 12% and (c, d) 11% Mn sample. (a) and (c) are for three-dimensional Heisenberg exponents, and (b) and
(d) are for mean field exponents.

In measurements on (Ga,Mn)As, values between 0.4 and 2
have been reported [48]. Furthermore since the value of n

is dependent on scattering, it is possible for n to also be a
function of temperature. (ii) The magnetization in Eq. (15) is
actually the component of the magnetization perpendicular to
the thin (Ga,Mn)As film. Equation (15) therefore only gives the
total magnetization when M is saturated in the perpendicular
direction. The sample used by Jiang et al. [25] had a strong
in-plane magnetic anisotropy, so large fields were applied to
rotate the magnetization out of plane. Fields greater than 3000
Oe were used to produce Arrott plots, which are far larger
than those at which critical behavior can be expected to be
observed. (iii) The temperature dependence of magnetization
was inferred by extrapolation to zero applied field of the high
field slope of mean field Arrott plots. (iv) Values of the critical
exponents β and γ were obtained from log-log plots using
these inferred magnetization values, but the data used were
of low resolution, and the range of |t | used for the power-law
fitting was large. For example, for the β plot, the two points
closest to TC have |t | ∼ 0.05 and 0.02, while for the γ plot,

the two points closest to TC have |t | ∼ 0.04 and 0.01, so
almost all the data used are probably outside of the critical
range.

The results of Yuldashev et al. [27] on the specific heat data
for two (Ga,Mn)As samples were discussed in Sec. V I. Values
of α = 0.09 and 0.50 (without quoted uncertainties) were ob-
tained, which are inconsistent with both the three-dimensional
Heisenberg value of −0.133 and the mean field value of 0. In
this same paper, the M(H ) data “at TC” for one of the samples
were shown to vary as approximately M3 ∼ H . However,
the data are again for large applied fields. On the basis of
the seemingly contradictory results for the magnetization and
the specific heat, these authors concluded that the behavior is
suggestive of mean field behavior with Gaussian fluctuations.
How the very sharp features in the specific heat could be
consistent with the presence of significant spatial variations of
the magnetization is unclear.

Stefanowicz et al. [29] studied the critical behavior of
the related material (Ga,Mn)N. (Ga,Mn)N is a wide-bandgap
magnetic semiconductor in which ferromagnetism arises
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FIG. 15. Log-log plots of magnetization as a function of applied magnetic field close to TC for (a) 12% and (b) 11% Mn sample. Values of
δ were obtained from fitting straight lines to the log-log plots in the range 1 to 10 Oe for (c) the 12% and (d) the 11% Mn sample.

from the very short-range superexchange interactions. They
reported a significant smearing of the critical region, which
was consistent with an inhomogeneous TC distribution with a
�TC of 0.4 ± 0.2 K (t ∼ ±0.04). They found that βeff(t) and
γeff(t) vary rapidly and that no clear “critical range” could be
identified. Fitting using Gaussian broadening with �TC, β, and
γ as free parameters gave β = 0.6 ± 0.1 and γ = 1.7 ± 0.1,
which are far from the expected three-dimensional Heisenberg
values. They suggested that this might be an indication of the
effects of disorder and a breakdown of the Harris criteria or that
the strong variation of β and γ might stem from the crossover
from the large |t | region (where both γ and β may be close to
the mean field values) to the “true” critical region (sufficiently
small |t |).

VII. CONCLUSIONS

From detailed studies of the temperature- and magnetic
field–dependent magnetization of thin epitaxial (Ga,Mn)As
films with high Mn concentration, we conclude that accurate
and reproducible values of the critical exponents β and

γ can be obtained from Kouvel-Fisher plots only over a
narrow range of temperatures. The strong intrinsic disorder
present in dilute magnetic semiconductors places a limit
on the temperature range over which critical behavior can
be observed. We find that three-dimensional Heisenberg-like
critical exponents are only obtained for absolute values of the
reduced temperature |t | below around 0.025. The accessible
temperature range is further reduced by the presence of large
length-scale inhomogeneity across the samples. Even in our
most homogeneous samples, we find a TC broadening of
around 0.4%, which limits the accessible critical region to
around 0.025 > |t | > 0.005.

For larger values of |t |, we observe apparent transitions
of the critical exponent β to values of around 0.4. This is
consistent with the value obtained by Khazen et al. from
fits to log-log plots of the magnetization as far as |t | ≈ 0.35
[26]. We conclude that measurements obtained over such a
wide temperature range do not provide information on critical
behavior in (Ga,Mn)As.

We find that modified Arrott plots and scaling plots are
not by themselves a practical way to determine the critical
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exponents. The magnetic data are found to be in significantly
better agreement with the Arrott-Noakes equation of state,
using three-dimensional Heisenberg exponents, than with the
mean field equation of state. The scaling plots of the magnetic
data show the expected data collapse onto two branches
corresponding to T > TC and T < TC over several orders of
magnitude. However, similar behavior is observed using both
three-dimensional Heisenberg and mean field exponents, and
it was not found to be possible to draw significant conclusions
about the universality class from these plots. We also find that
determination of the critical exponent δ from M(H,TC) data is
strongly dependent on an accurate knowledge of TC. A value
consistent with the three-dimensional Heisenberg exponent
δ = 4.783 is obtained using the critical temperature deter-
mined from modified Arrott plots, indicating self-consistency
of the data set. Mean field Arrott plots produced from the same
M(H,T ) data yield a slightly higher apparent TC, which has a
marked effect on the apparent value of δ obtained.

The measured values of the critical exponents β and γ

are consistent with the three-dimensional Heisenberg values
and are inconsistent with the mean field or modified mean
field behavior claimed in previous publications. Furthermore,
measurements of M(H ) close to TC are consistent with the
three-dimensional Heisenberg values of the critical exponent δ.
We therefore conclude that the critical behavior of (Ga,Mn)As
is that of the three-dimensional Heisenberg class despite the
very strong site disorder.
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