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Abstract: 12 

This paper presents an extended experimental study on the bond behaviour between textile-13 

reinforced mortar (TRM) and concrete substrates. The parameters examined include: (a) the 14 

bond length (from 50 mm to 450 mm); (b) the number of TRM layers (from one to four); (c) 15 

the concrete surface preparation (grinding versus sandblasting); (d) the concrete compressive 16 

strength (15 MPa or 30 MPa); (e) the textile coating; and (f) the anchorage through wrapping 17 

with TRM jackets. For this purpose, a total of 80 specimens were fabricated and tested under 18 

double-lap direct shear. It is mainly concluded that: (a) after a certain bond length (between 19 

200 mm and 300 mm for any number of layers) the bond strength marginally increases; (b) 20 

by increasing the number of layers the bond capacity increases in a non-proportional way, 21 

whereas the failure mode is altered; (c) concrete sandblasting is equivalent to grinding in 22 

terms of bond capacity and failure mode; (d) concrete compressive strength has a marginal 23 

effect on the bond capacity; (e) the use of coated textiles alters the failure mode and 24 

significantly increases the bond strength; and (f) anchorage of TRM through wrapping with 25 

TRM jackets substantially increases the ultimate load capacity.  26 

 27 

Keywords: A. Fabrics/textiles; A. Carbon fibre; B. Debonding; C. Mechanical testing; 28 

Concrete strengthening.  29 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

 

2 
 

1 Introduction and background 30 

The need for retrofitting the existing concrete infrastructure is progressively becoming more 31 

important due to their continuous deterioration as a result of ageing, environmental induced 32 

degradation, lack of maintenance or need to meet the current design requirements (i.e. 33 

Eurocodes). Replacing the deficient concrete structures in the near future with new is not a 34 

viable option as it would be prohibitively expensive. For this reason a shift from new 35 

construction towards renovation and modernization has been witnessed in the European 36 

construction sector, between 2004 and 2013, with practically 50% of the total construction 37 

output being renovation and structural rehabilitation. (i.e. €305bn turnover on rehabilitation 38 

and maintenance works in EU27 for 2012, see www.fiec.eu).  39 

The use of externally bonded (EB) composite materials (such as fiber reinforced 40 

polymers - FRPs) is a common retrofitting technique usually employed by engineers. Almost 41 

a decade ago, an innovative cement-based composite material, the so-called textile-reinforced 42 

mortar (TRM), was introduced in the field of structural retrofitting [1, 2] as an alternative to 43 

FRP solution, addressing cost and durability issues. Since then, TRM progressively attracts 44 

the interest of the structural engineering community.  45 

TRM comprises high-strength fibers (i.e. carbon, glass or basalt) in form of textiles 46 

combined with inorganic matrices (such as cement-based mortars). The textiles that are used 47 

as reinforcement of the composite material typically comprise fiber rovings in two orthogonal 48 

directions, thus creating open-mesh geometry. TRM is an attractive retrofitting solution 49 

because it combines the outstanding properties of composite materials (e.g. high-strength, 50 

low weight, corrosion resistance) with the favourable characteristics offered by mortars and 51 

cannot be found in resins (e.g. fire resistance, low cost, ability to apply on wet surfaces and 52 

low temperatures, air permeability of the substrate. The same material is also referred in the 53 

literature as fabric-reinforced cementitious matrix (FRCM) (e.g. [3]).  54 
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Significant research effort has been put in the last decade to exploit TRM in several 55 

cases of retrofitting reinforced concrete (RC) structures; namely flexural [i.e. 4-7], shear 56 

strengthening of RC elements [i.e. 8-11], confinement of RC columns [i.e. 1, 2]), seismic 57 

retrofitting of RC columns (e.g. [2, 12-16]), seismic retrofitting of infilled RC frames [17]. 58 

TRM has also been successfully used for retrofitting masonry structures (e.g. out-of-plane 59 

strengthening [18] and shear strengthening of masonry walls [19]). However the number of 60 

studies on the bond behaviour between TRM and concrete are relatively limited [20-27]. The 61 

study of the bond behaviour between TRM and concrete is of crucial importance as it helps 62 

understanding the complex mechanisms of transferring forces from the textile reinforcement 63 

to the surrounding matrix and eventually to the concrete substrate. It is also a fundamental 64 

step towards the development of design models to be used in strengthening applications.  65 

Past studies on the bond between TRM and concrete were mainly focused on the 66 

behaviour of textiles comprising polyparaphenylene benzobisoxazole (PBO) fibers, except 67 

for those in [21, 23] where uncoated carbon and glass fibers [21] and coated carbon fibers 68 

[23] were used. With the maximum number of TRM layers investigated being equal to two, 69 

the common conclusion of past studies was that for bond lengths varying from 50 mm to 450 70 

mm, failure occurs within the composite material, namely at the interface between the fibers 71 

and the surrounding mortar. This failure mode typically includes slippage of the fibers within 72 

the mortar and is usually described as debonding at fibers/matrix interface. Failure at the 73 

interface between the mortar and concrete substrate without involving though any part of the 74 

concrete cover was very rarely reported [25, 26]. Ombres [26] attributed the alteration of the 75 

failure mode to the increase of the number of layers from one to two. Other parameters, such 76 

as the concrete compressive strength and the surface preparation, have been investigated only 77 

in [25] and it was found to have insignificant effect on the bond capacity of one PBO-TRM 78 

layer bonded to concrete.  79 
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From the literature survey it becomes clear that the subject of the bond behaviour 80 

between TRM and concrete has not sufficiently been covered. In this paper the authors 81 

investigate for the first time systematically a set of parameters, focusing on the load response 82 

and the failure modes of the EB TRM reinforcement, namely:  83 

• the number of TRM layers, from one to four, which is beyond the current limit of two,  84 

• the bond length, from 50 mm to 450 mm, 85 

• the concrete surface preparation,  86 

• the concrete compressive strength,  87 

• the coating of the textile, which has not been investigated before in comparison with 88 

uncoated textiles, and  89 

• the anchorage through wrapping with TRM jackets, which again is a parameter not 90 

previously investigated.  91 

In addition, the textile used in this study comprises carbon fibers, which are commonly 92 

used in strengthening applications. Details are provided in the following sections.          93 

2 Experimental programme 94 

2.1 Test Specimens and experimental parameters  95 

The main objective of this study was to investigate the bond between TRM and 96 

concrete considering different parameters. A total of 80 specimens were fabricated and tested 97 

under double-lap direct shear. The geometry of the specimens is shown in Fig. 1. Each 98 

specimen comprised two 100 mm-square-section RC prisms connected only by TRM layers 99 

bonded on two opposite sides of the prisms. The length of the prisms was equal to 250 mm in 100 

all cases, except from two prisms that were constructed 500 mm long for examining a bond 101 

length of 450 mm. The bond width of TRM was the same for all the specimens and equal to 102 

80 mm. Both prisms were reinforced with steel cages as illustrated in Fig. 1b. 103 
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The key investigated parameters of this study comprised:  104 

a) the bond length;  105 

b) the number of TRM layers;  106 

c) the concrete surface preparation;  107 

d) the concrete compressive strength;  108 

e) the coating of the textile; and  109 

f) the anchorage through wrapping with TRM jackets.   110 

The 80 specimens comprised 40 twin specimens as a measure to reduce the scatter of 111 

the results. Parameters (a) and (b) were examined on 22 twin specimens (44 specimens in 112 

total), with the bond length varying from 50 to 450 mm and the number of layers from one to 113 

four. Six twin specimens were tested to investigate parameter (c), namely the effect of the 114 

concrete surface preparation (grinding or sandblasting), whereas other six twin specimens 115 

were used to evaluate the effect of the concrete compressive strength (15 or 30 MPa) on the 116 

results [parameter (d)]. Four twin specimens were tested to examine the influence textile 117 

coating on the ultimate load and failure mode [parameter (e)], and two twin specimens were 118 

used to investigate the effect of anchorage through wrapping with TRM jackets [parameter 119 

(f)].  120 

The notation of specimens addressing parameters (a) and (b) was LX_N, where X is the 121 

bond length and N is the number of TRM layers. For the other specimens, the notation was 122 

LX_N_Y, with Y denoting the investigated parameter: S for concrete surface preparation; Ls 123 

for low concrete compressive strength; C for coated textile and W for TRM wrapping. Details 124 

of the different strengthening configurations and number of tested specimens for each 125 

parameter are listed in Table 1.  126 

2.2 Materials and strengthening procedure 127 
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The RC prisms were cast in different groups and dates. For all tested specimens, the targeted 128 

concrete compressive strength was 30 MPa, except for group LN_X_Ls (twelve specimens) 129 

where the targeted compressive strength was lower and equal to 15 MPa. The compressive 130 

strength of all specimens was measured on the day of the testing (average value of three 131 

150x150x150 mm cubes) and is given in Table 1. 132 

The strengthening system applied in this study comprised high-tensile strength carbon 133 

fiber textile embedded into cement-based mortar. The textile had equal quantity of carbon 134 

fibers in the two orthogonal directions with a mesh of 10 mm (Fig. 2). The weight of the 135 

carbon textile reinforcement was 348 g/m2, whereas its nominal thickness (based on the 136 

equivalent smeared distribution of fibers) was 0.095 mm. According to the manufacturer 137 

datasheets, the tensile strength and modulus of elasticity of the carbon fibers were 3800 ΜPa 138 

and 225 GPa, respectively. The matrix consisted of an inorganic dry mortar comprising 139 

cement and polymers at a ratio of 8:1 by weight. The water-binder ratio of the mortar was 140 

0.23:1 by weight, resulting in plastic consistency and good workability. The compressive and 141 

flexural strength of the mortar (average value from 3 prisms) were experimentally obtained 142 

on the day of testing using prisms with dimensions of 40x40x160 mm according to EN 1015-143 

22 [28] and are given in Table 1. 144 

The concrete surface was prepared prior to strengthening by removing a thin layer of 145 

concrete (with the use of a grinder) and creating a grid of groves (with a depth of 146 

approximately 3 mm - Fig. 3a). This procedure was followed for all specimens, except for 147 

those of group LX_N_S, where the concrete surface was sandblasted (Fig. 3b). After cleaning 148 

and dampening the concrete surface, the first layer of mortar with approximately 2 mm 149 

thickness was placed on the concrete surface using a metallic trowel (Fig. 4a). Then the first 150 

textile layer was applied and pressed slightly into the mortar, which protruded through the 151 

perforations between the fiber rovings as shown in Fig. 4b. This procedure was repeated until 152 
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the required number of TRM layers was applied. Finally, an external layer of mortar with 153 

approximately 3 mm thickness was applied and levelled by trowel (Fig. 4c). Of crucial 154 

importance in this method was the application of each mortar layer while the previous one 155 

was still in a fresh state. 156 

For the specimens retrofitted with coated textile (LX_N_C), an epoxy resin was used. 157 

The adhesive used for the coating was a low viscosity, two-part epoxy resin. The tensile 158 

strength and the elastic modulus of this adhesive were equal to 72.4 MPa and 3.18 GPa, 159 

respectively (taken from the manufacturer data sheets).  160 

For the specimens received wrapping , namely the longitudinal TRM composite was 161 

anchored through TRM jackets wrapped around the concrete prism (group LX_N_W), 162 

additional surface preparation was made prior to strengthening including rounding of the 163 

prism corners to a radius of 10 mm. After applying the required number of longitudinal TRM 164 

layers, the prism side under investigation was wrapped with two TRM layers following the 165 

strengthening procedure previously described. The width of the textile used for wrapping was 166 

100 mm which was equal to the bond length of the longitudinal TRM layers (Fig. 4d). 167 

 168 

2.3 Experimental setup and procedure 169 

All specimens were tested after a curing period of six weeks (same curing conditions were 170 

applied to all specimens). The experimental setup included two steel clamps which were 171 

fixed at one side (restrained side) of the specimen to ensure that failure would occur in the 172 

monitored side (Fig. 1a and Fig. 5). The TRM composite was left un-bonded at a 100 mm-173 

long central zone (50 mm at each prism) of the specimen (Fig. 1a) to prevent concrete-edge 174 

failure which could have adverse effects. All tests were carried out using a universal tensile 175 

testing machine of 250 kN capacity. The specimens were griped to the tensile machine using 176 

the 16 mm steel bars fitted at the centre of each prism during casting (these bars were 177 
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terminated at the interface between the two prisms- Fig. 6a). To ensure full alignment 178 

between the two prisms, two 10 mm diameter acrylic dowels were inserted into the concrete 179 

mass of the prisms (fig. 6b) (after casting and prior to the strengthening application) at pre-180 

made holes (Fig. 6a). The load was applied at a displacement control with rate of 0.2 181 

mm/min. Two LVDTs were mounted to the unstrengthened sides of the specimens to record 182 

the displacement of the joint (Fig. 5). 183 

In a number of previous studies the single-lap shear test set-up was used to investigate 184 

the bond of one TRM layer to concrete [21-22, 25-26]. However, the double-lap shear test 185 

set-up was selected for this study, which is a modification of the set-up proposed in [29] for 186 

testing the bond between FRP composites and concrete. The selection of the double-lap shear 187 

test set-up was deemed necessary for testing more than one TRM layers, as with such a set up 188 

the stresses are transferred from the concrete to the composite material indirectly, simulating 189 

realistically real-word applications. In contrast, in single-lap tests the load is applied directly 190 

to the composite material, which means that shear stresses between layers cannot be 191 

developed in case of more than one TRM layer. 192 

 193 

3. Experimental results 194 

Key results of all tested specimens are presented in Table 2 which includes: 195 

(1) the maximum load (Pmax) carried out by the TRM strips for both twin specimens S1 and 196 

S2, 197 

(2) the displacement (average of two LVDTs readings) which corresponds to the maximum 198 

load (�max), 199 

(3) the average load (Pav) of the two twin specimens, 200 

(4) the average displacement (δav) of the two twin specimens, 201 

(5) the corresponding average normal stress in the textile (�t), and 202 
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(6) the failure mode. 203 

The value of normal stress was calculated using Eq. 1: 204 

�t= 
(��	/�)

∗�∗�
                                                                                                                                           (1) 205 

Where n is the number of TRM layers, t is the equivalent thickness of the textile in the 206 

longitudinal direction (t=0.095mm), and b is the bond width (b= 80 mm).Equation (1) was 207 

used to calculate the normal stress of the fibers excluding the contribution of the mortar. This 208 

is typical in the case of TRM systems, and is valid for the ultimate capacity, since the matrix 209 

has been cracked. At this load level, all the tension is carried by the textile reinforcement. 210 

Starting from the specimens LX_N that were strengthened with one up to four TRM 211 

layers at bond lengths of 50, 100, 150, 200 and 250 mm, the maximum load recorded 212 

(average from twin specimens) was (see also Table 2): (a) 7.7, 11.6, 12.2, 13.9, and 16.1, kN, 213 

respectively, for the specimens with one TRM layer, (b) 18.4, 23.5, 25.3, 28.1, and 29.4kN, 214 

respectively, for the specimens with two TRM layers, (c) 22.6, 31.2, 35.1, 36.0, and 38.03 215 

kN, respectively, for the specimens with three TRM layers, and (d) 27.9, 35.0, 37.9, 41.5, and 216 

41.8 kN, respectively, for the specimens with four TRM  layers. The bond length of 450 mm 217 

was investigated only for one and two TRM layers, with the corresponding maximum load 218 

equal to 17.4 and 31.6 kN, respectively.  219 

Figure 7 shows the load-displacement curves (average of the two LVDTs readings) 220 

recorded for specimens LX_N. For better illustration, only one of the twin specimens 221 

response curve is included, whereas they have been grouped according to the number of 222 

TRM layers applied. It is noted that the trend of the curves of twin specimens was similar in 223 

all the cases (see “S1” and “S2” columns in Table 2). A common characteristic of all curves 224 

is their behaviour up to the maximum load. In specific, a first ascending linear branch with 225 

high axial stiffness is followed by a second ascending non-linear branch with progressively 226 

decreasing stiffness due to mortar cracking. The post-peak behaviour was different depending 227 
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on the failure mode which in turn was different depending on the amount of TRM 228 

reinforcement. For one and two TRM layers, the post-peak behaviour was generally 229 

characterized by a progressive load-drop to a residual strength (Figs 7a and b). In contrast, 230 

when three and four TRM layers were applied the load-drop was sudden without any residual 231 

strength provided (Figs 7c and d).   232 

The failure modes observed in LX_N specimens can be classified in two types: (a) 233 

slippage of the fibers within the mortar (Fig. 8a and b), and (b) debonding of TRM from the 234 

concrete substrate with peeling off part of the concrete cover (Fig. 8c, d and e). The first 235 

failure mode occurred in all specimens with one or two TRM layers, whereas the second 236 

occurred in all specimens with three or four layers.  237 

For the specimens strengthened with one or two TRM layers, the failure mechanism 238 

was controlled by slippage and partial rupture of the longitudinal fibers through the mortar at 239 

the loaded end, where a  single crack was developed (at an early loading stage)  and further 240 

opened at the end of the test (Fig. 8a and b). After failure, a residual strength was recorded 241 

which was attributed both to the contribution of friction between the inner filaments 242 

themselves and the outer filaments with the surrounding matrix.  243 

When TRM debonding from the concrete substrate occurred, it was accompanied by 244 

removal of a thin concrete cover layer (Fig. 8c, d and e). Failure was initiated by the 245 

formation of a longitudinal crack at the loaded end; this crack was continuously propagating 246 

towards the free end as the load was increasing. At peak load, propagation of the crack up to 247 

free end caused full detachment (debonding) of the TRM composite from the concrete 248 

surface and the load dropped to zero. A noticeable difference between the specimens failed 249 

due to fibers slippage and those specimens failed due to TRM debonding is that in the latter 250 

case several transversal cracks developed on the TRM face as shown in Fig. 9. Hence, a 251 

better distribution of stresses along the bond length was achieved in these cases. After 252 
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debonding occurred, a rotation of the specimen with respect to the longitudinal axes was 253 

observed (Fig. 9). This is because the failure was control by one of the two monitored sides 254 

of the concrete prism. However, this rotation had no effect on the behaviour up to the 255 

ultimate load. 256 

Specimens LX_N_S, with different concrete surface preparation (sandblasting instead 257 

of grinding), attained maximum loads of 31.2, 33.9 and 40.4 kN for three layers, and 36.1, 258 

37.2 and 41.9 kN for four layers, for bond lengths equal 100, 150 and 200 mm, respectively. 259 

As illustrated in Fig. 10a, the global behaviour of these specimens (in terms of force-260 

displacement curves) is nearly identical to their counterparts from the LX_N group, 261 

indicating that the concrete surface preparation did not affect the bond behaviour. Also the 262 

failure mode remained unchanged, comprising TRM debonded from the concrete substrate at 263 

the mortar-concrete interface with a thin layer of the concrete cover being peeled-off (Fig. 264 

11a).  265 

As shown in Table 2, supported by Fig. 10b, specimens with low concrete strength 266 

(LX_N_Ls) reached an ultimate load of 29.9, 30.7 and 34.9 kN for three layers, and 32.2, 267 

35.1 and 37.7 kN for four layers, for bond lengths of 100, 150 and 200 mm, respectively. As 268 

illustrated in Fig. 10b, the global behaviour of this group of specimens was very similar to 269 

their counterparts with higher concrete strength in terms of force-displacement curves. 270 

Debonding of TRM from the concrete substrate was accompanied with removal of concrete 271 

particles which remained attached to the debonded TRM strip (Fig. 11b)  272 

The force-displacement curves of the specimens retrofitted with coated textiles 273 

(LX_N_C) are presented in Fig. 10c. The ultimate load for one TRM layer was 21.9 kN and 274 

23.9 kN for 150 and 200 mm bond length, respectively, which is substantially higher with 275 

respect to their counterparts. The corresponding ultimate load for two TRM layers was 29.5 276 

and 31.9 kN for 150 and 200 mm bond length, respectively. As shown in Fig. 10c the post-277 
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peak behaviour of LX_N_C specimens was different from their counterparts from group 278 

LX_N, owing to the different failure mode observed. In particular, all specimens with coated 279 

textiles failed due to debonding of TRM at the textile/mortar interface (Fig. 11c), whereas 280 

their counterparts failed due to slippage of the textile fibers through the mortar (Figs 8a and 281 

b). Failure in this case was within the TRM thickness, and is associated to the stiff behaviour 282 

of the coated textiles. This type of failure mode can also be described as inter-laminar 283 

shearing. A denser crack pattern was observed in all specimens with the coated textiles, 284 

indicating a better activation of the textile fibers in tension.  285 

Finally, the load- displacement curves for specimens LX_N_W, which were wrapped 286 

with two TRM layers in order to provide better anchorage, are shown in Fig. 12a; Specimens 287 

L100_3_W and L100_4_W, reached an ultimate load of 40 and 50.8 kN for three and four 288 

layers, respectively (for 100 mm bond length). In terms of ultimate load they performed 289 

better than their counterparts (Table 2), whereas a change on the failure mode was also 290 

observed. Wrapping of the prism did not allow for debonding of the TRM strips and damage 291 

was localized in the loaded-end, where a single transversal crack appeared Fig. 12b. 292 

Ultimately, the textile fibers slipped through the mortar resulting in a residual capacity as 293 

shown in Fig. 12a.  294 

4. Discussion 295 

In terms of the various parameters investigated in this experimental programme, an 296 

examination of the results in terms of ultimate loads and failure modes revealed the following 297 

information.  298 
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4.1 Influence of the bond length and the number of layers  299 

The effect of the bond length and the number of layers on the load-carrying capacity is 300 

depicted in Fig. 13. The curves in Fig. 13 clearly demonstrate that by increasing either the 301 

bond length or the number of layers, the bond capacity increases in a non-proportional way.  302 

Similar to the bond behaviour of FRP strips [31], after a certain bond length the anchorage 303 

force tends to reach a constant value which is considered as the maximum anchorage force. 304 

This length is called “effective bond length” (Leff) and according to the curves provided in 305 

Fig. 13 is in the range of 200 and 300 mm for the number of layers (one to four) investigated. 306 

This in agreement with the conclusions of previous studies [20, 22-23]. Even in cases with 307 

one and two TRM layers, where there is significant friction between the inner and outer 308 

filaments when slippage occurs, by providing a large bond length (450 mm) the load capacity 309 

was marginally increased.  310 

For the same bond length, increasing the number of layers resulted in an increase in the 311 

load-carrying capacity. This effect was more pronounced for the transition from one to two 312 

layers, whereas for more layers it was gradually becoming less significant. Almost the same 313 

trend was followed for all examined bond lengths between 50 and 250 mm. The most 314 

important effect of increasing the number of layers though, is related to the change in the 315 

failure mode. In particular, as explained in the results section, specimens of LX_N group 316 

strengthened with one or two layers failed due to slippage of the textile fibers through the 317 

mortar, whereas specimens with three or four layers failed due to TRM debonding from the 318 

concrete substrate with peeling off of a part of the concrete cover.  319 

The above finding adds new information to the existing knowledge, because in all 320 

previous studies on bond between TRM and concrete (where the maximum number of layers 321 

examined was two), failure occurred either at the interface between fibers and mortar or at the 322 

interface between concrete and mortar without involving the concrete cover. It is noted that 323 
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failure of TRM involving peeling off of the concrete cover has also been reported in the study 324 

of Tetta et al. 2015 [10], where RC beams were retrofitted in shear with TRM U-jackets, and 325 

has also been observed by the authors in flexural strengthening of RC beams with TRM [30]. 326 

This type of failure is very common in case of FRP bonded to concrete [31], indicating that 327 

TRMs can behave similar to FRPs. 328 

The bond length had also an effect on the residual strength of the specimens failed due 329 

to slippage of the fibers, which is related to the friction developed between the inner and the 330 

outer filaments of each individual fiber roving. Table 3 shows the percentage of residual load 331 

compared to the maximum load recorded for specimens one and two TRM layers. It is 332 

generally concluded that the larger the bond length, the higher the slipping surfaces become, 333 

so the residual strength do.  334 

Figure 14 shows the variation of the normal stress in the textile fibers [calculated by 335 

Eq. (1)] with the bond length for different number of TRM layers. It is generally observed 336 

that by increasing the number of layers the normal stress decreases, which is consistent with 337 

the behaviour of FRP bonded plates to concrete [31].  Only for the transition from one to two 338 

layers, the stress in the fibers marginally increases for bond length between 50 and 200 mm. 339 

This is possibly connected to the complex mechanism of fibers slippage occurring in 340 

specimens with one and two TRM layers. 341 

 342 

4.2 Influence of surface preparation 343 

Figures 15a and b show a comparison between the ultimate loads of specimens having the 344 

same bond length but different concrete surface preparation, for three (Fig. 15a) and four 345 

(Fig. 15b) TRM layers. In the majority of the cases, grinding the concrete surface and 346 

creating of a grid of grooves is as effective as sandblasting in transferring shear stresses from 347 

TRM to concrete. Moreover, the shape of the force-displacement curves in Fig. 10 is the 348 
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same for both surface preparation methods. Hence, it can be concluded that both ways of 349 

surface preparation are suitable, something that needs further investigation for other textile 350 

geometries and other types of mortar. This is in agreement with the study of D’ Antino et al. 351 

2015 [25] where no differences were observed between specimens with untreated and 352 

sandblasted concrete surfaces, strengthened with one PBO-fibers TRM layer.  353 

 354 

4.3 Influence of concrete compressive strength 355 

The concrete compressive strength was selected to be investigated only for three and four 356 

TRM layers, because of the failure mechanism observed in LX_N specimens. In particular, 357 

TRM debonding from the concrete substrate involving part of the concrete cover (a failure 358 

mechanism which is associated to the concrete strength) occurred only in the case of three 359 

and four TRM layers. When one or two TRM layers were used, the failure was attributed to 360 

the concentration of the damage in one single crack. For this reason it is believed by the 361 

authors that the concrete strength would not influence the results of specimens with one and 362 

two TRM layers. 363 

A comparison of the ultimate loads between the LX_N_Ls specimens (lower 364 

compressive strength – approximately 15 MPa) and the LX_N specimens (higher 365 

compressive strength – approximately 30 MPa) is made in Fig. 15c, d. In all cases, the use of 366 

a lower compressive strength concrete had a negative impact on the load-carrying capacity of 367 

the specimens. For specimens with lower concrete strength, the reduction in the ultimate 368 

bond capacity was 4.1%, 12.5% and 3.1% for three TRM layers and 8%, 7.4% and 9.2% four 369 

TRM layers, and for bond lengths equal to 100, 150, and 200 mm, respectively. As expected, 370 

the lower (by 50%) compressive strength resulted in a decrease in the ultimate load which on 371 

average was equal to approximately 7.5%. This reduction, though, cannot be considered as 372 

significant as it may be in the range of the statistical error. It is noted that the insignificant 373 
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effect of the concrete strength on the load capacity has also been reported by D’Antino et al. 374 

2015 [25]. However, in their study the concrete was not directly involved in the failure mode 375 

which was at the interface between the matrix and the fibers. 376 

4.4 Influence of coating 377 

 Coating the textile fabric with epoxy resin was investigated only for specimens with one and 378 

two TRM layers, to improve the failure mode (slippage of the fibers through the mortar) 379 

observed in these specimens with uncoated textiles. According to the results, the effect of 380 

coating was twofold: (a) change in the failure mode, and (b) significant increase of the load-381 

carrying capacity. The failure mode changed from slippage of the fibers through the 382 

surrounding matrix to debonding of TRM at the textile/mortar interface (interlaminar 383 

shearing). Comparison of the ultimate loads of specimens with one and two layers of coated 384 

textiles and of spciemens with uncoated textiles is shown in Fig. 15e for different bond 385 

lengths. The ultimate load was increased by 79.5% and 71.9% for specimens with one layer 386 

and 16.6% and 13.5% for specimens with two layers, for bond lengths equal to 150 and 200 387 

mm, respectively.   388 

Coating the textile with epoxy resin makes the textile more stable and easy-to-apply, 389 

while at the same time it increases its rigidity. When a good level of impregnation of the 390 

fibers with resin is achieved, the inner filaments of the rovings are better bound to the outer 391 

filaments. As a result, the mechanism of transferring stresses from the fibers to the matrix is 392 

improved providing better mechanical interlock conditions. Ultimately, the textile fibers are 393 

better utilized in carrying tensile forces and the load capacity increases. A more uniform 394 

distribution of stresses is also achieved (something that is indicated by the formation of 395 

several transversal cracks) and the failure mode changes from local slippage of the fibers to 396 

global debonding of the TRM strips with the failure surface though being within the TRM 397 

thickness (textile/mortar interface).  398 
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4.5 Influence of anchorage through wrapping 399 

The influence of anchorage through confinement (full wrapping) was investigated for a short 400 

bond length (100 mm) and for 3 and 4 TRM layers. The idea behind this was to improve the 401 

bond conditions when a short bond length (less than the effective bond length) is provided, by 402 

preventing early TRM debonding. As shown in Fig. 15f, the load capacity was increased by 403 

28% and 45% when three and four TRM layers, respectively were anchored through 404 

wrapping with TRM jackets; note that the bond length was equal to 100 mm whereas two 405 

TRM layers were used for wrapping. As expected, the failure mode changed from TRM 406 

debonding to partial rupture and slippage of the fibers across a single crack developed at the 407 

loaded end (Fig. 12b).  408 

A conclusion that must be highlighted is that the anchored TRM strips with a short 409 

bond length (100 mm) not only reached, but exceeded the load capacity of non-anchored 410 

strips with much higher bond length. Particularly, by comparing specimen L100_3_W with 411 

specimens L200_3 and L250_3, an increase of the maximum load of 11.1% and 5.2%, 412 

respectively, is observed. Similarly, by comparing specimen L100_4_W with specimens 413 

L200_4 and L250_4, the increase in the maximum load reaches 22.3% and 21.4%, 414 

respectively. Therefore, wrapping with TRM jackets is recommended to improve the bond 415 

conditions when the available length for anchorage of TRM reinforcement is limited. 416 

5. Conclusions 417 

The present paper builds on the results of a comprehensive experimental programme for the 418 

investigation of the bond between textile-reinforced mortar (TRM) and concrete. Eighty 419 

specimens were fabricated and tested under double-lap shear. This poly-parametric study 420 

included the investigation of: (a) the TRM bond length, (b) the number of TRM layers, (c) the 421 

concrete surface preparation, (d) the concrete compressive strength, (e) the coating of the 422 
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textile, and (f) the anchorage through wrapping. The main conclusions drawn are summarized 423 

below:  424 

• By increasing the bond length, the bond capacity increases in a non-proportional way for 425 

all the number of TRM layers examined (1 to 4). After a certain bond length, the so-called 426 

effective bond length, the bond capacity marginally increases. It was found that this length 427 

is in the range of 200-300 mm for the examined number of layers and for the materials 428 

used in this study.  429 

• By increasing the number of TRM layers for the same bond length, the bond capacity 430 

increases in a non-proportional way. The increase was more pronounced for the transition 431 

from one to two layers, whereas for more layers it was gradually becoming less 432 

significant.  433 

• The number of layers has a significant effect on the failure mode. For one and two TRM 434 

layers the failure was due to slippage of the textile fibers through the mortar at a single 435 

crack close to the loaded end. For three and four TRM layers the failure was attributed to 436 

debonding at the mortar/concrete interface including detachment of a thin concrete layer, 437 

similarly to EB FRP systems.  438 

• Different concrete surface preparation methods (grinding and formation of a grid of 439 

grooves versus sandblasting) did not influence the bond characteristic between TRM and 440 

concrete, suggesting that both methods are suitable.  441 

• The use lower concrete compressive strength marginally affected the bond strength of the 442 

TRM to concrete. A 50% reduction in concrete’s compressive strength resulted in an 443 

average decrease of the ultimate bond capacity of 7.5%, without affecting the failure 444 

mode.  445 
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• Coating the textile with an epoxy adhesive has a twofold effect: (a) change in the failure 446 

mode from slippage through the mortar to TRM debonding at textile/mortar interface, and 447 

(b) bond strength increase.   448 

• The anchorage of TRM strips through wrapping with TRM jackets results in substantial 449 

increase of the bond strength (up to 45% for 4 TRM layers), by preventing debonding 450 

from the concrete substrate.  451 

It is important to note that the above conclusions are based only on the materials used in this 452 

study (specific carbon-fiber textile, and specific type of mortar). Therefore future research 453 

could be directed towards investigating different types of materials, and deriving analytical 454 

expressions for the calculation of the bond length and the bond strength of TRM composites 455 

bonded to concrete surfaces.  456 

 457 
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Table 1 Specimens details, concrete compressive strength, and mortar properties on the day 555 

of testing 556 

Specimen 
notation 

Specimens 
name 

Bond 
length 
(mm) 

Number 
of TRM 
layers 

Additional 
remarks 

 

Concrete Mortar 

Compressive 
strength 
(MPa)* 

Flexural 
strength 
(MPa)* 

Compressive 
strength 
(MPa)* 

LX_N 

L50_1 
L50_2 
L50_3 
L50_4 

50 1, 2, 3, 4 - 31.2 (0.56) 9.17 (0.92) 38.8 (0.60) 

L100_1 
L100_2 
L100_3 
L100_4 

100 1, 2, 3, 4 - 30.4 (0.63) 8.24 (0.94) 33.8 (0.56) 

L150_1 
L150_2 
L150_3 
L150_4 

150 1, 2, 3, 4 - 31.2 (0.22) 9.23 (0.49) 39.7 (1.33) 

L200_1 
L200_2 
L200_3 
L200_4 

200 1, 2, 3, 4 - 32.8 (0.66) 8.54 (1.26) 35.9 (0.27) 

L250_1 
L250_2 
L250_3 
L250_4 

250 1, 2, 3, 4 - 32.5 (0.32) 8.95 (0.37) 37.6 (0.90) 

L450_1 
L450_2 

450 1, 2 - 29.5 (0.37) 9.4 (0.81) 40.1 (1.23) 

LX_N_S 

L100_3_S 
L100_4_S 
L150_3_S 
L150_4_S 
L200_3_S 
L200_4_S 

100, 
150, 
200 

3, 4 
S= Surface 
preparation 

29.3 (0.73) 8.68 (0.77) 36.8 (0.45) 

LX_N_Ls 
 

L100_3_Ls 
L100_4_Ls 
L150_3_Ls 
L150_4_Ls 
L200_3_Ls 
L200_4_Ls 

100, 
150,  
200 

3, 4 
Ls= Low 
concrete 
strength 

14.7 (0.55) 8.98  35.2 (0.90) 

LX_N_C 

L150_1_C 
L150_2_C 
L200_1_C 
L200_2_C 

150, 
200 

1, 2 
C= Textile 

coating 
30.4 (0.28)  

 
8.35 (0.65) 

 
32.7 (0.97) 

LX_N_W 
L100_3_W 
L100_4_W 

100 3, 4 

W= 
Anchorage 

through 
wrapping 
with TRM 

  
 

8.35 (0.65) 
 

32.7 (0.97) 

*Standard deviation in parenthesis 557 

  558 
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Table 2 Summary of test results 559 

Specimen 

(1) 
Maximum load, 

Pmax. (kN) 
 

(2) 
Displacement 
at maximum 

load 
����max (mm) 

(3) 
Average 

maximum 
load, 

Pav. (kN) 

(4) 
Average 

displacem
ent at 

maximum 
load 

����av (mm) 

(5) 
Axial stress 

in textile 
fibers 

����t  (MPa) 

(6) 
Failure 
mode** 

S1* S2* S1* S2* 

L50_1 7.15 8.29 0.25 0.23 7.7  0.24  507 a 
L50_2 19.12 17.76 0.79 0.70 18.4  0.75  605 a 
L50_3 23.95 21.16 0.72 0.66 22.6  0.69  496 b 
L50_4 26.46 29.31 0.46 0.62 27.9  0.54  459 b 

L100_1 12.28 10.96 0.53 0.50 11.6  0.52  763 a 
L100_2 22.82 24.14 1.01 1.00 23.5  1.01  773 a 
L100_3 29.62 32.82 0.85 1.04 31.2  0.95  684 b 
L100_4 32.77 37.27 0.83 0.92 35.0  0.88  576 b 

L150_1 11.74 12.58 1.32 1.21 12.2  1.27  803 a 
L150_2 25.25 25.34 1.10 1.11 25.3  1.11  832 a 
L150_3 34.49 35.62 1.05 1.07 35.1  1.06  770 b 
L150_4 38.55 37.2 1.4 1.51 37.9  1.46  623 b 

L200_1 13.51 14.25 1.23 1.24 13.9  1.24  915 a 
L200_2 27.65 28.59 1.35 0.81 28.1  1.08  924 a 
L200_3 37.44 34.55 1.56 1.9 36.0  1.73  790 b 
L200_4 41.26 41.74 1.31 1.57 41.5  1.44  683 b 

L250_1 14.92 17.32 2.29 2.55 16.1  2.42  1059 a 
L250_2 30.25 28.63 1.2 1.6 29.4  1.40  967 a 
L250_3 38.55 37.51 1.56 1.55 38.03  1.56  834 b 
L250_4 42.79 40.89 1.22 1.35 41.8  1.29  688 b 

L450-1 17.54 17.2 2.51 2.15 17.4  2.33  1145 
a 

L450-2 32.8 30.4 3.51 3.62 31.6  3.57  1040 

L100_3_S 30.64 31.77 1.27 1.46 31.2  1.37  684 

b 

L150_3_S 34.99 32.74 0.99 1.05 33.9  1.02  743 

L200_3_S 40.18 40.57 1.85 1.19 40.4  1.52  886 

L100_4_S 35.63 36.58 1.24 0.75 36.1  1.00  594 

L150_4_S 37.64 36.74 1.19 0.80 37.2  1.00  612 

L200_4_S 41.45 42.35 1.35 1.19 41.9  1.27  689 

L100_3_Ls 29.9 29.84 1.04 1.12 29.9  1.08  656 

b 

L150_3_Ls 30.67 30.79 1.36 1.29 30.7  1.33  673 

L200_3_Ls 33.68 36.17 1.81 1.99 34.9  1.90  765 

L100_4_Ls 32.67 31.76 0.92 0.85 32.2  0.89  530 

L150_4_Ls 34.7 35.54 1.13 1.45 35.1  1.29  577 

L200_4_Ls 36.81 38.63 1.48 1.39 37.7  1.44  620 

L150_1_C 22.7 21.08 1.45 1.64 21.9  1.55  1441 

c 
L200_1_C 23.21 24.6 1.44 1.54 23.9  1.49  1572 

L150_2_C 29.1 29.89 0.8 0.89 29.5  0.85  970 

L200_2_C 32.94 30.77 0.95 1.05 31.9  1.00  1049 

L100_3_W 38.43 41.47 1.21 1.29 40.0  1.25  877 
a 

L100_4_W 49.19 52.31 1.17 1.25 50.75  1.21  835 
*     Specimen number 560 
** a: Slippage and partial rupture of textile fibers through the  mortar; b: Debonding of TRM from the concrete substrate    561 
including part of the concrete cover; c: Debonding at the textile/mortar interface (interlaminar shearing) 562 

563 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

 

26 
 

Table 3 Percentage of the residual load due to friction with respect to maximum recorded 564 
load for specimens with one and two layers of TRM 565 

 566 

Name 
Percentage of residual 

load (%) 
S1* S2* 

L50_1 36.4 36.2 
L50_2 33.5 28.5 

L100_1 46.9 57.8 
L100_2 33.3 34.0 
L150_1 60.7 60.1 
L150_2 46.6 43.4 
L200_1 57.0 61.1 
L200_2 56.8 65.8 
L250_1 42.2 61.2 
L250_2 52.2 52.4 
L450-1 71.3 70.3 
L450-2 75.0 81.6 

*     Specimen number 567 
 568 

 569 

 570 

 571 

 572 

 573 

 574 

 575 

 576 

 577 

 578 
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 579 

 580 

Fig. 1 Specimen details (dimensions in mm) 581 
 582 

 583 

 584 

 585 

Fig. 2 Carbon textile used in this study (dimensions in mm) 586 
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 587 

Fig. 3  Different concrete surface preparation: (a) grinding and creating a grid of groves; 588 

and (b) sandblasting 589 

 590 

 591 

 592 

 593 

Fig.  4  (a) Application of the first layer of mortar; (b) application of the  first layer of textile 594 

layer into the mortar; (c) application of the final layer of mortar; and (d) wrapping 595 

with TRM jacket at the side of specimen under examination.  596 

 597 
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 598 

 599 

Fig. 5 Details of the test set-up 600 

 601 

 602 

 603 

Fig. 6 Alignment of the two concrete prisms using two acrylic rods (Dimensions in mm) 604 
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 605 

Fig. 7 Load-displacement curves of LX_N group specimens 606 

 607 

 608 

 609 

Fig. 8 Failure mode of specimens in group LX_N: (a),(b) single crack formation and 610 

slippage of the fibers through the mortar for specimens with one and two TRM layers, 611 

respectively; (c),(d),(e) TRM debonding at concrete/matrix interface including a thin 612 

layer of concrete cover, for specimens with three and four layer. 613 

 614 
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 615 

Fig. 9 Development of transversal cracks and the rotation of the specimen relative to initial 616 

alignment after ultimate load 617 

 618 

 619 

Fig. 10 Load-displacement curves for specimens having as a parameter; (a) the concrete 620 

surface preparation, (b) the concrete compressive strength and (c) the textile coating 621 
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 622 

   623 

Fig. 11  Typical failure mode of specimens with: (a) sandblasted concrete surface, (b) low 624 

concrete compressive strength, and (c) coated textiles  625 

 626 

 627 

 628 

 629 

Fig. 12  (a) Load-displacement curves of specimens with anchorage through wrapping and 630 

comparison with counterpart specimens without anchorage; (b) typical failure of specimens 631 

with anchorage through wrapping with TRM jackets 632 
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 633 

Fig. 13 Variation of ultimate load with the number of layers and bond length 634 

 635 

 636 

 637 

Fig. 14 Variation of normal stress with the number of layers and bond length 638 
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 639 

 640 

Fig. 15  Effect of different parameters on the bond capacity of the specimens: (a), (b) surface 641 

preparation; (c),(d) concrete compressive strength; (e) textile coating; (f) anchorage 642 

through wrapping with TRM jackets 643 


