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Abstract—The development of remote sensing has enabled the acquisition of 

information on land-cover change at different spatial scales. However, a trade-off 

between spatial and temporal resolutions normally exists. Fine-spatial-resolution 

images have low temporal resolutions, whereas coarse spatial resolution images have 

high temporal repetition rates. A novel super-resolution change detection method 

(SRCD) is proposed to detect land-cover changes at both fine spatial and temporal 

resolutions with the use of a coarse-resolution image and a fine-resolution land-cover 

map acquired at different times. SRCD is an iterative method that involves 

endmember estimation, spectral unmixing, land-cover fraction change detection, and 

super-resolution land-cover mapping. Both the land-cover change/no-change map and 

from–to change map at fine spatial resolution can be generated by SRCD. In this 

study, SRCD was applied to synthetic multispectral image, Moderate-Resolution 

Imaging Spectroradiometer (MODIS) multispectral image and Landsat-8 Operational 

Land Imager (OLI) multispectral image. The land-cover from–to change maps are 

found to have the highest overall accuracy (higher than 85%) in all the three 

experiments. Most of the changed land-cover patches, which were larger than the 

coarse-resolution pixel, were correctly detected. 

Index Terms—Land-cover change detection, super-resolution mapping, the mixed pixel problem. 



I. INTRODUCTION 

The detection of Earth’s surface change serves as the basis for global change 

studies, and is critical to the understanding of the interactions between human and 

environmental systems. Remotely sensed data have become a primary data source for 

monitoring land use/cover distribution and its changes at different scales [1]. At the 

global scale, the coarse (low) spatial resolution images are the main data for 

land-cover monitoring. For instance, land-cover change products based on MODIS 

images at annual steps and 500 m spatial resolution for 2001-present have been used 

for global monitoring and assessment purposes. Coarse spatial resolution remote 

sensing systems have typically a high temporal repetition rate, which allow the timely 

detection of land-cover changes. For example, MODIS allows the entire surface of the 

earth to be monitored every 1 to 2 days since 2002. However, because of the relatively 

coarse spatial resolution of the images acquired the level of spatial detail detected is 

low. At the local-regional scale, land-cover change is often detected with the use of 

fine (high) spatial resolution remotely sensed images, such as those acquired by the 

Landsat Thematic Mapper (TM), Landsat Enhanced Thematic Mapper Plus (ETM+), 

and Systeme Pour l'Observation de la Terre (SPOT) sensors. However, owing to the 

trade-off between spatial and temporal resolution, fine-resolution images are often 

acquired at a relatively low temporal resolution. Thus regional land-cover change 

products are typically updated infrequently. For instance, the National Land Cover 

Database (NLCD) land-cover change product for the U.S.A. with a spatial resolution 

of 30 m is updated every 5 years approximately. Furthermore, fine-resolution images 

usually cover a relatively small area, making their use difficult for regional or global 

land-cover monitoring due to the great amount of processing time and labor required. 

The accurate and timely detection of land-surface changes is a challenging task. 

Land-cover change detection is crucial to understand and quantify land-cover change, 

which is increasingly recognized as an important driver of global environmental 

change [2]. The most widely used land-cover change detection methods are 

classification-based (map-to-map) methods and spectrally based (image-to-image) 



methods, such as image differencing [3], vegetation index differencing [4], and 

change vector analysis [5]. However, these change detection methods are based on 

per-pixel comparison and require the same spatial resolution for bi-temporal images. 

Different resolution images are usually resampled during the spectral change 

detection process. A problem occurs when spectral modalities are different, and 

simple change detection (e.g., image differencing and thresholding) is often unreliable 

or impossible in case channels do not overlap well in the spectral ranges. Medium- or 

fine-resolution images are the main data sources for change detection; however, they 

are acquired at low temporal repetition rates, and land-cover changes are detected 

infrequently. By contrast, coarse-resolution images, which have high temporal 

repetition rates, are the main data sources of land-cover change detection at a global 

scale. Unfortunately, the aforementioned per-pixel-based change detection methods 

assume homogeneity within a single pixel, resulting in no quantifiable changes at the 

sub-pixel level. In fact, most coarse-resolution image pixels are composed of several 

land-cover/land-use types, and the mixed pixel problem seriously affects the change 

detection accuracy. Spectral unmixing or soft classification algorithms do not assign a 

mixed pixel to a single land-cover class but instead generate class area proportion or 

fraction images that represent proportional areas of different land-cover classes within 

mixed pixels. Spectral mixture analysis can be used to derive land-cover area 

proportion images, and changes can be detected by comparing the “before” and “after” 

area proportion images of each endmember[6]. Applying spectral unmixing to 

bi-temporal or a series of multitemporal images for change detection can potentially 

reveal important sub-pixel level information, such as the endmember abundance 

variation in a given location [7-10]. Spectral unmixing-based change detection 

methods provide the addition/subtraction of an endmember in the abundances and are 

based on the images with the same spatial resolution. In addition, He´garat-Mascle et 

al. [11] used images with different spatial resolutions to detect sub-pixel land-cover 

proportional change. A coarse-resolution image was unmixed and a fine-resolution 

image was spatially degraded to generate the bi-temporal class area proportion images. 

By comparing the bi-temporal coarse-resolution class area proportion images, the 



change in the class proportions of each coarse-resolution pixel was detected. However, 

only the coarse-resolution pixel change instead of the fine-resolution pixel change 

was detected, because spectral unmixing can only determine the coarse-resolution 

pixel land-cover area proportions and does not provide information on class labels at a 

sub-pixel scale. 

Super-resolution land-cover mapping (SRM) is a technique used to generate 

land-cover maps with a finer spatial resolution than the input data. Various algorithms, 

such as pixel swapping algorithm [12, 13], Hopfield neural networks-based SRM [14], 

Markov-random-field-based SRM [15, 16], the spatial-spectral managed SRM [17, 

18], spatial interpolation based SRM [19, 20], direct mapping based SRM [21], 

example-based SRM [22] and intelligence system based SRM [23], have been 

proposed to address the SRM problem. SRM predicts the spatial distribution of each 

class in each coarse-resolution pixel and provides more sub-pixel-scale land-cover 

information than spectral unmixing[24]. Traditionally, SRM is applied to a 

monotemporal coarse-resolution image to predict a fine-resolution land-cover map for 

the time period it represents. SRM is an ill-posed inverse problem because many 

fine-resolution land-cover maps can satisfy the SRM constraints, and traditional 

methods using a single image are limited in terms of the spatial detail represented and 

the accuracy of the final map produced. Additional datasets can, therefore, be adopted 

in SRM. A historic fine-resolution land-cover map may, for example, be used to 

enhance SRM. Ling et al. [25] first proposed a sub-pixel land-cover change mapping 

method by integrating a coarse-resolution image and a fine-resolution land-cover map 

that pre-dates the former. In this method, the sub-pixel class labels in the 

fine-resolution map with unchanged or increased class area proportions are preserved 

in the final fine-resolution land-cover map output from the SRM, and other sub-pixels 

are allocated based on the land-cover maximum spatial dependence model. Li et al. 

[26] proposed a spatial-temporal Markov-random-field-based SRM, in which the data 

on land-cover temporal dependence is the input to the analysis. Xu and Huang [27] 

proposed a spatial-temporal pixel-swapping algorithm based SRM, which extended 

the traditional pixel-swapping algorithm to involve sub-pixel temporal dependence. Li 



et al. [28] proposed a spatial-temporal Hopfield neural network based SRM, in which 

temporal transition information of sub-pixels was added compared with traditional 

Hopfield neural network based SRM. 

Although the capability of SRM to extract fine-resolution land-cover information 

is increased with the use of a fine-resolution land-cover map that pre-dates the 

coarse-resolution image, the existing methods have three major limitations in the 

detection of land-cover change at fine spatial and temporal scales: 

(1) With current SRM methods, the required information on endmembers, which 

can represent the spectral information of land-cover components, is typically assumed 

available. However, endmember information is often unavailable; thus, the extraction 

of endmembers in SRM is necessitated. Endmembers represent the spectrally pure 

components of a given image and are central to SRM. A considerable number of 

image endmember extraction algorithms, including the manual endmember selection 

tool [29], pixel purity index [30], N-FINDR [31], and automatic methods [32, 33], 

have been proposed in the recent years [34]. Manual endmember extraction methods 

are laborious, whereas iterative and automatic endmember extraction methods have 

been analyzed using only monotemporal imagery. When a fine-resolution land-cover 

map that pre-dates or post-dates the coarse-resolution image is available, useful 

information about land-cover configurations at a former or later time is available to 

facilitate SRM analysis.  

(2) Current methods consider only the case wherein the fine-resolution 

land-cover map pre-dates the coarse-resolution image. Coarse-resolution remotely 

sensed images have been available for decades, particularly from such systems as 

MODIS and NOAA Advanced Very High Resolution Radiometer. With the 

development of remote sensing technology, remote-sensing systems with enhanced 

(finer) spatial resolution are increasing in number. As such, the fine-resolution images 

that post-date their corresponding coarse-resolution images may often be available in 

land-cover monitoring. However, this scenario has not been studied for current SRM 

methods.  

(3) Although fine-resolution land-cover labels in each coarse-resolution pixel are 



predicted by SRM, land-cover change information is not provided. Map-to-map 

methods demonstrate a potential in fine-resolution change detection using images of 

different spatial resolutions, owing to the capability of SRM to generate land-cover 

map of a spatial resolution finer than that of the input image. Land-cover change 

information can be derived by comparing the land-cover maps of the same fine spatial 

resolution; these land-cover maps are generated from fine-resolution images based on 

hard classification and from coarse-resolution images based on SRM. This change 

detection method provides land-cover change information and trajectories that users 

typically desire, particularly a simple binary change/no-change map and the detailed 

from–to change trajectory information [6]. 

In order to address the above issues, a super-resolution change detection method 

(SRCD) is proposed. SRCD uses a combination of a fine-resolution land-cover map 

and a coarse-resolution image to detect land-cover change/no-change information and 

from–to information at fine spatial and temporal resolutions. The fine-resolution 

land-cover map can either pre-date or post-date the coarse-resolution image. The 

proposed method is based on the assumption that the land-cover class types are 

invariant during the period [35, 36]. The endmembers are estimated and iteratively 

updated in SRCD. The remainder of this paper is organized as follows. Section II 

introduces the SRCD method. Section III examines the performance of SRCD using 

synthetic, MODIS, and Landsat images as well as for scenarios in which the 

fine-resolution land-cover map pre-dates and post-dates coarse-resolution image. 

Section IV concludes this paper. 

II. METHODS



TABLE I. 

LIST OF IMPORTANT VARIABLES AND METHOD DEFINITIONS 

Variable and 

method 

abbreviations 

Variable and method definitions 

SRCD Super-resolution change detection method 

SRM Super-resolution mapping 

C Input coarse-resolution remote sensing image 

F Input fine-resolution land-cover map 

E Endmembers of all classes 

en Endmembers of class n 

N Number of classes in the coarse- and fine- resolutions images 

cij Spectral signature vector of coarse-resolution pixel (i,j) 

pij 
Class area proportion vector of all endmembers in coarse-resolution pixel 

(i,j) 

pijn Class area proportion of the n-thendmember in coarse-resolution pixel (i,j) 

s Scale factor between C and F 

t 
Threshold value that determines whether a class in a coarse-resolution pixel 

is changed 

T Acquisition time of the coarse-resolution image C 

P Class area proportion image cube  

P(C) Class area proportion image cube generated from coarse-resolution image C 

P(F) Class area proportion image cube generated from fine-resolution map F 

△pijn 
Class area proportion difference value of class n in coarse-resolution pixel 

(i,j) 

αij,k The k-th fine-resolution pixel in coarse-resolution pixel (i,j) 

λ Balance parameter in SRM 

Mclass Fine-resolution land-cover class (category) map  

Mc/n Fine-resolution land-cover change/no-change map  

Mf-t Fine-resolution land-cover from–to change map  

Intermediate Mc/n 
Mc/n produced by the multiscale land-cover change strategy from P(C) and 

P(F) 

Final Mc/n Mc/n produced by per-pixel comparison between Mclass and F 

A. SRCD Description 

Let C be the coarse-resolution image represented by an I × J × B array, with I 

and J respectively denoting the width and height of the image, and B denoting the 

number of bands. The B × 1 vector representing the spectral signature of the 

coarse-resolution pixel (i,j) is denoted by cij. Let F be the input fine-resolution map 



with I × s × J × s pixels with N land-cover classes in it. F can either pre-date or 

post-date C. The scale factor between F and C is denoted by s, and each 

coarse-resolution pixel contains s × s fine-resolution pixels. Let Mclass be the 

fine-resolution land-cover map with I × s × J × s pixels produced by SRM. 

Endmember matrix E is a B × N matrix, in which each column vector en corresponds 

to the spectrum vector of the n-th endmember. Let P be an I × J × N array denoting 

the class area proportion cube. The N × 1 vector representing the class area proportion 

of all endmembers in the pixel (i,j) is denoted by pij, and pijn is the area proportion of 

the n-th endmember in the pixel (i,j). 

SRCD uses a coarse-resolution remotely sensed image C at acquisition time T 

and a fine-resolution land-cover map F as inputs. SRCD outputs a fine-resolution 

land-cover change/no-change map Mc/n and a fine-resolution from–to change map 

Mf-t. Both Mc/n and Mf-t are produced by comparing F with the estimated 

fine-resolution land-cover map Mclass at time T.  

Central to the proposed SRCD method is the estimation of Mclass from C. Mclass 

and the endmember matrix E are the two interactive variables in SRCD. If E is known, 

Mclass can be produced from C using SRM [25]. Frequently, E is an unknown variable 

and is estimated from C, given the land-cover area proportion image cube P with the 

use of spectral unmixing [11, 37]. P can be derived by spatially degrading Mclass, 

which is also an unknown variable in SRCD and is iteratively estimated and updated 

by determining E [11]. An iterative approach is used in SRCD to solve the 

endmember matrix E and fine-resolution land-cover map Mclass coupling problem, 

that is, both variables E and Mclass are estimated and updated iteratively. 

The iterative SRCD starts from the estimation of the endmember matrix E at 

time T. At the first iteration, F, which pre-dates or post-dates C, is used as a substitute 

of Mclass at time T, which would be accurate if all fine-resolution pixels are unchanged 

in the time period covered. At each iteration, the estimation of E is solved using a 

pseudo-inverse method, which employs C and Mclass as inputs. Once E is estimated, 

Mclass can be generated from C with the use of SRM. The estimated Mclass is then used 

to re-estimate E, and Mclass is re-estimated with the iteratively updated E. E and Mclass 



are re-estimated and updated with each iteration. SRCD is iteratively run until 

convergence is achieved. Once SRCD converges, Mclass is compared with the input F 

to produce the final land-cover change/no-change map Mc/n and from–to change map 

Mf-t. The flowchart of SRCD is shown in Fig. 1.  

 

Fig. 1.  The flowchart of the proposed SRCD method. 

B. Endmember Matrix E Estimation 

In SRCD, the endmember matrix E is estimated based on C and Mclass at time T. 

Mclass is degraded into the coarse-resolution land-cover area proportion image cube P 

by dividing the number of fine-resolution pixels of each class by the total number of 

fine-resolution pixels in a coarse-resolution pixel (i.e., s
2
). The pixel spectrum is the 

result of a mixture of different endmember spectral signatures. We assume that the 

observed signals can be decomposed linearly (linear mixing assumption) and the 

measured contributions of the endmembers are proportional to their surface areas[38]. 

Based on the linear mixing assumption, the spectral signature cij for pixel (i,j) can be 

represented by the following linear model: 



ij ij Ec p                             (1) 

where   is an error term accounting for any noise in the imaging chain and other 

model inadequacies. In accordance with the mean square error minimization criterion, 

E in the image is estimated by searching for the solutions that minimize the squared 

error between the observed spectrum cij and the approximated spectrum, i.e., 

2

1 1 1

[ ] argmin
I J N

ij ijn n

i j n

p
  

  
      

 E c e .                  (2) 

Equation (2) is a pseudo-inverse problem. The endmember matrix E can be 

estimated according to the class area proportion image cube P and the 

coarse-resolution image C in (2). 

C. Fine-Resolution Land-Cover Map Mclass Estimation 

Once E is estimated, Mclass at time T can be derived using SRM applied to C. In 

SRCD, SRM does not label all fine-resolution pixels in the image as traditional SRM 

methods do. Instead, it only updates the labels of changed fine-resolution pixels 

according to an intermediate fine-resolution change/no-change map (intermediate 

Mc/n). The generation of Mclass involves the production of the intermediate Mc/n and 

SRM. More specifically, the production of the intermediate Mc/n involves the 

generation of bi-temporal coarse-resolution images, the establishment of a multiscale 

land-cover change strategy to downscale these bi-temporal class area proportion 

image cubes to fine-resolution scale, and the determination of the class area 

proportion change thresholds in the bi-temporal class area proportion image cubes to 

quantify area proportion change in each coarse-resolution pixel. The procedures are 

explained below.  

1) Coarse-Resolution Land-Cover Class Area Proportion Estimation 

The coarse-resolution land-cover area proportion image cube P at time T is 

estimated using spectral unmixing, given the coarse-resolution image C and 

endmember matrix E. In SRCD, the number of spectral bands is assumed to be no less 

than that of the endmembers ( B N ) to keep the effectiveness of the linear mixture 



model[39]. Based on the mean square error minimization criterion, the class area 

proportion vector pij in the coarse-resolution pixel (i,j) is estimated by searching for 

the solutions that minimize the following expressions: 

2

1

[ ] argmin
N

ij ij ijn n

n

p


 
  

 
p c e                     (3) 

0 1, 1, ,ijnp n N                          (4)          

1

1
N

ijn

n

p


 .                           (5) 

Equation (3) is a constrained inverse problem, and two constraints in (4) and (5) 

are imposed on the objective function of (3) [40]. Then, C is unmixed and 

transformed into the class area proportion image cube P(C) according to the linear 

mixture model. 

F is spatially degraded into the class area proportion image cube P(F). In the 

generation of P(F), the class area proportion values of each class in each 

coarse-resolution pixel are calculated by dividing the number of fine-resolution pixels 

of each class by the total number of fine-resolution pixels in the coarse-resolution 

pixel (i.e., s
2
). 

2) Multiscale Land-Cover Change Strategy 



 

Fig. 2.  Production of the intermediate change/no-change map (intermediate Mc/n) 

With bi-temporal coarse-resolution class area proportion image cubes P(C) and 

P(F), a multiscale land-cover change strategy is applied to downscale these class area 

proportion image cubes to produce the intermediate Mc/n by incorporating the input 

map F. The SRCD method is based on a simplistic view of land-cover change 

trajectory; this method compares the change in the class area proportion of each class 

from the fine-resolution map F to the coarse-resolution image C. If the area 

proportion of a class in a coarse-resolution pixel appears to be unchanged (e.g., Class 

A in Fig. 2), then the number and location of the fine-resolution pixels of that class in 

F are unchanged in C. If the area proportion of a class in a coarse-resolution pixel 

appears to have increased from F to C (e.g., Class B in Fig. 2), then the 

fine-resolution pixels of that class in F are unchanged, and some fine-resolution pixels 

in F from class(es) that decreased in class area proportion have transformed into that 

class in the coarse-resolution image pixel. If the area proportion of a class in a 

coarse-resolution pixel appears to have decreased from F to C (e.g., Class C in Fig. 2), 



then the fine-resolution pixels of that class in F include those that may have 

transformed into fine-resolution pixels of other classes, and no fine-resolution pixels 

in F are assumed to have transformed from other classes into that class in the 

coarse-resolution image pixel. Thus, the fine-resolution pixels of a class in F that 

decrease in area proportion probably contain the set of changed pixels. As a result, in 

F, the fine-resolution pixels with unchanged and increased class area proportions from 

F to C (e.g., Class A and Class B in Fig. 2) are probably the unchanged fine-resolution 

pixels, whereas the fine-resolution pixels with decreased class area proportions from 

F to C (e.g., Class C in Fig. 2) are probably the changed fine-resolution pixels in the 

coarse-resolution pixel. In addition, some unchanged fine-resolution pixels may be 

erroneously indicated as being changed pixels in the SRCD intermediate Mc/n (e.g., 

Class C in Fig. 2 (j)). Thus, SRCD may have overestimated the number of changed 

pixels but underestimated the number of unchanged pixels. As a result, the SRCD 

intermediate Mc/n contains commission errors of changed pixels and omission errors 

of unchanged pixels.  

3) Iterative Determination Method for Class Area Proportion Change Threshold 

In Fig. 2, the omission errors of unchanged pixels are permitted, whereas the 

commission errors of unchanged pixels are forbidden. This difference is because the 

SRM in SRCD only updates the fine-resolution pixel labels that are changed in the 

intermediate Mc/n. If the commission error of unchanged pixels is large, the SRM in 

SRCD is essentially a traditional SRM that labels all fine-resolution pixels, and the 

information in F is merely used. The discrimination of unchanged fine-resolution 

pixels in the intermediate Mc/n is thus important and is implemented by injecting a 

threshold t to quantify the amount of unchanged pixels in each coarse-resolution pixel. 

SRCD employs an iterative class area proportion change thresholding approach, 

which adopts the class area proportion image cube P(F) based on F instead of P(C) at 

the beginning because of the lack of endmember matrix E for unmixing C. The class 

area proportion image cube P(F) may be inaccurate in the initial iterations; thus, the 

determination of unchanged fine-resolution pixels should be precise to avoid high 



commission errors of unchanged pixels in the intermediate Mc/n. Through the SRCD 

iterations, the endmember matrix E is re-estimated, and the accuracy of class area 

proportion image cube P increases. More potential unchanged fine-resolution pixels 

should be determined in the intermediate Mc/n. The SRCD is iterated until the 

completion of a predefined number of iterations. 

The iterative SRCD class area proportion change thresholding scheme is 

implemented. Let 
ijnp  be the area proportion difference value of class n in the 

coarse-resolution pixel (i,j). It is calculated by subtracting the area proportion value of 

class n in the pixel (i,j) in the class area proportion image cube P(F) from that in the 

class area proportion image cube P(C). Let realt  ( 0realt  ) be the real threshold value 

for detecting class area proportion change. On the basis of the multiscale land-cover 

change strategy, the fine-resolution pixels with unchanged class area proportion 

( [ , ]ijn real realp t t   ) or increased class area proportion ( ( ,1]ijn realp t  ) from F to C 

are labeled as unchanged in the intermediate Mc/n. Let init  be the initial threshold 

value and t be the iterative threshold value. The threshold value t is iteratively 

decreased from a high value that approximates the higher bound of 1 to a low value 

that approximates the lower bound of realt  at an interval of t  ( t <0) to 

gradually detect the increased and unchanged pixels. Initially, t is set to a high value, 

and fine-resolution pixels with progressively increasing class area proportion from F 

to C ( ijnp t  ) are labeled as unchanged in the intermediate Mc/n. Then, t is gradually 

decreased at an interval of t , and more fine-resolution pixels with increased or 

unchanged class area proportion are labeled as unchanged based on the criterion 

ijn tp  . When t approximates the realt  value, the 
ijn tp   criterion ensures that 

all the fine-resolution pixels with increased class area proportion ( ( ,1]ijn realtp  ) and 

unchanged class area proportion ( [ , ]ijn real realt tp   ) are correctly detected and 

labeled as unchanged in the intermediate Mc/n. Through this procedure, the omission 

errors of the unchanged fine-resolution pixels and the commission errors of changed 



fine-resolution pixels are gradually reduced. 

4) SRM 

SRM in SRCD is used to produce the fine-resolution land-cover map Mclass by 

updating fine-resolution pixels which are changed in the intermediate Mc/n. In SRCD, 

the spatial-spectral managed algorithm proposed by Ling et. al [18] is modified only 

to label changed fine-resolution pixel labels. This SRM is simple implement and has 

fast convergence rate. In addition, this SRM has the similar objective function with 

the Markov-random-field-based SRM, yet it does not require the endmembers 

covariance matrix information as Markov-random-field-based SRM does [15]. 

The SRM algorithm comprises a spatial term, a spectral term, and a balance 

parameter. The spatial term encodes prior knowledge on land-cover spatial patterns 

assuming that spatially proximate observations of a given property are more similar 

than distant observations. The spectral term measures the spectral difference between 

the observed and synthetic pixel spectra. The balance parameter is utilized to balance 

the contributions of the spatial and spectral terms.  

The objective function (E) of SRM is characterized as 

(1 )spatial spectralE E E                         (6) 

where spatialE  is the spatial term, spectralE  is the spectral term, and   is the balance 

parameter.  

The SRM spatial term aims to maximize the spatial dependence of neighboring 

fine-resolution pixels based on the maximal spatial dependence model, given that the 

spatially proximate observations of a given property are more similar than more 

distant observations [41]. The spatial term for the k-th( 21, ,k s ) fine-resolution 

pixel in coarse-resolution pixel (i,j), 
,ij ka , is computed as 

 
 

 
,

, ,

( ) ,

1
( ) ( ), ( )

,
ij k

spatial

ij k ij k l

l a ij k l

E c a c a c a
d a a




 
N

.            (7) 

,N( )ij ka
 
is a symmetric neighborhood that includes all fine-resolution pixels 



inside a square window whose center is 
,ij ka  (

,ij ka  itself is not included in the 

window), and la  is a neighborhood fine-resolution pixel of 
,ij ka  in 

,N( )ij ka . Here, 

the size of the neighborhood 
,N( )ij ka  was set to 2×s-1 [16, 42].  , ,ij k ld a a

 
is the 

Euclidian distance between 
,ij ka  and

 la . 
,( )ij kc a

 
and ( )lc a  are the land-cover 

class labels for fine-resolution pixels 
,ij ka  and

 la .  ,( ), ( )ij k lc a c a  equals to 0 if 

,( ) ( )ij k lc a c a  and 1 otherwise.  

 The spectral term is utilized to link the observed remotely sensed image to the 

fine-resolution labeled map being modeled. The area proportion of class n in pixel 

(i,j), pijn, is calculated by spatially degrading the fine-resolution label map Mclass 

according to the scale factor. The SRM spectral term for coarse-resolution pixel (i,j) is 

expressed as 

 
T

1 1

,
N N

spectral

ij ijn n ij ijn n

n n

E i j p p
 

   
     
   

 c e c e .            (8) 

    Therefore, the objective function (E) of SRM is calculated as 

   
2

,

1 1 1 1 1

( ) (1 ) ,
I J s I J

spatial spectral

ij k

i j k i j

E E c a E i j 
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      .       (9) 

The accuracy of SRM is dependent on the balance parameter that balances the 

spatial and spectral terms. When the balance parameter yields a relatively low value 

for the spatial term, the land-cover class area proportions barely change, and the prior 

land-cover spatial patterns have little influence on Mclass. Conversely, when the 

balance parameter yields a relatively high value for the spatial term, Mclass may be 

oversmoothed, and the spectral information provided by the observed remotely sensed 

image may be lost [42]. 

An adaptive balance parameter estimation method for SRM in SRCD is proposed. 

The optimal balance parameter is estimated based on the energy balance analysis 

proposed by Tolpekin and Stein [42]. If a fine-resolution pixel label, with its true label

,( )ij kc a  , is assigned as a different label   within a coarse pixel (i,j), the change 



in the spatial term becomes spatialE , and that in the spectral term becomes spectralE  

simultaneously. Therefore, to generate the correct class label on this fine-resolution 

pixel, the local contribution on the goal energy from the considered fine-resolution 

pixel should be lower for 
,( )ij kc a   than for 

,( )ij kc a  , and it necessitates the 

contribution of the spectral term to compensate for the gain of the spatial term. The 

limiting value of   is determined to balance the changes in the spatial and spectral 

terms in (10). 

spatial spectralE E                         (10) 

    The change in the spatial term spatialE
 
is formulated as 

 
,N( )

( ) ( , ( )) ( , ( ))
ij k

spatial

l l l

l a

E q a c a c a q      


          (11) 

where 
,N( )

( ) 1
ij k

ll a
a


  and 0 q   controls the overall magnitude of the 

weights of the spatial term. The parameter   depends on the neighborhood system 

size and the configuration of class labels ( )lc a  in the neighborhood 
,N( )ij ka . The 

parameter   value can be set as a constant [16, 42] or be estimated automatically 

[43]. In this paper, the parameter   is set to 0.03 according to [16, 42] for simplicity. 

The change in the spectral term spectralE  before and after the update of the pair of 

fine-resolution pixel labels can be formulated as 

T

2 2

spectralE
s s

   



    
     

   

e e e e
.                (12) 

Once spatialE  and spectralE  are calculated, a range of the balance parameters 

that all satisfy (10) can be derived. Solving spatial spectralE E     and recalling

/ (1 )q q   , the optimal value 
*  is acquired as  

* 1

1
spectralE









.                       (13) 



If 
*  , the model will result in oversmoothing. On the other hand, an 

extremely low value of   does not fully utilize the spatial information in the model. 

The value of spectralE  is related to the class spectral separability, and the average 

value 
spectralE  is suggested to be used as a substitute for spectralE  when class 

separability values for different pairs of classes are different [42].  

1

1 1

( 1)
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N N
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
 



  



 
 

 
.                    (14) 

Equation (13) is then rewritten as 

* 1

1
spectralE









.                      (15) 

5) SRCD Energy Minimization 

    The optimal Mclassis generated by minimizing the SRCD objective function in (6). 

The SRM problem is characterized by a large solution space. Simulated annealing has 

been proposed to solve various global optimization problems, and avoid being trapped 

in the local minimum by controlling the acceptance of some inferior solutions which 

increase the objective function's value [44]. The acceptance of inferior solutions is 

dependent on a parameter κm. κm is iteratively changed according to 

1m m     .                         (16) 

    The parameter (0,1)  controls the rate of temperature decrease. With the 

decrement of κm, the inferior solutions will be accepted with low probability, and 

simulated annealing terminates when κm is very small where the global minimum of 

the objective function is reached. The initial temperature κm was set to 3, the maximal 

iteration number was set to 120, and the parameter   was set to 0.9 [16, 42]. 

D. The Proposed Algorithm 



    SRCD is iterated until the threshold value reaches a predefined value or a 

predefined number of iteration has been completed. Once SRCD converged, Mclass is 

compared with F to generate the fine-resolution land-cover change/no-change map 

Mc/n and from–to change map Mf-t through per-pixel comparison. The false code of 

SRCD is shown below: 

  



 

SRCD Method  

Objective: Estimate fine-resolution change/no-change map Mc/n and from–to 

change map Mf-t 

Input: Fine-resolution land-cover map F, coarse-resolution image C, scale factor 

s between F and C. 

1. Initialization:  

    Set the initial threshold 
ini

t , step threshold t , the initial iteration number 

ite=0 and total iteration number itetotal  

2. Using F as the initial Mclass 

3. Iteratively SRCD 

do 

{ 

ite=ite+1 

Spatially degrade Mclass to class area proportion image cube P(M) (class 

area proportion image cube calculated from Mclass) according to scale factor s 

Estimate endmember matrix E using C and P(M) based on linear mixture 

model  

Unmix C based on E to P(C) (class area proportion image cube calculated 

from C) 

Spatially degrade F to class area proportion image cube P(F) (class area 

proportion image cube calculated from F) according to scale factor s 

Calculate class area proportion difference image P(C)- P(F)  

Update threshold t value: 
ini

t=t tite   

Detect the area proportion change of each class in each coarse-resolution 

pixel  

Generate the intermediate Mc/n based on threshold t 

Use SRM to update labels of fine-resolution pixels in Mclass which are 

changed in the intermediate Mc/n 

} 

until ite= itetotal  
4. Producing the final Mc/n and Mf-t 

     Per-pixel comparison of F and Mclass 

Result: Mc/n and Mf-t 

E. Accuracy Metric 

    The pixel-based quality metrics were used to assess the accuracy of Mc/n and Mf-t 

by comparing the result change maps with the reference data. The accuracies of the 

entire image Mc/n and Mf-t were assessed using the overall accuracy value [45]. The 

per-class accuracies of the changed and unchanged pixels in Mc/n and the per-class 



accuracies of the different land-cover from–to changes in Mf-t were also assessed. The 

accuracies of the changed and unchanged pixels in the intermediate Mc/n produced by 

the multiscale land-cover change strategy from P(C) and P(F) or final Mc/n produced by 

per-pixel comparison between Mclass and F were measured using the omission error, 

commission error, and F1-score. The F1-score is the harmonic mean of precision, 

which represents the measure of exactness or quality, and recall, which represents the 

measure of completeness or quantity [46]. The per-class accuracies of different 

land-cover from–to changes in Mf-t were assessed using the producer’s and user’s 

accuracies. 

III. EXPERIMENTS AND RESULTS 

Experiments using synthetic multispectral image, real MODIS multispectral 

remotely sensed image and real Landsat-8 multispectral image were conducted in 

order to assess the proposed SRCD method. The fine-resolution map post-dated the 

coarse-resolution image in the synthetic image experiment, and pre-dated the 

coarse-resolution image in the MODIS and Landsat-8 image experiments. SRCD is 

not compared with other methods, because there is, to our knowledge, no other 

method focusing on the extraction of fine-resolution land-cover change information 

using different spatial resolution images without prior endmember information.  

A. Synthetic Image Experiment  

1) Data Preparation 

A synthetic multispectral image was used in this experiment. The test data were 

obtained based on NLCD in 2001 and 2006, respectively. NLCD is a land-cover 

classification scheme that has been applied consistently at a spatial resolution of 30 m 

across the U.S.A.. NLCD is based primarily on the unsupervised classification of 

Landsat satellite data. NLCD 2001 and 2006 are geo-registered to the Albers Equal 

Area projection grid [47]. There are 16 land-cover classes in NLCD. Introducing too 

many classes would affect the spectral unmixing accuracy for linear mixture model 

applied to multispectral image. The original 16 land-cover classes were combined and 



reclassified into 4 classes, namely, Water-Wetlands (WW), Developed-Barren (DB), 

Shrubland-Herbaceous (SH), and Planted/Cultivated (PC). 

The reference fine-resolution map was generated from NLCD 2001, and the 

input fine-resolution map was generated from NLCD 2006. Both maps contain 800 × 

800 pixels located in Charlotte (Fig. 3). The changed fine-resolution pixels account 

for 7.8% of all pixels in the study area. The input coarse-resolution multispectral 

image was simulated from the fine-resolution reference map. A fine-resolution 

multispectral image was produced first. The number of bands was set to 6 to 

accommodate for a dimensionality constraint in spectral unmixing. The 4 endmember 

signature digital number (DN) values were set to [750, 400, 225, 20, 80, 130]
T
, [310, 

70, 107, 390, 360, 330]
 T

, [160, 295, 455, 605, 720, 960]
 T

, and [440, 520, 750, 890, 

980, 520]
 T

. T is the transposition operator. The covariance matrices for all the classes 

were set to A·I, where A=500 is a constant and I is 6 by 6 identity matrix [42]. The 

fine-resolution multispectral image was first produced according to the reference map 

and class endmembers. The spectral response of each class was normally distributed 

in each waveband. The fine-resolution multispectral image was then spatially 

degraded to the coarse-resolution multispectral image with the scale factor s=10. The 

reference fine-resolution land-cover change/no-change map and from–to change map 

were produced by a per-pixel comparison of the NLCD 2001 and 2006 land-cover 

maps (Fig. 3). 

 



 

Fig. 3.  SRCD input and reference images of synthetic image experiment. The zoomed area 

contains 100 × 100 fine-resolution pixels. 

The initial SRCD parameters were set. The initial class area proportion change 

threshold value,
 init , can be set between 0 and 1. A high init

 
value would extend the 

SRCD convergence time, whereas a low init
 
value would eliminate small-sized 

unchanged land-cover patches in the intermediate change/no-change map. Thus, the 

initial class area proportion change threshold value was set to 0.5init  . A low t  

value would extend the SRCD convergence time, whereas a high t  value would 

reduce the number of unchanged land-cover patches in the intermediate and final 

change/no-change maps. Thus, the step class area proportion change threshold value 

was set to 0.05t   . The number of total iterations was set to itetotal= 20. SRCD is 

terminated with a class area proportion change threshold value of

0.5ini totalt et it t     . The SRCD results are shown in Fig. 4. 

2) Results 



 
Fig. 4.  SRCD result maps of synthetic image experiment at different class area proportion 

change threshold t for synthetic image experiment. The zoomed area contains 100 × 100 

fine-resolution pixels. 

Fig. 4 summarizes the SRCD results, highlighting the intermediate 

fine-resolution change/no-change maps used for SRM, the fine-resolution land-cover 

maps generated by SRM, and the final output fine-resolution change/no-change maps 

and from–to change maps at different class area proportion change threshold t values. 

More fine-resolution pixels were indicated as having changed labels in the 

intermediate change/no-change map than in the final output change/no-change maps 

at different threshold t values. This result may be attributed to the application of SRM 



to the fine-resolution pixels indicated as changed in the intermediate 

change/no-change map, which indicated parts of the changed pixels in the 

intermediate change/no-change map as unchanged pixels in the final 

change/no-change map.  

The performance of SRCD varied with the class area proportion change 

threshold t. When the threshold is 0.3t  , most fine-resolution pixels were indicated 

as having changed in the intermediate change/no-change map. The changed 

fine-resolution pixel labels were determined by SRM. Many rounded patches were 

evident in the subset images because SRM adopted the land-cover maximum spatial 

dependence model, which could have oversmoothed the land-cover patches. With the 

decrease in threshold t, more fine-resolution pixels were detected as unchanged in the 

intermediate change/no-change map, and more land-cover patches in the input 

fine-resolution map, which were identified as unchanged, were preserved in the 

land-cover map produced by SRM. More unchanged fine-resolution pixels were also 

observed in the final fine-resolution change/no-change and from–to change maps. 

When the threshold is 0.3t   , most fine-resolution pixel labels in the input 

fine-resolution map with unchanged class area proportion were preserved in the 

land-cover map, and the final change/no-change and from–to change maps were 

approximate to the reference maps. 

 

Fig. 5.  Overall accuracies of intermediate change/no-change maps, final change/no-change maps, 

and final from–to change maps for synthetic image. 

The overall accuracies of the intermediate and final change/no-change maps, as 



well as the final from–to change maps, are shown in Fig. 5. The overall accuracies of 

all the maps increased gradually with a decrease in threshold t when t is higher than 

−0.3 and decreased with a decrease in threshold t when t is lower than −0.3. The final 

change/no-change maps exhibited a higher overall accuracy than the intermediate 

change/no-change maps for each threshold t value. This result is due to difference in 

the data sources used for generating these maps: the intermediate change/no-change 

map was produced using the class area proportion information at the coarse-resolution 

scale, whereas the final change/no-change map was produced by comparing 

land-cover maps at the fine-resolution scale. The highest overall accuracies of the 

final change/no-change map and the from–to change maps were 96.00% and 95.28%, 

respectively, when 0.3t   .  

 

Fig. 6.  The F1-scores, omission errors, and commission errors of unchanged and changed 

fine-resolution pixels in the intermediate and final fine-resolution change/no-change maps for the 

synthetic image experiment.  

The accuracies of the intermediate and final change/no-change maps were 

measured using the F1-score, omission error and commission error, which are shown 



in Fig. 6. The F1-score for the changed pixels in the intermediate and final 

change/no-change maps increased gradually with a decrease in threshold t when t is 

higher than −0.3, and decreased when the threshold t is lower than −0.3 because many 

changed pixels were erroneously identified as unchanged pixels. The intermediate and 

final change/no-change maps have the highest F1-score (higher than 71%) for changed 

pixels when the threshold 0.3t   . The F1-scores for unchanged pixels in the 

intermediate and final change/no-change maps increased gradually with a decrease in 

threshold t when t is higher than −0.3 and remained almost unchanged when the 

threshold t is lower than −0.3. The highest F1-score for unchanged pixels was higher 

than that for changed pixels in the intermediate and final change/no-change maps. 

This is because most pixels were unchanged in the study area, and the majority of 

pixels were identified as unchanged by SRCD when the threshold 0.3t   . The final 

change/no-change maps produced by comparing land-cover maps at the 

fine-resolution scale have higher F1-scores for changed and unchanged pixels than the 

intermediate change/no-change maps produced using the class area proportion 

information at the coarse-resolution scale at most threshold t values. 

The omission errors of unchanged pixels decreased with a decrease in threshold t. 

This result is because most unchanged fine-resolution pixels were initially indicated 

as having changed; however, with a decrease in threshold t, the detected unchanged 

fine-resolution pixels increased, and more unchanged fine-resolution pixels were 

correctly detected. By contrast, the omission errors of changed pixels increased with a 

decrease in threshold t because almost all fine-resolution pixels were initially detected 

as having changed. With a decrease in threshold t, the detected changed 

fine-resolution pixels decreased, and more actually changed pixels were erroneously 

identified as unchanged.  

The commission errors of changed pixels decreased with a decrease in threshold 

t. This result is because almost all the fine-resolution pixels were initially detected as 

having changed; however, with a decrease in threshold t, the detected changed 

fine-resolution pixels decreased, and many of the initially erroneously detected 

changed pixels were excluded from the detected changed pixels. The commission 



errors of unchanged pixels were low and remained almost unchanged with a decrease 

in threshold t. When threshold t is lower than −0.3, the commission errors of the 

unchanged pixels increased, whereas the commission errors of the changed pixels 

decreased with a decrease in threshold t. Therefore, more changed pixels were 

erroneously detected as unchanged, and less unchanged pixels were erroneously 

detected as changed. 

 

Fig. 7.  The producer's accuracy and user's accuracy of different land-cover from–to changes for 

synthetic image experiment. 

The producer’s accuracy and user’s accuracy of different land-cover from–to 

changes for the synthetic image experiment are shown in Fig. 7. The producer’s 

accuracies of WW—WW, DB—DB, SH—SH, and PC—PC increased with a decrease 

in threshold t, whereas the producer’s accuracies of the other land-cover changes 

decreased with a decrease in threshold t. The number of correctly detected unchanged 

classes increased, whereas the number of correctly detected changed classes 

decreased. The producer’s accuracies of DB—PC and WW—SH were 0% because 

only 13 fine-resolution pixels had a DB—PC change and 62 fine-resolution pixels had 

a WW—SH change in the 2001–2006 reference from–to change map. These changed 

patches were smaller than a coarse-resolution pixel, which contained s
2
=100 

fine-resolution pixels. The producer’s accuracies of unchanged classes have a 

dominant effect on the global accuracy in the from–to change map because more than 

90% of the fine-resolution pixels were unchanged in 2001–2006. In Fig. 7, the user’s 



accuracies of unchanged classes decreased, whereas those of the changed classes 

increased with a decrease in threshold t. Fig. 8 shows the reference endmember 

signatures, extracted initial endmember signatures at 0.5t  , and extracted final 

endmember signatures at 0.3t   . A good match between the reference and 

estimated endmember signatures was observed at 0.3t   . 

 
Fig. 8.  Reference endmember signatures (reference DN), estimated endmember signatures at 

0.5t   (initial DN) and at 0.3t    (final DN) for the synthetic image experiment. 

B. MODIS Image Experiment 

1) Data Preparation 

MODIS multispectral images were adopted to assess SRCD based on real 

remotely sensed images. The study area is located near Sorriso (12º33'21"S and 

55º42'31"W) in Mato Grosso State, Brazil. This area is in the Brazilian Amazon Basin, 

and is mainly covered by tropical forests but which has undergone a deforestation in 

recent years. The experiment data include a Landsat-5 TM image with a spatial 

resolution of 30 m acquired on August 13, 2000, a Landsat-7 ETM+ image with a 

spatial resolution of 30 m acquired on July 18, 2005, and a single eight-day surface 

reflectance MODIS product (MOD09A1) with a spatial resolution of 463 m taken in 

July 2005. The TM image was geo-registered to the ETM+ image. The TM image 

acquired in 2000 was digitized to the input fine-resolution land-cover map with forest 

and nonforest in it, and the ETM+ image acquired in 2005 was digitized to the 

reference map. The MODIS image comprising 7 spectral bands (620 nm - 2055 nm) 

was used as the SRCD input coarse-resolution image. The MODIS image was 

re-projected into the Universal Transverse Mercator coordinate system and then 

resampled to a spatial resolution of 450 m using the nearest neighbor algorithm. A 

subset of 200 × 200 pixels MODIS image and subsets of 3000 × 3000 pixels TM and 



ETM+ images were adopted (Fig. 9). The scale factor s is set to 15. The changed 

fine-resolution pixels account for 22.8% of all pixels in the study area.  

SRCD was implemented for the scenarios in which the fine-resolution map 

pre-dated the coarse-resolution image. The reference fine-resolution land-cover 

change/no-change map and from–to change map were produced by a per-pixel 

comparison of the 2000 and 2005 land-cover maps. The SRCD parameters were set as 

in the synthetic image experiment: 0.5init  , 0.05t   , and itetotal=20. 

 

Fig. 9.  SRCD input and reference images of MODIS image experiment. The zoomed area 

contains 300 × 300 fine-resolution pixels. 

2) Results 



 
Fig. 10.  Experimental results of MODIS image experiment 

The input images, reference maps, and result maps are shown in Fig. 9 and Fig. 

10. Deforestation occurred in the region during the periods represented. Some of the 

deforestations exhibited a fishbone pattern because of the expansion of the nonforest 

patch (such as the left zoomed area), whereas some of the deforestations were in 

clear-cut areas (such as the right zoomed area). More pixels were detected as 

unchanged pixels with a decrease in threshold t. As a result, the changed pixels 

marked in black decreased, whereas the unchanged pixels marked in white increased 

in the intermediate and final change/no-change maps. The changed land-cover 

trajectories marked in blue and red decreased, whereas the unchanged land-cover 

trajectories marked in gray increased in the from–to change maps with a decrease in 

threshold t. In the reference from–to change map in Fig. 9, forest–nonforest change 

trajectory patches marked in red were more than nonforest–forest change trajectory 

patches marked in blue because deforestation was the main land-cover change 



trajectory in the study area. Most of the spatial patterns of the changed land-cover 

trajectories were correctly mapped onto the from–to change map when 0.3t   . The 

forest–nonforest patches were mapped with rounded shape, and some of the spatial 

details were lost. This result is attributed to the use of the land-cover maximal spatial 

dependence model by SRM in producing the changed land-cover patches; this model 

could oversmooth class boundaries. 

 

Fig. 11.  The F1-scores for changed and unchanged pixels in the intermediate and final 

fine-resolution change/no-change maps for MODIS image experiment.  

Fig. 11 shows the F1-scores for changed and unchanged pixels in the 

intermediate and final fine-resolution change/no-change maps. For changed pixels, 

the intermediate change/no-change maps obtained F1-scores lower than 50% when 

0t   and obtained F1-scores higher than 60% when 0t  . For unchanged pixels, the 

F1-scores obtained by the intermediate change/no-change maps were lower than 50% 

when 0t   and higher than 80% when 0t  . The final change/no-change maps 

have F1-scores higher than 60% for changed pixels and higher than 90% for 

unchanged pixels. The highest F1-score of the final change/no-change map is 

approximately 70.97% for changed pixels when 0.3t    and approximately 92.18% 

for unchanged pixels when 0.4t   .  



 

Fig. 12.  The producer's accuracy and user's accuracy of different land-cover from–to changes for 

MODIS experiment. 

Fig. 12 shows the producer’s and user’s accuracies of different land-cover 

from–to changes at different threshold t values. The producer’s accuracies of 

nonforest–nonforest and forest–forest changes increased, whereas the producer’s 

accuracies of forest–nonforest and nonforest–forest changes decreased because more 

fine-resolution pixels were detected as unchanged with a decrease in threshold t. The 

producer’s accuracies of nonforest–nonforest and forest–forest changes were higher 

than those for forest–nonforest and nonforest–forest changes. This result is because 

the unchanged pixel labels were determined by the input fine-resolution land-cover 

map, whereas the changed pixel labels were determined by SRM. The producer’s 

accuracy of forest–nonforest change was higher than that for nonforest–forest change. 

The main reason is that the forest–nonforest patches were usually larger than the 

coarse-resolution pixel; thus, SRM with the maximum land-cover spatial dependence 

model was suitable for mapping these patches [24]. By contrast, nonforest–forest 

patches were usually found along patch boundaries with linear shapes wherein the 

SRM may have oversmoothed the patches. The pixel number of the nonforest–forest 

change accounts for 2.0% of all the pixels, and the pixel number of the 

forest–nonforest change accounts for 20.7% of all the pixels in the 2000–2005 

reference fine-resolution from–to change map. Thus, the forest–nonfores change 

detection accuracy has a more dominant effect on the overall change detection 

accuracy of the entire image. The user’s accuracies of unchanged classes decreased, 



whereas those of changed classes increased with a decrease in threshold t. This result 

is because the number of pixels of changed classes marked in blue and red decreased, 

whereas the number of pixels of unchanged classes marked in gray increased with a 

decrease in threshold t. The overall accuracy of the form–to change map increased 

from 83.27% when 0.5t   to 87.15% when 0.3t    and then decreased to 85.98% 

when 0.5t   . 

C. Landsat-8 OLI Image Experiment 

1) Data Preparation 

A Landsat multispectral images was adopted as the coarse-resolution image in 

this experiment. The study area is located in Wuhan (30º21'70"N and 114º15'19"E), 

China. A Landsat-8OLI image acquired on June 13, 2013 was selected as the relative 

coarse-resolution image. The Landsat-8 OLI image has 9 multispectral bands. The 

first 7 bands of OLI image with a spatial resolution of 30 m were selected as the 

coarse-resolution image for SRCD input. The 8
th

 band (panchromatic band) of OLI 

image was not used because it has a spatial resolution of 15 m, and the 9
th

 band (cirrus 

band) of OLI image was not used because it is not suitable for detecting land-covers. 

Two Google Earth optical images with fine spatial resolution, which were acquired on 

August 14, 2010 and on June 13, 2013 were selected. The Google Earth optical 

images were geo-registered to the ETM+ image. The 2010 Google Earth image was 

digitized to the SRCD input previous fine-resolution land-cover map, and the 2013 

Google Earth image was digitized to the reference map. There are 4 land-cover 

classes in the fine-resolution maps, which are water, grass, impervious surface and 

bareland. A subset of 40 × 40 pixels Landsat-8 OLI image was used as the SRCD 

input coarse-resolution image. The previous and reference land-cover maps contains 

200 × 200 pixels (Fig. 13). The scale factor s is set to 5. The changed fine-resolution 

pixels account for 12.5% of all pixels in the study area. The reference fine-resolution 

land-cover change/no-change map and from–to change map were produced by a 

per-pixel comparison of the 2010 and 2013 land-cover maps. The SRCD parameters 



were set as in the synthetic and MODIS image experiments: 0.5init  , 0.05t   , 

and itetotal=20. 

 

Fig. 13.  SRCD input and reference images of Landsat-8 OLI image experiment. 

2) Results 

 

Fig. 14.  Experimental results of Landsat-8 OLI image experiment. 

    As shown in Fig. 13, an obvious grass–bareland change was found in the image 



in subsets A to F in the reference from–to change map. The grass–bareland changes in 

subsets C, D, and E were mainly caused by the expansion of the previously bareland. 

Other land-cover changes were unremarkable, such as in subset G. In Fig. 13, more 

pixels were identified as unchanged pixels with a decrease in threshold t. In the final 

change/no-change maps, the changed pixels marked in black decreased, whereas the 

unchanged pixels marked in white increased with a decrease in threshold t. In the final 

from–to change maps, the land-cover changes marked in color decreased with a 

decrease in threshold t. The erroneously detected from–to changes (bareland–grass 

and water–grass) in the bottom-left corner of the image appeared when 0.3t    and 

disappeared when 0.3t   . This result may be attributed to the fact that the bareland 

and water patches in the bottom-left corner were small in the reference map and were 

detected as changed and oversmoothed by SRM when 0.3t   . The grass–bareland 

changes in subsets A to E were detected in the from–to change maps when 0.5t   . 

The shapes of the changed patches were smoothed because of the spatial smoothing 

effect of SRM. As a result, the grass–bareland changes in subsets A and B had 

rounded shapes; being smaller than the coarse-resolution pixel, grass–bareland 

changes in subset F were eliminated in the from–to change map because of the 

oversmoothing effect of SRM. The grass–bareland changes in subset C were detected 

as having a linear shape when 0.5t    and were similar to those in the reference 

from–to change map in Fig. 13. Some of the changed patches that were smaller than 

the coarse-resolution pixel of other from–to changes were detected when 0.5t    

(such as grass–water changes in subset G). 



 

Fig. 15.  The F1-scores for changed and unchanged pixels in the intermediate and final 

fine-resolution change/no-change maps for Landsat image experiment. 

Fig. 15 shows the F1-scores for changed and unchanged pixels in the 

intermediate and final fine-resolution change/no-change maps. The F1-scores for 

changed pixels in the intermediate and final change/no-change maps increased 

gradually with a decrease in threshold t when 0.3t   , and decreased when the 

0.3t   . The F1-score for unchanged pixels in the intermediate and final 

change/no-change maps gradually increased with a decrease in threshold t when 

0.3t    and remained almost unchanged when 0.3t   . The highest F1-score for 

changed pixels was 56.39% in the intermediate change/no-change map when 

0.3t    and 61.37% in the final change/no-change map when 0.3t   .  

 
Fig. 16.  The producer's accuracies and user's accuracies of different land-cover from–to changes 

for the Landsat-8 OLI image experiment. 



Fig. 16 shows the producer’s and user’s accuracies of different land-cover 

from–to changes at different values of threshold t. The producer’s accuracies of 

unchanged land-covers increased, whereas the producer’s accuracies of changed 

land-covers decreased with a decrease in threshold t. The producer’s accuracy of 

grass–bareland change was higher than 70% when 0.3t   , and the producer’s 

accuracies of grass–water, bareland–water, and bareland–grass changes were lower 

than 40%. As shown in Table II, the grass–bareland change accounts for 11.06% of all 

the fine-resolution pixels in the image. By contrast, the water–bareland, grass–water, 

bareland–water, and bareland–grass changes account for 0.22%, 0.17%, 0.15%, and 

0.91% of all the fine-resolution pixels, respectively, in the reference from–to change 

map. The majority of fine-resolution pixels of water–bareland change and of 

grass–bareland change were correctly detected in the final from–to change maps in 

Table II. As shown in Fig. 13, the land-cover patches of water–bareland, grass–water, 

bareland–water, and bareland–grass changes were small. The fine-resolution pixels of 

water–bareland, grass–water, and bareland–water changes account for less than 4 

coarse-resolution pixels (100 fine-resolution pixels) in the reference from–to change 

map, as shown in Table II. As a result, the class area proportion changes of the 

from–to changes were insignificant and can hardly be detected. In addition, these 

changed patches are likely to be oversmoothed by the spatial smoothing effect of 

SRCD. By contrast, the land-cover patches of grass–bareland changes were larger 

than the coarse-resolution pixel and were not oversmoothed by SRCD. The overall 

accuracy of the from–to change map increased from 83.37% when   0.5t   to 85.42% 

when 0.1t    and to 90.15% when 0.3t   . 

  



TABLE II 

THE NUMBER OF PIXELS IN THE REFERENCE AND RESULT MAPS OF DIFFERENT 

LAND-COVER FROM–TO CHANGES FOR THE LANDSAT-8 OLI IMAGE 

EXPERIMENT. 

Land-cover 

from–to change 

type 

Number of pixels 

in the reference 

from-to change 

map 

Percentage of 

pixels in the 

reference from-to 

change map 

Number of correctly detected pixels 

in the result from-to change map 

0.1t    0.2t    0.3t    

water—bareland 89 0.22% 74 61 16 

grass—water 67 0.17% 16 25 5 

grass—bareland 4423 11.06% 3475 3334 3131 

bareland—water 62 0.15% 11 7 0 

bareland—grass 363 0.91% 1 0 0 

IV. CONCLUSIONS 

Land-cover changes are usually detected using bi-temporal fine-resolution 

images. Given that fine-spatial-resolution images have low temporal resolutions, the 

land-cover changes are detected infrequently. Compared with fine-resolution images, 

coarse-resolution images have high temporal repetition rates. Considering the 

trade-off between spatial and temporal resolutions, land-cover changes can be 

detected using both fine- and coarse-resolution images. In this paper, an SRCD 

method is proposed. It uses a coarse-resolution image and a fine-resolution map to 

detect land-cover changes more temporally, continuously, and frequently and provide 

fine spatial resolution. In SRCD, the endmember signatures and fine-resolution 

land-cover maps are iteratively estimated and updated. The unchanged fine-resolution 

pixels are iteratively determined using an intermediate change/no-change map while 

the changed fine-resolution pixel labels are iteratively updated using SRM. The 

method generates the following outputs: a fine-resolution change/no-change map and 

a fine-resolution from–to change map.  

The performance of SRCD was validated using synthetic, MODIS, and 

Landsat-8 OLI multispectral images of scenarios in which the fine-resolution map 

pre-dated and post-dated the coarse-resolution image. In the three experiments, the 

accuracies of the output fine-resolution change/no-change and from–to change maps 



generated using SRCD varied with the threshold value. In the change/no-change maps, 

the omission errors of the unchanged pixels decreased, whereas the omission errors of 

the changed pixels increased with a decrease in threshold. In the change/no-change 

maps, the F1-score for changed pixels increased with a decrease in threshold when the 

threshold is higher than −0.3 and decreased when the threshold is lower than −0.3. In 

the from–to change maps, the land-cover from–to changes, which account for the 

majority of the land-cover change pixels, were correctly detected, and the changed 

land-cover patches that were larger than the coarse-resolution pixel were correctly 

mapped. In all experiments, the highest change detection accuracies were observed at 

a threshold of approximately −0.3. The land-cover change/no-change maps have the 

highest F1-score for changed pixels, reaching higher than 70% in the synthetic image 

and MODIS image experiments and higher than 55% in the Landsat image 

experiment. In all three experiments, the from–to change maps achieved the highest 

overall accuracy of more than 85%. 

In the three experiments, some of the changed land-cover patches that were 

smaller than the coarse-resolution pixel were not detected and mapped onto the 

from–to change maps. Several factors may reduce the detection accuracy for 

small-sized land-cover patches. First, a linear mixture model was adopted to estimate 

the endmembers with the use of the coarse-resolution image and fine-resolution map 

and estimate the class area proportions with the use of the coarse-resolution image 

and the estimated endmembers. However, endmember variances caused by spatial 

changes were not handled. Furthermore, violating the linearity assumption of the 

mixture models, the multiple scattering of photons between different surface 

components causes errors in the SRCD endmembers and class area proportion 

estimations. Powerful spectral unmixing algorithms, such as the multiple endmember 

spectral mixture analysis and nonlinear mixture model, should be developed in SRCD. 

Second, SRCD adopted the maximal land-cover spatial dependence model to 

characterize the spatial distribution of land-cover patches that were detected to have 

changed in SRCD. This spatial dependence model is suitable for characterizing the 

shapes of objects that are larger than the coarse-resolution pixel. However, doing so 



may oversmooth objects that are smaller than the coarse-resolution pixel. The 

integration with other spatial dependence models, such as geostatistical models that 

are more suitable for characterizing objects that are smaller than the coarse-resolution 

pixel, should be studied in SRCD. Finally, the performance of SRCD is related to the 

spectral and spatial resolutions of the coarse-resolution remotely sensed image. In 

general, when the coarse-resolution input has a higher spectral resolution, the 

interclass separabilities are high; as a result, both endmember estimation accuracy and 

spectral unmixing accuracy are expected to be high. When the coarse-resolution input 

has a finer spatial resolution, fewer land-cover classes are contained in the 

coarse-resolution pixel and the mixed pixel effect is less severe, thus the class area 

proportions could be estimated more accurately. Accordingly, the intermediate 

land-cover change/no-change map can be generated more accurately based on the 

estimated class area proportions from the coarse-resolution image. The performance 

of SRCD, which updates the changed fine-resolution pixels in the intermediate 

change/no-change map, can thus be improved when the coarse-resolution image has 

high spectral and spatial resolutions.  
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