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Abstract

We analyze in detail an open cavity array using mean-field description, where each cavity field is coupled
to anumber of three-level atoms. Such a system is highly tunable and can be described by a Jaynes—
Cummings like Hamiltonian with additional nonlinear terms. In the single cavity case we provide simple
analytic solutions and show, that the system features a bistable region. The extra nonlinear term gives
rise to a rich dynamical behavior including occurrence of limit cycles through Hopfbifurcations. In the
limit of large nonlinearity, the system exhibits an Ising like phase transition as the coupling between light
and matter is varied. We then discuss how these results extend to the two-dimensional case.

1. Introduction

The use of cavity QED tools is now ubiquitous across different areas of physics ranging from quantum
information [1, p 75] to detection of dark matter [2]. Specifically, the atoms held in optical cavities play a vital
role in studies of many-body physics [3]. Such systems are natural implementations of many-body Jaynes—
Cummings (JC) or Dicke Hamiltonians [4]. Their high tunability and the possibility of achieving strong light
matter coupling or probing the dynamics in real time make them very attractive experimental platforms. The
prospect of probing phase transitions and the associated critical phenomena with these platforms have been put
forward e.g. in [5-7] and the non-equilibrium dynamics of the Dicke model has been theoretically investigated
in [8]. Specific many-body phenomena that can be studied with cavity QED include for example the physics of
spin glasses [9, 10], the emergence of gauge fields and the related quantum Hall effect [11] or the self-
organization of the atomic motion [12—14], to name a few. The self-organization has been subsequently
observed in the experiments [15, 16].

So far we have mentioned only studies concerning a single cavity—generalizations to multiple cavity arrays
implementing the Hubbard physics have been reviewed in [17]. Although appealing in principle, the realization
of many efficiently coupled cavities, each hosting a discrete-level quantum system is a challenging task. To make
such experiment scalable requires miniaturization of the cavities. One possibility is the use of microcavities in
photonic crystals [18, 19]. A further option is to use integrated optical circuits, where in principle arbitrary
waveguide forms can be created with high precision by laser engraving in the silica substrate [20]. They have been
successfully used for the demonstration of a quantum gate operation [21], creation of classical and quantum
correlations [22, 23], multi-photon entangled state preparation [24], quantum random walk [25], discrete
Fourier transform [26] or Bloch oscillations [27].

While it has been demonstrated that cavities can be fabricated by creating the Bragg grating during the laser
writing process [28, 29], there is now an active experimental effort to combine the waveguides with atomic
microtraps on a single device [30, 31].

Motivated by these developments and the prospects of studying many-body physics using integrated optical
circuits with trapped atoms, we theoretically analyze the non-equilibrium physics of such system, which we take
to be a two-dimensional cavity array, where each cavity hosts a number of atoms. We first derive the effective
Hamiltonian describing the system in section 2. Using this Hamiltonian we find mean-field (MF) equations of

©2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Figure 1. (a) Scheme of the envisioned experimental setup. The atoms are located at the intersections of the cavity modes and are
represented by the small spheres. The classical light field € is sketched by the shaded red area. (b) Atomic level scheme (only a single a
mode is shown, see text for details). (c) Special case of single cavity mode a.

motion whose solutions feature rich dynamics, including bistable behavior, Ising like phase transition or the
occurrence of limit cycles, which we discuss in detail in section 3. We then conclude in section 4.

2. The model

We consider a two-dimensional array of identical three-level atoms each coupled to a horizontal cavity mode a;
and vertical cavity mode b, with the same coupling constant g, figure 1(a). From here on we use latin and greek
indices to denote horizontal and vertical degrees of freedom respectively. In order to simplify the notation, we
omit the sum symbols and summation over occurrences of indices labeling the spatial position is understood
(i.e. 0; = 37, 0)). We will use indices with bar, e.g. 7, when we want to emphasize that the index 7 is fixed and is
not summed over. The atomic level structure is depicted in figure 1(b). The |g) — |e) transition is coupled to
cavity mode a; (b,) with frequency w; (wp). The |s) — |e) transition is coupled using a strong transverse
classical light, whose direction of propagation is perpendicular to the plane of the cavity array and which has
Rabi frequency €2, carrier frequency wr and detuning A,.

The main reason for choosing a three level A system is that it allows, in the limit of large A, to adiabatically
eliminate the excited state |e) in order to avoid the losses due to the spontaneous emission and to obtain an
effective Hamiltonian in the ground state manifold subspace. This effective Hamiltonian features a high
tunability, see below. We now proceed with the derivation of the effective Hamiltonian. We discuss the issue of
cavity gain and loss later in section 3.

The system is described by the Hamiltonian (in the rotating wave approximation)

H=waja; + w,bb, + w, le)u (el + ws |s)i (sl
+ Qle)i (slive 1" + [s)iy (elie1?)
+ g(le)i (gliv(ai + b,) + h.c). 2.1

The excited state |e) can be adiabatically eliminated in the standard way, see appendix A for details. The resulting
effective Hamiltonian reads

H= A,-afai + Ayb,',"b,, + %afy + g(ai(a; + b)) + h.c) + F, (2.2)

where o are the usual Pauli matrices in the { |s), |g) } basis,

02 — g%(af + b)(a;i + by)

‘Da,zl/:As_
A,
s 82
8=-1x
Q% + g%(@al + b)(ar + by
F;yzl A — 8@ X sa ) (2.3)
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and A, = wy — Wauo X = 1, 7, eand Ay = w;, — (Waux — wr). Here, wyyy is an auxiliary frequency used in the
adiabatic elimination which, in principle, can be chosen arbitrarily. Its physical motivation and interpretation
will be discussed momentarily in section 3.1.

3. MF treatment of the nonlinear JC model

The effective Hamiltonian (2.2) is the starting point in this section, where we analyze the effect of cavityloss and
pump on the dynamics. Also, it can be seen from the form of the Hamiltonian and the expressions (2.3), that the
parameters are highly tunable through varying €2, A, and A,.

We first perform a MF analysis of a simpler system with only one cavity mode, which already contains rich
physics as we show below. We then turn back to the multi-mode two-dimensional setup in section 3.2.

3.1. Single cavity
Cavity without pump

Lets first consider the Hamiltonian (2.2) in the single cavity limit with the single mode 4, i.e. we drop the
indices iand v (see figure 1(c)). We rewrite the Hamiltonian as

H= (Azat + /\(fa)Zz + AphaTa +§(Eta + a'y), (3.1)
where 5% = ¢%* are the global spin operators and
2
Aat = As - Q_
A
2 2
APh:A_ £ =W = Waux — "
2A, 2A,
2
-_ & (3.2)
2A,

with wbeing the cavity frequency. Note that the model (3.1) without the A term is the usual JC model [32]. Below
we show, that the \ term is indeed at the origin of intriguing system dynamics (see also [33—40] for various other
nonlinear extensions of the JC model).

One can now derive the equation of motion for the operator o according to ¢ = —i[o, H], where H is given
by (3.1). At the same time, any realistic cavity is subject to a decay of the electromagnetic field into the
environment. The dissipation process is typically described by means of a master equation (see e.g. [41]), which
corresponds to an extra term in the equation of motion for the cavity mode operator, d < —xa, where x denotes
the cavity loss rate (see figure 1(a)). Introducing the expectation values of the operators
a = {(a), s = (X7), w = (¥#),itis now straightforward to derive the the MF equations of motion, which read

i = (w4 Ay — ik)a + gs, (3.3a)
is = (Ay + 2N a?)s — gwa, (3.3b)
iw = 28 (s*a — o). (3.3¢)

In the derivation we have used the MF decoupling (a'¥~) = o*w and (3?a) = wa. We have also neglected the
spin decay on the transition |g) — |s)’
First, we wish to find a steady state solution of the equations of motion (3.3). From (3.3a) and (3.3¢) we have

8

= —ms = Cs, (3.4)
s*a = affs. (3.5)

Substituting the equation (3.4) to (3.5) yields
Cls|> = C*|s|*. (3.6)

When Cis complex, which occurs only for non-zero cavity decay x = 0, the condition equation (3.6) can be
satisfied if s = 0 (and consequently o = 0), which results in a trivial solution with empty cavity and all spins

% Thisisa justified assumption in implementations with real atoms as the levels |g), |s) typically belong to some ground state manifold,
where only magnetic dipole transitions are allowed between the states of that manifold. In turn, the spin decay is negligible compared to the
cavity decay.
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down (up) in the steady state. This indicates that in order to obtain some non-trivial physics in the steady state
limit and to counteract the cavity losses, one needs to input energy into the system”. In our case a natural choice
is either through the pumping of the cavity mode or driving directly the |¢) — |s) transition. We focus here on
the former case only.

Cavity with pump
The cavity pump can be described by the Hamiltonian

Hpump = na’e ! + nagelr’. (3.7)
pump = T} n

When adding Hyymp to the system Hamiltonian (2.1), the explicit time dependence in the total Hamiltonian can
be removed if the auxiliary frequency w,,, in (2.3) is chosen such that it is the frequency of the cavity pump,
Waux = Wp. The MF equations of motion (3.3) then become

ap = —kag + (Aw + App)ag — %5}, +n

ar = —(Aw + App)ag — kag — %sx — MR

$e = =2gwar — (A + 2X\|af?)s,
§y = 2gwar + (A + 2\ |af?)s,
W = 2g (agrs, + ausy), (3.8)

where we have introduced real variables through o = ag + iy, s = 1/2(s, — is,) and = ny + ;.
Note that the equations (3.8) imply the conservation of the total spin

w? + 4]s]> = N2, (3.9)
where N is the total number of the spins. This can be easily verified as
DiS? = 0i(s] + 5; + wh) = Oy(4ss* + w?) =0, (3.10)

where we have parametrized the total spin as S = (Sx> Sy» W).

The set of equations (3.8) will serve as the starting point for most of the analysis in this section. Ultimately, we
are interested in the effect of the nonlinear term proportional to A\, which makes the system described by (3.1)
qualitatively different from the usual JC model. Due to the complexity of the problem, we start by studiyng a
simpler situation in section 3.1.1 by putting A = 0 (and as we will see also A,; = 0). Buildinguponthe A = 0
solution, we then analyze the A\ = 0and A, = 0 situations in sections 3.1.2 and 3.1.3 respectively.

3.1.1.X = Oregime

In order to investigate the steady state solutions, we first put A = 0 to further simplify the problem (see e.g.
[8,42, 43] for related studies of the phase diagram of the JC and Dicke models). We then turn back to the
situation with A = 0 in the next section. With these simplifications, the real equations for the steady state read

0 = —rag + Aphog — gsy + np (3.11a)
_ g

0= —Aphar — kop — ESX — g (3.11b)

0 = —2gwar — Aysy, (3.11¢)

0 = —2gwar + Ausy (3.11d)

0 = 2g (arsy + aisy). (3.11e)

Solving the set (3.11a) and (3.11b) for ag, g and substituting to (3.11¢)—(3.11¢) we obtain for the spin
conservation (3.9)
— 4§22’

w2 — N?= ,
gw? + ALK? + AphAg2g*w 4+ ApnAqy)

(3.12)

where n? = 172R + 1712. This is a 4th order polynomial for w and its solutions in terms of radicals can in principle
be found yielding rather complicated expressions, which are not of much practical use. Instead, we will analyze
the properties of (3.12) as follows. Since w/N € [—1, 1], thelhs of (3.12) is non-positive, namely

(w/N)?> — 1 € [—1, 0]. Atthe same time the nominator of the rhs is clearly non-positive, so that the non-

Note that this is in sharp contrast with the full Dicke Hamiltonian, where the presence of the counterrotating terms guarantees non-trivial
solutions even in the absence of the pumping [4, 8]. In the model we study, the absence of the counterrotating terms is a direct consequence
of applying the rotating wave approximation, as the cavity modes and the |g) — |e) transition are taken to be at optical frequencies.

4
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positivity of the rhs requires the quadratic polynomial in the denominator to be non-negative. We thus have
gw? + ALK+ Aph Ay (2g%w 4+ ApnAy) = 0. (3.13)
The roots of this polynomial read

=232 Aph Ay £ -4 ALK .10

284

wy =

It can be immediately seen that for x = 0,any A, = 0 would yield imaginary w. This however does not mean
that a solution of the original constraint (3.12) is not possible for both x, A, = 0. Rather, it means that the
point A,; = 0 has some particular properties which we will investigate further.

For A,; = 0, the steady state equations read

Kkar — Appar = —%sy + (3.15a)
Aphar + Kop = —%sx — g (3.15b)
0 = way, (3.15¢)

0 = wag, (3.15d)

QRSy = —Q1Sy. (3.15¢)

Equations (3.15¢) and (3.15d) imply eitherw = Oor ag = oy = 0.If agr = oy = 0, the equations can be readily
solved to yield

2
Sx—_ﬁ

g

2
Sy:@

g

2

w=1+ |12 (3.16)

gl
These solutions are valid only for § > 27 / N=g*

In the case where w = 0, we can use the spin conservation (3.9) to parametrize the spin as
sy = N cosf), s, = —N sin 6. (3.15¢) then becomes

L _ tang. (3.17)
QR

Next we can express ag, o from (3.15a4)and (3.15b) as

1
=——— [k(ENsinf + 2n) — AL (BN cosb + 2np)],
TR e RO T A et )
1
=— ———[Aw@Nsinb + 2n) + & (EN cosd + 2n)]. 3.18
oq T A§h+nz)[ ph(gN sin 7y + K(EN cos nr)] (3.18)

Substituting these expressions to (3.17) yields the condition for the angle # which determines the solution and
can be found numerically. In order to proceed further analytically, we put 77, = 0. The equation (3.17) can then
be cast in the form

z 4 Kkcost = Ay,sind (3.19)

or equivalently
(Kk* + A}z,h)cosze + 2Kz cosl + z2 — Af,h =0 (3.20)

with solutions

—2kz + \/4/<azzz — 4(z% — A;h)(mz + Af,h)

3.21
2(k* + A2 (3.21)

cosfy =

where z = KZN /(21)R). Assuming Ay, > 0, we plot the solutions (3.21) as a function of § in figure 2. When
tuning g, the non-negativity of the discriminant in (3.21) determines the maximal coupling gz* up to which the
real solutions (3.21) can be found. It reads
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Cos|6]

8N/2ng

Figure 2. Graphical representation of the solutions (3.21) with the blue (red) line corresponding to cos 6 (cos .. ) respectively. The
dashed lines serve as the guide for the eye. Parameters used: 7, = 0, App/ng = 0.5, K /n = 0.5 see text for details.

2’17 Ahz
o TR 2R 3.22
&= (3.22)

and corresponds to the value of ¢, where cos 6 = cos 6, , which can be seen as the rightmost point in figure 2.
Note, that the region ¢ € [g;",gz>l< Jadmits both solutions (3.16) and ((3.18) and (3.21)) indicating a bistable

behavior. In what follows we refer to the points g*, g as transition points.

Stability study

The stability analysis of the steady state solutions (3.16) and ((3.18) and (3.21)) is performed in a standard way by
linearizing (3.8) around the solutions, i.e. expressing the variablesas v = 7 + 6v, where 7 denotes the steady
state solution. Formally this yields the linearized equations of motion

&v = Mév + b, (3.23)

where év = (6ag, dau, 65y, 05, ow)T. Instability of the solutions is indicated by the positivity of the real part of
the maximum eigenvalue of M, see appendix B for details. It is noteworthy, that in any steady state solution we
have either w = 0 or &g = & = 0and consequently the characteristic polynomial of the matrix M becomes

M =yl = yp(y*), (3.24)

where p (y?) is some polynomial which is 4th order in y. We thus always have one eigenvalue y = 0, which is
simply the consequence of the spin conservation law (3.9). Examining numerically the negativity of real part of
the roots of p (y*) we identify stable and unstable solutions. These are depicted by solid and dashed lines
respectively in the steady state phase diagram figure 3, where we plot |a|? and w as functions of the coupling g.
The region II exhibits bistable behavior, whereas regions I and III admit only a single stable solution. We have
also verified, by numerically solving the dynamical equations (3.8), that they indeed evolve into the steady state
solutions (3.16), (3.18) and (3.21) (not shown).

A comment on the validity of the MF approach is in order. At first sight, the presence of bistable regions in
the MF solutions seems to be incompatible with the expected existence of a unique stationary state as it suggests
that there are two different states for a given value of the coupling g. However, such situation commonly occurs
in the MF treatment of many-body systems that feature a first order phase transition. It can be encountered, for
example, in the context of the classical van der Waals gas, described by a MF equation of state [44] or, more
recently, in the context of Rydberg gases, where optical bistability was observed in qualitative agreement with the
MF predictions [45].

In the next two sections we investigate how the inclusion of the non-zero atomic detuning A, and non-zero
coupling A terms modifies the A,y = A = 0 solution.

3.1.2. X = O regime
In order to shed light on the effect of the A term independently of the A, term, we keep A, = 0. From (3.8) the
steady state equations read

—kar + (Aph + Aw)ag = _gsy + 7 (3.25a)

(Aph + AW)ag + ko = —%sx — N> (3.25b)




10P Publishing

NewJ. Phys. 18 (2016) 053035 ] Minéf et al
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gN/2ng gN/2ng
Figure 3. Steady state phase diagram. I-III denote the regions of § < gl*, g < §g<gfandg > g respectively. Stable (unstable)
steady state solutions are indicated by solid (dashed) lines. (a) |a|* and (b) w as functions of the coupling g. Region I exhibits two
possible solutions corresponding to the two solutions of (3.18). Region IT exhibits the coexistence of the solutions (3.18) together with
the solution (3.16) indicating bistability. The line colors are used as eye guide to help to identify corresponding || and w solutions.
Parameter values used are 1, = 0, App/np = 0.5, £/ny = 0.5.

Mals, = —gway, (3.25¢)
Aaf?sy = gwag, (3.25d)
QRSy = —Qp8y. (3.25¢)

Finding the steady state solution encompasses solving a 6th order polynomial equation, which in general can
only be done numerically. Nevertheless, some information about the steady state solution can be obtained
analytically as we now describe.

Substituting sy, s, from (3.25¢) and (3.254) to the spin conservation (3.9), we get the following condition for
w

2 _ Xlaf? N2

= 3.26
)\2|a|2 + §2 ( )

Since X|a? /(X|a)* + §%) < 1, therelation (3.26) indicates, that there is no further instability (w? > N?2)when
changing ), i.e. there are also two transition points g*, g for A = 0.

Next, one can find solutions for asymptotic values of the parameter . Clearly, for A — 0, one should
recover the solutions of section 3.1.1. On the other hand, for A — o0, one canlook for solution by substituting a
perturbative expansion for all the variables of the form v = $-°° | X"v("). We provide the details of this
expansion in appendix C. In order to simplify the analytic expressions we take the imaginary part of the pump to
be zero, 1); = 0. Inthis case, to leading order in A, the solutions read o) = o{” = s}(,o) = Oand

O 2 g e 2 (3.27a)
g N
23°N?
ﬁgﬁb_l+g )mggﬁ. (3.27b)
~ 2 N
g U

Interestingly, since the spin conservation implies s < N, the two solutions (3.274) and (3.27h) yield the same
transition point g* = 27 / N.Thisisin contrast to the A = 0 case, where two distinct transition points gl*, gz*
were identified. Here, the solution (3.274) is valid for § > 27/N, whereas (3.27b) is valid for § < 2n/N. This
indicates that the transition point g2* approaches gl* as Aisincreased until they become identical in the A — oo
limit. In other words, the region II of the phase diagram figure 3 is shrinking to zero width as A is increased. For
the intermediate values of ), the values of g*, g can be found numerically (selecting only the physically
meaningful solutions of the 6th order polynomial, corresponding to the real values of w). We plot the shrinking
of the [g¥, ¢ region in figure 4(a).

In figure 5 we show the phase diagrams for |a|? and w for increasing values of \. It can be seen from
figures 5(a) and (b), that for some values of A, there is a region with no apparent stable solution. In nonlinear
systems, this is typically a signature of the appearance of limit cycles which occur through a Hopf bifurcation as
the system leaves the stable fixed point by changing the coupling g [46]. We represent a limit cycle
corresponding to the point A in figure 5(b) as the time evolution of the global spin in figure 6.

One can carry the analysis further in the large A limit and look for asymptotic solutions in the vicinity of the
unique transition point gl*. The first non-trivial contribution to v is of order X! and given by (see appendix C)

7
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Figure4.(a) A = 0 regime: the shaded area represents the shrinking of the [g¥, g region (denoted as region II, see also figure 3) with
increasing A. (b) A = 0 regime: the shaded area corresponds to the region of § exhibiting four solutions for a given § (denoted as
region R, see also figures 7(a) and (b)) as A, is increased. The critical value of A, at which the four simultaneous solutions cease to
exist is represented by the red circle.
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(3.28)

which is valid for § < gl* as the solution for § > 31* is trivial (&« = 0). The scaling of the spin observables, say w,
is simply obtained from the expansion of (3.27), which read
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Figure 6. (a) Limit cycle corresponding to A/n = 1.3and §N/2n = 0.75 (point A in figure 5(b)) represented by the evolution of the
spin on the Bloch sphere. Here the direction of time corresponds to the increasing opacity of the spin evolution line. (b) Evolution of w
as a function of time. In panel (a) we take the initial (final) time to be the same as in (b), i.e. Nfiniia = 0 and ngna = 50.

N - ~

w® = 4N /; JE-g& + o((g — gl*)%) for g > g (3.29a)
N = 3 -

w® = 4N aw/gl* - g+ O((gf’< — g)?) for § ggl*, (3.29b)

where the sign £ depends on the branch of w considered. Note that the scaling (§ — gl*)l/ 2is characteristic of

the Ising type model with Z, symmetry and gfk is the phase transition critical point. We compare the asymptotic
solutions (3.28) and (3.29) with the solutions obtained by numerically solving (3.25) in figures 5(e) and (f).

3.1.3.\ = Oregimewith Ay = 0

Our next aim is to explore the effect of the A, term on the solution in the absence of the nonlinear A term. In
this case, the structure of the solutions is dictated by the 4th order w polynomial (3.12) and it is straightforward
to obtain the solutions numerically. For small A, there is a range of §-values, which admits four solutions
(corresponding to four real solutions of (3.12)), figures 7(a) and (b). As A,; is increased, this region eventually
disappears leaving us with only two solutions for all values of §. The latter limit can be simply understood from
the MF equations (3.11). In the large A, limit, the leading contribution comes from (3.11¢) and (3.11d) with the
trivial solutions s, = s, = 0 implying w/N = % 1. The evolution of the solutions towards this large A, limit
can be seen rather clearly from figure 7(d). Next, we have determined numerically the size of the region of §
admitting four solutions as a function of A,;. This is shown in figure 4(b). Clearly, there is some maximal A,
after which there are only two possible solutions, as discussed. This limiting value is represented by the red circle
in figure 4(b). Note, that the inclusion of the A, term also lifts the transition point gl*, i.e. that all solutions are

smooth in the vicinity of gl*.

3.2. Multiple cavities
In this section we seek the generalization of the single cavity case to higher dimensional geometries. For
concreteness, we consider a 2D square geometry depicted schematically in figure 1(a).

Before diving in the details of the analysis, we motivate this section by asking whether a 2D square geometry
offers MF solutions which are qualitatively different from the 1D case studied above. For example, it was shown
in [47] in the context of laser driven and interacting Rydberg gases on a square lattice, that a homogeneous
system admits a MF solution that breaks the lattice symmetry and exhibits antiferromagnetic (AF) order.

We start our discussion by deriving the 2D MF equations, which follow from the operator equations of
motion (A.10) given by the Hamiltonian (2.2). Repeating the argument yielding (3.6) leads to the same
conclusion, namely that in the absence of the cavity pump the system posses only a trivial solution, where the
cavity modes are empty and all the spins are down (up). We first focus on the situation without the nonlinear
term, A = 0. In the following, we consider the cavity pump 7), the cavity decay  and the spin decay -y to be the
same for all cavity modes and all spins respectively (the motivation for adding the spin decay will become clear
shortly). We obtain the set of MF equations

ia7 = (Apy — ik + Awi)aq + g,si + 1+ AB, (wi, — D), (3.30a)

10, = (Apy — ik + Awip) By + §ysin + 1+ A (wip — 1), (3.300)
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5, = (Aat - i% + 2)\(04:5 + ﬁ;—’:)(ai + ﬁz‘/))sfﬁ - (g],az + gbﬂp)wm (3.30¢)

Wi = 2057507 + &0, — hel = iv(wi + ). (3.304)

Here, we allowed for the couplings § and the photon detunings A, to be different for rows and columns while
taking the remaining parameters to be the same for all cavities.

Clearly, the 2D system provides higher tunability by enlarging the parameter space. In the following, we
study the problem considering two different perspectives, namely a homogeneous and cluster-MF ansatz.

3.2.1. Square array with homogeneous MF

In order to further simplify the MF equations (3.30), it is reasonable to use the typical MF ansatz, namely that,
due to translational symmetry in either direction of the 2D array (along rows or columns), the corresponding
cavity fields are the same (a7 = o, 8, = Bforall i, ) as well as the spins, s;; = s, wi; = w. We can now
proceed along similar lines as in section 3.1.1 in order to characterize the solutions. In analogy to section 3.1.1 we

i

start with Ay = A = 0 and we neglect the spin decay for the moment, v = 0. Considering A}, = Af) and
f,h = Af,h forall 7, o to be the same along rows or columns, the steady state MF equations (3.30) simplify to
0= (A;h —ik)a + §,Ncs + n, (3.31a)
0= (AL, — iK)B + §Nrs + 1, (3.31b)
0=(@,a+g0w, (3.31¢)
0=s*@,a+g0n — hc (3.31d)

Here Ny (Nc) is the number of rows (columns) respectively. Since the fields 3 and « share the same spin s, 3 can
be given directly in terms of the field cv. The situation is then essentially equivalent to the single cavity case
analyzed in section 3.1, though with some extra tunability provided by larger number of parameters. For
example, one can find the transition point gl* by combining (3.31a)and (3.31b) with § o + §, 3 = 0, whichis
one possible solution of (3.31¢). The transition point then corresponds to the situation where w = 0, i.e.

JERE R (Afg, + Apnd)? + @, + &)W
b

. (3.32)
4 (AV87Ne + A%L8 NR)* + (§7Ne + §;Np)*?

One can then identify the critical value of e.g. ¢ for all other parameters fixed. As a consistency check, it is easy to
verify that one recovers the single cavity expression gl* = 2|n| / N by omitting all the ‘0’ variables and setting
Ny = land N; = N, the number of spins.

10
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3.2.2. Square array with cluster-MF

In the previous section, we have used the homogeneous MF ansatz and found that the solutions correspond
effectively to a single cavity case with no intriguing spin configurations. However, it is known and was shown e.g.
in [47], that a suitable MF ansatz can lead to a non-trivial configuration (such as antiferromagnetic ordering)
even if the steady state MF equations are completely symmetric under exchange of the spin variables. Here we
will consider the simplest possible case of such ansatz where a cluster is formed by two adjacent inequivalent
spins s, wy and s,, w,. On the other hand, since the fields «w and § couple to both s, and s, in the same way, we
take v, 3 to be the same along rows (columns) due to translational symmetry. In order to simplify the equations,
we now take all the parameters to be the same along all rows and columns (i.e. weset §, = ¢, = §and

Ai,h = Agh = Ay, forall i, D). Starting with the simplest case Ay, = A = 0, the MF equations (3.30) become

0= (A —in)a + g\/ﬁ

(51 + s2) + 7, (3.330)

&N

0= (Aph - 1“)6 + (s1 4 s2) + B (333h)
0= i%s; + g+ Bw;, (3.33¢)
0=2g[s¥(a+ 3 — hec] —iy(wj+ D), (3.33d)

where j = 1, 2labels the different spins of the cluster and we assumed that each field «, 3 couples to the same
number of spins 1 and 2, hence the factor 1/2 in the second term of (3.33a) and (3.330). Here N denotes the total
number of spins, i.e. there are /N spins along rows and along columns.

Until now we did not comment on the spin conservation in the 2D case. Going back to the most general
situation, where every individual spin and cavity mode is described in terms of the corresponding MF variables
siz» wip and g, (5 respectively, the system evolves according to the full set of the 2D MF equations (3.30). One
can verify by means of (3.10) that (3.30) actually imply both local

wh+4lsEP =1, Vi,p (3.34)

and global spin conservation
W2+ 4 |2 = N?, (3.35)

provided v = 0.In(3.35) W = w;, and X = s;, are the global spin components. One should appreciate that
(3.35) actually prevents any spin configuration incompatible with it, including the AF order (which corresponds
to w; = —w, when using the here considered cluster-MF). In order to see e.g. the AF order, such asin [47], one
needs to break the global spin conservation. This is achieved by the inclusion of the spin decay -y, which breaks
both the local and global spin conservations (3.34) and (3.35).

Allowing for the spin decay, we can now ask, whether the solution of the cluster-MF equation (3.33) features
any non-trivial spin configuration (w; = w,). First, it follows from (3.33a) and (3.33b) that « = 3. Next,
expressing for s; from (3.33¢) and substituting to (3.33d), it can be shown that

W1+1_W2+1

w1 w3

= W =W, (3.36)

and s; = s, from (3.33¢). Once again we find that the structure of the equations (3.33) reduces the problem
effectively to the single cavity situation described by a simple set of variables «, s, w and this even when allowing
for inequivalent spin configurations and the spin decay.

One might argue, that the equivalence to the single cavity case conjectured in sections 3.2.1 and 3.2.2 is an
artefact of taking A,y = A = 0. Indeed, when comparing (3.3) and (3.30), one can note that there is a qualitative
difference between the 1D and 2D situation. Specifically, there is an extra coupling between the a and b modes,
the last term in (3.30a) and (3.300). We have numerically verified that, in a general situation with variables
o B,s;, wi,j =1,2and g, = §,, Apy = AZh» A, = 0 = A, the solutions always yield s; = s, w; = w.
For completeness we have included in our numerical analysis also the special cases, where any possible
combination of the following conditions can occur: §, = g, Ap, = Agh, Ay =0,A=0.

In summary, the MF equations (3.30) with the ansatz considered in sections 3.2.1 and 3.2.2 on a square
lattice reduce to effectively one-dimensional description with no intriguing spin configurations. It would be
desirable to perform a beyond MF study of the nonlinear two-dimensional model in order to asses the true
nature of the steady state and the corresponding spin and field configurations, including their mutual
correlations. Also we did not fully exploit the possibilities offered by the proposed implementation, such as
taking different geometries of the array or allowing for disordered coupling strengths, which we leave for further
investigations.

11
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4. Conclusion

Motivated by the progress in integrated optical circuits, we have proposed a possible realization of a two-
dimensional cavity array with trapped atoms, which is a promising scalable quantum architecture. We derived
an effective description of the system in terms of JC like Hamiltonian with highly tunable parameters and extra
nonlinear terms. We then analyzed the dynamics of the system using a MF approach. We have found a rich
behavior including bistable regions, Ising like phase transition or occurrence of limit cycles through Hopf
bifurcations. In the present setup, we have not found conceptual differences between the one and two-
dimensional cases at the level of the MF description and with the geometry considered. We hope that the present
work lays down grounds for future studies of the cavity arrays realized with integrated optical circuits. The
problems which might be addressed in the future are e.g. going beyond MF description, accounting for more
exotic geometries or studying effective spin physics as a low energy limit of the presented cavity Hamiltonian.
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Appendix A. Adiabatic elimination

Here we derive the effective Hamiltonian resulting from the adiabatic elimination of the state |e) and starting
with the full system Hamiltonian given in (2.1), which we rewrite in the hard-core boson representation with
annihilation operators b, i, i = e, s, g for the atom at position 1
H= w,-afai + wy, b: b, + w, be-‘;iz/ he,iz/ + ws biiz/ bs)i,,
+ Qb beie 1 + b b e

+ g (b, beiv (@i + b,) + hec). (A1)

First, we determine the transformation to the rotating frame. We consider a general unitary transformation

U=elt (ia]ai+8,b5 b+, b1, beit €k, beiv) , (A.2)

where o, 3, 7, € are some arbitrary frequencies. The requirement of eliminating all explicit time dependencies
in equation (A.1) leads to the conditions

Yip = Wt + €ip
Qi = Yip
By = Yi- (A.3)

Note that in general, it is not possible to bring the levels |¢) and |s) to degeneracy for all atoms since
Wy + wr = wj = wy, cannot be satisfied for all i and 7 at the same time. On the other hand, one has a freedom in
the choice of frequencies & — €, provided the conditions (A.3) are satisfied. We adopt the following choice
Qi = ﬁﬁ = Vir = Waux
€ip = Waux — WT) (A.4)

where w,,y is an arbitrary auxiliary frequency. The Hamiltonian (2.1) then becomes

H=Aaja; + Ablb, + Aebgiybe,i,, + Asb;ybs,i,,
+ Q(be-tiubs,il/ + b_j;iybe,il/) + g(b:,iybg,iz/ (61,‘ + bz/) + h.C.), (AS)

where A, = wy — Wy X = 1, 7, eand A = w, — (Waux — wr). Thisleads to the equations of motion

ibe,ip = Debeiv + Qs iv + gb, 7, (a7 + by)
ibg.iy = gb, 7, (af + b))
ibi = Asbyip + Qbe s

ia; = Ara; + > b - beis

g1V

i

by = Apby + &> b 1 beins (A.6)

12



I0OP Publishing NewJ. Phys. 18 (2016) 053035 ] Minéf et al

where the summation over v and i in the last two equations is emphasized. Setting b, ;;, = 0 and substituting b, 7,
to the remaining equations yields

2
ibg,fﬂ = (_ i—)(aj + b;)(ﬂ,‘ + bz‘/)bg,;f/ + ( A )(ﬂ + b )bsn/

[4

. 02 g9
1bs,717 = Asbs,fp + (_Ke)bs,ffx + (_E)bgjp (ﬂf + bp)

l&l{ = Afﬂf + Z(_i_) gll/ gw(az + bl/) + ( A )bgwbsl—y

. g0
iby = Apby + Z(i_) 80 glV(a +bo) + ( A, )bg' i Usiv: (A7)

Switching back to the Pauli matrices representation, now in the { |s), |g) } basis, the effective Hamiltonian reads
H=Aaa; + Abb, + “2’” 0%, + g(ai(a; + b)) + h.c.) + Ey, (A.8)
where

0 — g2(a] + b)) (ai + by)

Wajip = As -
A,
. Q
oo 82
A,
02 + g%(af + b)) (a7 + by
Fpp = (A - g )@ A (A.9)
A,
The corresponding equations of motion for the operators read
ia; = (Al — ik + Ao%,)a; + §o7, + Ab, (0%, — D), (A.10a)
iby = ( ph — ik + Ao)by + 8o + Aai(0f, — 1), (A.10D)
io7, = [Aat - i% +2X @] + b)) (a7 + bl—,)]a;; — §(ai + by)od,, (A.10¢)
i67, = 28 [0% (a7 + by) — h.c] — iy (0%, + 1), (A.10d)
where
2
Au=A, - L
A
2
g
Aph - A] - ZA
2
g
A = — A.ll
A, (A.11)

and we have introduced the cavity and spin decays x, v which we take to be the same for all cavity modes and all
spins respectively.

Appendix B. General stability matrix

The matrix M used in the stability study, equation (3.23), can be simply obtained from the MF equations of
motion (3.8) and reads

[ Aph + A 0 -2 G |
—App — A K —g 0 “\ag
M= —4)\aRS, —2§W — 4\as, 0 —(Ag + 2)\aP) —28a; | (B.1)
—28W + 4GRSy AN S, Ay + 2MN&P) 0 —25aR
285, 245, 28a 2§aR 0 |

where |a> = d}% + c‘)qz and 7 are the steady state solutions, ¥ € {ag, 0y, 5 5, W}.
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Appendix C. Large A\ expansion

Here we seek a perturbative solution of the algebraic steady state equations (3.9) and (3.25) in the large A limit.
This can be done using a perturbative ansatz for the variables of the form

o0
v=>Y X" =904 XD 4 2@ 4 .. (C.1)
n=0

The set of equations of order A read
0w = 0
adw® =0
(@ + af”)s) =0
(@ + o) —o, ©2
which yield the solution for o) = a{”’ = 0. Using this result, order X’ equations simplify to

o 8+

off) = -, (C.3a)
5s© _ o
a1 _ gsy 771
a[ - 2W(0) > (C3b)
52 4 550)2 + w®2 = N2, (C.3¢)

In order to proceed, we realize that the equation (3.25¢) at order X! reads
ag)s}(,o) = —afVsO, (C4)

Substituting for ag), oV from (C.3a) and (C.3b), it can be cast to the form

(0)
S
y  _Th
—05 = (C.5)
Sx nR

In order to simplify the treatment further, we put 1; = 0 which implies 5}(,0) = 0 and by the sake of (C.3))
af! = 0. We will use these solutions in what follows.
Order X! equations, after the substitutions of the solutions o) = a{” = 0 read

0= —ray + (Apn + w)afV — %s}(,l) + aPw©, (C.6a)
0=—(Ap + wal) — kaf” — %s,(cl) — aPwO, (C.6b)
0 = ga{"w® + |a® s, (C.60)

0 =Za’w® — |aM 250, (C.6d)

0 = wOw® 4 sOsm 4 5}0)551). (C.6e)

When substituting the solutions for s}(,o) = oV = 0,(C.60)is trivial and the equations (C.6) simplify to

0=—kay — %s)(,” + aPw©, (C.7a)
0=—(Ap + way’ — %s}cl) — aPwO, (C.7b)
0 = gaPw® — o0 (C.7¢)

0 = wOw® 4 OO, (C.7d)

Substituting the solution for ag) from (C.3a) into (C.7¢) yields

@O 4 2mp) 28w @2 + (359 + 2n)sP1 =0 (C.8)
which has the solutions
RO ZT" ) (C.9a)
4
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2§°N?
O =it i1+ 2|, (C.9b)
b4 n
where 77 = 7 and we have used the spin conservation w®? + 52 = N2 Since|s{”| < N, the solution

(C.9a)isvalid for § > g;‘< = 2n / N. Next, we remark, that the function s{) (¢) is monotonously decreasing
with the limit

lim s.(§) = V2N > N, (C.10)
g—o0
i.e. is unphysical. We are thus left with the solution s{”’ (§) which is also monotonously decreasing function with
the asymptotes

lims” (§) =0
g—0

lim s () = —V2N. (C.11)

g—oo

Itis thus clear that the solution s{”’ is valid for g € [0, g*], where g* is some critical value for which s*) reaches
the physically allowed maximum [s{”’ | = N.Itis easy to find, that g* = g This completes the leading order
solutions and yields the expressions (3.274) and (3.27b).

The equations (C.2), (C.3) and (C.6) yield a closed set for spin variables up to the order X! and for v up to
X2 Itis straightforward to find the solutions up to the respective order explicitly, giving however rather lengthy
algebraic expressions. These can be simplified in specific situations. For example, as we discuss in the main text,
when looking for solutions in the vicinity of the transition point gf'< = 27 / N, the leading order contribution to
|f? is of order X2, namely

laf? = %agﬂ + o), (C.12)

which gives the relation (3.28). Similarly, the leading contribution to w is of order X yielding the
expressions (3.29).
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