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Abstract
Weanalyze in detail anopen cavity arrayusingmean-field description,where each cavityfield is coupled
to a number of three-level atoms. Such a system is highly tunable and can bedescribedby a Jaynes–
Cummings likeHamiltonianwith additional nonlinear terms. In the single cavity caseweprovide simple
analytic solutions and show, that the system features a bistable region. The extranonlinear termgives
rise to a richdynamical behavior including occurrenceof limit cycles throughHopf bifurcations. In the
limit of largenonlinearity, the systemexhibits an Ising like phase transition as the coupling between light
andmatter is varied.We thendiscuss how these results extend to the two-dimensional case.

1. Introduction

The use of cavityQED tools is nowubiquitous across different areas of physics ranging fromquantum
information [1, p 75] to detection of darkmatter [2]. Specifically, the atoms held in optical cavities play a vital
role in studies ofmany-body physics [3]. Such systems are natural implementations ofmany-body Jaynes–
Cummings (JC) orDickeHamiltonians [4]. Their high tunability and the possibility of achieving strong light
matter coupling or probing the dynamics in real timemake themvery attractive experimental platforms. The
prospect of probing phase transitions and the associated critical phenomenawith these platforms have been put
forward e.g. in [5–7] and the non-equilibriumdynamics of theDickemodel has been theoretically investigated
in [8]. Specificmany-body phenomena that can be studiedwith cavityQED include for example the physics of
spin glasses [9, 10], the emergence of gauge fields and the related quantumHall effect [11] or the self-
organization of the atomicmotion [12–14], to name a few. The self-organization has been subsequently
observed in the experiments [15, 16].

So far we havementioned only studies concerning a single cavity—generalizations tomultiple cavity arrays
implementing theHubbard physics have been reviewed in [17]. Although appealing in principle, the realization
ofmany efficiently coupled cavities, each hosting a discrete-level quantum system is a challenging task. Tomake
such experiment scalable requiresminiaturization of the cavities. One possibility is the use ofmicrocavities in
photonic crystals [18, 19]. A further option is to use integrated optical circuits, where in principle arbitrary
waveguide forms can be createdwith high precision by laser engraving in the silica substrate [20]. They have been
successfully used for the demonstration of a quantum gate operation [21], creation of classical and quantum
correlations [22, 23], multi-photon entangled state preparation [24], quantum randomwalk [25], discrete
Fourier transform [26] or Bloch oscillations [27].

While it has been demonstrated that cavities can be fabricated by creating the Bragg grating during the laser
writing process [28, 29], there is now an active experimental effort to combine thewaveguides with atomic
microtraps on a single device [30, 31].

Motivated by these developments and the prospects of studyingmany-body physics using integrated optical
circuits with trapped atoms, we theoretically analyze the non-equilibriumphysics of such system,whichwe take
to be a two-dimensional cavity array, where each cavity hosts a number of atoms.Wefirst derive the effective
Hamiltonian describing the system in section 2.Using thisHamiltonianwe findmean-field (MF) equations of
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motionwhose solutions feature rich dynamics, including bistable behavior, Ising like phase transition or the
occurrence of limit cycles, whichwe discuss in detail in section 3.We then conclude in section 4.

2. Themodel

Weconsider a two-dimensional array of identical three-level atoms each coupled to a horizontal cavitymode ai
and vertical cavitymode bνwith the same coupling constant g,figure 1(a). Fromhere onwe use latin and greek
indices to denote horizontal and vertical degrees of freedom respectively. In order to simplify the notation, we
omit the sum symbols and summation over occurrences of indices labeling the spatial position is understood
(i.e. º åo oj j j).Wewill use indices with bar, e.g. j̄ , whenwewant to emphasize that the index j̄ isfixed and is

not summed over. The atomic level structure is depicted infigure 1(b). The ∣ ∣ñ - ñg e transition is coupled to
cavitymode ¯ai ( n̄b )with frequency ¯wi ( ¯wn). The ∣ ∣ñ - ñs e transition is coupled using a strong transverse
classical light, whose direction of propagation is perpendicular to the plane of the cavity array andwhich has
Rabi frequencyΩ, carrier frequency wT and detuningDe.

Themain reason for choosing a three levelΛ system is that it allows, in the limit of largeDe, to adiabatically
eliminate the excited state ∣ ñe in order to avoid the losses due to the spontaneous emission and to obtain an
effectiveHamiltonian in the ground statemanifold subspace. This effectiveHamiltonian features a high
tunability, see below.Wenowproceedwith the derivation of the effectiveHamiltonian.We discuss the issue of
cavity gain and loss later in section 3.

The system is described by theHamiltonian (in the rotatingwave approximation)

∣ ∣ ∣ ∣
(∣ ∣ ∣ ∣ )
(∣ ∣ ( ) ) ( )

† †w w w w= + + ñ á + ñ á

+ W ñ á + ñ á
+ ñ á + +

n n n n n n n

n n
w

n n
w

n n n

-

H a a b b e e s s

e s s e

g e g a b

e e

h.c. . 2.1

i i i e i i s i i

i i
t

i i
t

i i i

i iT T

The excited state ∣ ñe can be adiabatically eliminated in the standardway, see appendix A for details. The resulting
effectiveHamiltonian reads

˜ ˜ ( ( ) ) ( )† † w
s s= D + D + + + + +n n n

n
n n n n

+H a a b b g a b F
2

h.c. , 2.2i i i
a i

i
z

i i i
,

whereσ are the usual Paulimatrices in the {∣ ∣ }ñ ñs g, basis,
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˜
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Figure 1. (a) Scheme of the envisioned experimental setup. The atoms are located at the intersections of the cavitymodes and are
represented by the small spheres. The classical lightfieldΩ is sketched by the shaded red area. (b)Atomic level scheme (only a single a
mode is shown, see text for details). (c) Special case of single cavitymode a.
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and w wD = -x x aux, ¯ n̄=x i e, , and ( )w w wD = - -s s aux T . Here, waux is an auxiliary frequency used in the
adiabatic eliminationwhich, in principle, can be chosen arbitrarily. Its physicalmotivation and interpretation
will be discussedmomentarily in section 3.1.

3.MF treatment of the nonlinear JCmodel

The effectiveHamiltonian (2.2) is the starting point in this section, wherewe analyze the effect of cavity loss and
pumpon the dynamics. Also, it can be seen from the formof theHamiltonian and the expressions (2.3), that the
parameters are highly tunable through varying W D, e andDs.

Wefirst perform aMF analysis of a simpler systemwith only one cavitymode, which already contains rich
physics as we showbelow.We then turn back to themulti-mode two-dimensional setup in section 3.2.

3.1. Single cavity
Cavity without pump

Lets first consider theHamiltonian (2.2) in the single cavity limit with the singlemode a, i.e. we drop the
indices i and ν (see figure 1(c)).We rewrite theHamiltonian as

˜ ( ) ( )† † †l=
D

+ S + D + S + S+ -⎜ ⎟⎛
⎝

⎞
⎠H a a a a g a a

2
, 3.1zat

ph

where sS = z
i
z, , are the global spin operators and

( )

w w

l

D = D -
W
D

D = D -
D

= - -
D

=-
D

g g

g

2 2

2
, 3.2

s
e

e e

e

at

2

ph

2

aux

2

2

withω being the cavity frequency. Note that themodel (3.1)without theλ term is the usual JCmodel [32]. Below
we show, that theλ term is indeed at the origin of intriguing systemdynamics (see also [33–40] for various other
nonlinear extensions of the JCmodel).

One can nowderive the equation ofmotion for the operator o according to ˙ [ ]= -o o Hi , , whereH is given
by (3.1). At the same time, any realistic cavity is subject to a decay of the electromagnetic field into the
environment. The dissipation process is typically described bymeans of amaster equation (see e.g. [41]), which
corresponds to an extra term in the equation ofmotion for the cavitymode operator, ˙ kµ -a a, whereκ denotes
the cavity loss rate (see figure 1(a)). Introducing the expectation values of the operators
a = á ñ = áS ñ = áS ñ-a s w, , z , it is now straightforward to derive the theMF equations ofmotion, which read

˙ ( ) ˜ ( )a l k a= + D - +w gs ai i , 3.3ph

˙ ( ∣ ∣ ) ˜ ( )l a a= D + -s s gw bi 2 , 3.3at
2

˙ ˜ ( ) ( )* *a a= -w g s s ci 2 . 3.3

In the derivationwe have used theMFdecoupling † *aá S ñ =-a w and aáS ñ =a wz .We have also neglected the
spin decay on the transition ∣ ∣ñ - ñg s 2

First, wewish tofind a steady state solution of the equations ofmotion (3.3). From (3.3a) and (3.3c)wehave

˜ ( )a
l k

= -
+ D -

º
g

w
s Cs

i
, 3.4

ph

( )* *a a=s s. 3.5

Substituting the equation (3.4) to (3.5) yields

∣ ∣ ∣ ∣ ( )*=C s C s . 3.62 2

WhenC is complex, which occurs only for non-zero cavity decay k ¹ 0, the condition equation (3.6) can be
satisfied if s=0 (and consequently a = 0), which results in a trivial solutionwith empty cavity and all spins

2
This is a justified assumption in implementationswith real atoms as the levels ∣ ∣ñ ñg s, typically belong to some ground statemanifold,

where onlymagnetic dipole transitions are allowed between the states of thatmanifold. In turn, the spin decay is negligible compared to the
cavity decay.
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down (up) in the steady state. This indicates that in order to obtain some non-trivial physics in the steady state
limit and to counteract the cavity losses, one needs to input energy into the system3. In our case a natural choice
is either through the pumping of the cavitymode or driving directly the ∣ ∣ñ - ñg s transition.We focus here on
the former case only.

Cavity with pump
The cavity pump can be described by theHamiltonian

( )† *h h= +w w-H a ae e . 3.7t t
pump

i ip p

When adding Hpump to the systemHamiltonian (2.1), the explicit time dependence in the totalHamiltonian can
be removed if the auxiliary frequency waux in (2.3) is chosen such that it is the frequency of the cavity pump,
w w= paux . TheMF equations ofmotion (3.3) then become

˙ ( ) ˜

˙ ( ) ˜

˙ ˜ ( ∣ ∣ )
˙ ˜ ( ∣ ∣ )
˙ ˜ ( ) ( )

a ka l a h

a l a ka h

a l a

a l a
a a

=- + + D - +

=- + D - - -

=- - D +

=- + D +
= +

w
g

s

w
g

s

s gw s

s gw s

w g s s

2

2
2 2

2 2

2 , 3.8

y

x

x y

y x

y x

R R ph I I

I ph R I R

I at
2

R at
2

R I

wherewe have introduced real variables through a a a= + iR I, ( )= -s s s1 2 ix y and h h h= + iR I.
Note that the equations (3.8) imply the conservation of the total spin

∣ ∣ ( )+ =w s N4 , 3.92 2 2

whereN is the total number of the spins. This can be easily verified as

( ) ( ) ( )*¶ = ¶ + + = ¶ + =S s s w ss w4 0, 3.10x yt
2

t
2 2 2

t
2

wherewe have parametrized the total spin as ( )

=S s s w, ,x y .

The set of equations (3.8)will serve as the starting point formost of the analysis in this section. Ultimately, we
are interested in the effect of the nonlinear termproportional toλ, whichmakes the systemdescribed by (3.1)
qualitatively different from the usual JCmodel. Due to the complexity of the problem,we start by studiyng a
simpler situation in section 3.1.1 by putting l = 0 (and aswewill see alsoD = 0at ). Building upon the l = 0
solution, we then analyze the l ¹ 0 andD ¹ 0at situations in sections 3.1.2 and 3.1.3 respectively.

3.1.1.λ=0 regime
In order to investigate the steady state solutions, we first put l = 0 to further simplify the problem (see e.g.
[8, 42, 43] for related studies of the phase diagramof the JC andDickemodels).We then turn back to the
situationwith l ¹ 0 in the next section.With these simplifications, the real equations for the steady state read

˜ ( )ka a h= - + D - +
g

s a0
2

, 3.11yR ph I I

˜ ( )a ka h= -D - - -
g

s b0
2

, 3.11xph R I R

˜ ( )a= - - Dgw s c0 2 , 3.11yI at

˜ ( )a= - + Dgw s d0 2 3.11xR at

˜ ( ) ( )a a= +g s s e0 2 . 3.11y xR I

Solving the set (3.11a) and (3.11b) for a a,R I and substituting to (3.11c)–(3.11e)we obtain for the spin
conservation (3.9)

˜
( )

( )h
k

- =
-

+ D + D D + D D
w N

g w

g w g w

4

2
, 3.122 2

2 2 2

4 2
at
2 2

ph at
2

ph at

where h h h= +2
R
2

I
2. This is a 4th order polynomial forw and its solutions in terms of radicals can in principle

be found yielding rather complicated expressions, which are not ofmuch practical use. Instead, wewill analyze
the properties of (3.12) as follows. Since [ ]Î -w N 1, 1 , the lhs of (3.12) is non-positive, namely
( ) [ ]- Î -w N 1 1, 02 . At the same time the nominator of the rhs is clearly non-positive, so that the non-

3
Note that this is in sharp contrast with the full DickeHamiltonian, where the presence of the counterrotating terms guarantees non-trivial

solutions even in the absence of the pumping [4, 8]. In themodel we study, the absence of the counterrotating terms is a direct consequence
of applying the rotatingwave approximation, as the cavitymodes and the ∣ ∣ñ - ñg e transition are taken to be at optical frequencies.
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positivity of the rhs requires the quadratic polynomial in the denominator to be non-negative.We thus have

( ) ( )k+ D + D D + D Dg w g w2 0. 3.134 2
at
2 2

ph at
2

ph at

The roots of this polynomial read

˜ ˜
˜

( )
k

=
- D D  - D

w
g g

g

2 4

2
. 3.14

2
ph at

4
at
2 2

4

It can be immediately seen that for k ¹ 0, anyD ¹ 0at would yield imaginaryw. This however does notmean
that a solution of the original constraint (3.12) is not possible for both k D ¹, 0at . Rather, itmeans that the
pointD = 0at has some particular properties whichwewill investigate further.

ForD = 0at , the steady state equations read

˜ ( )ka a h- D = - +
g

s a
2

, 3.15yR ph I I

˜ ( )a ka hD + = - -
g

s b
2

, 3.15xph R I R

( )a= w c0 , 3.15I

( )a= w d0 , 3.15R

( )a a= -s s e. 3.15y xR I

Equations (3.15c) and (3.15d) imply eitherw=0 or a a= = 0R I . If a a= = 0R I , the equations can be readily
solved to yield

˜

˜

˜
( )

h

h

h

=-

=

=  -

s
g

s
g

w
g

2

2

1
4

. 3.16

x

y

R

I

2

2

These solutions are valid only for ˜ * h ºg N g2
1 .

In the case wherew=0, we can use the spin conservation (3.9) to parametrize the spin as
q q= = -s N s Ncos , sinx y . (3.15e) then becomes

( )a
a

q= tan . 3.17I

R

Nextwe can express a a,R I from (3.15a) and (3.15b) as

( )
[ ( ˜ ) ( ˜ )]

( )
[ ( ˜ ) ( ˜ )] ( )

a
k

k q h q h

a
k

q h k q h

=
D +

+ - D +

=-
D +

D + + +

gN gN

gN gN

1

2
sin 2 cos 2 ,

1

2
sin 2 cos 2 . 3.18

R
ph
2 2 I ph R

I
ph
2 2 ph I R

Substituting these expressions to (3.17) yields the condition for the angle θwhich determines the solution and
can be found numerically. In order to proceed further analytically, we put h = 0I . The equation (3.17) can then
be cast in the form

( )k q q+ = Dz cos sin 3.19ph

or equivalently

( ) ( )k q k q+ D + + - D =z zcos 2 cos 0 3.202
ph
2 2 2

ph
2

with solutions

( )( )

( )
( )q

k k k

k
=

-  - - D + D

+ D


z z z
cos

2 4 4

2
, 3.21

2 2 2
ph
2 2

ph
2

2
ph
2

where ˜ ( )k h=z gN 2 R . AssumingD > 0ph , we plot the solutions (3.21) as a function of g̃ infigure 2.When
tuning g̃ , the non-negativity of the discriminant in (3.21) determines themaximal coupling *g

2
up towhich the

real solutions (3.21) can be found. It reads
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( )*
h

k
= +

D⎛
⎝⎜

⎞
⎠⎟g

N

2
1 3.22

2
R ph

2

and corresponds to the value of g̃ , where q q=- +cos cos , which can be seen as the rightmost point infigure 2.
Note, that the region ˜ [ ]* *Îg g g,

1 2
admits both solutions (3.16) and ((3.18) and (3.21)) indicating a bistable

behavior. Inwhat followswe refer to the points * *g g,
1 2

as transition points.

Stability study
The stability analysis of the steady state solutions (3.16) and ((3.18) and (3.21)) is performed in a standardway by
linearizing (3.8) around the solutions, i.e. expressing the variables as ¯ d= +v v v, where v̄ denotes the steady
state solution. Formally this yields the linearized equations ofmotion

˙ ( )d d= +v M v b, 3.23

where ( )d da da d d d=v s s w, , , ,x yR I
T. Instability of the solutions is indicated by the positivity of the real part of

themaximumeigenvalue ofM, see appendix B for details. It is noteworthy, that in any steady state solutionwe
have either ¯ =w 0 or ¯ ¯a a= = 0R I and consequently the characteristic polynomial of thematrixM becomes

∣ ∣ ( ) ( )- =M y yp y , 3.244

where ( )p y4 is some polynomial which is 4th order in y.We thus always have one eigenvalue y=0, which is
simply the consequence of the spin conservation law (3.9). Examining numerically the negativity of real part of
the roots of ( )p y4 we identify stable and unstable solutions. These are depicted by solid and dashed lines
respectively in the steady state phase diagram figure 3, wherewe plot ∣ ∣a 2 andw as functions of the coupling g̃ .
The region II exhibits bistable behavior, whereas regions I and III admit only a single stable solution.We have
also verified, by numerically solving the dynamical equations (3.8), that they indeed evolve into the steady state
solutions (3.16), (3.18) and (3.21) (not shown).

A comment on the validity of theMF approach is in order. Atfirst sight, the presence of bistable regions in
theMF solutions seems to be incompatible with the expected existence of a unique stationary state as it suggests
that there are two different states for a given value of the coupling g̃ . However, such situation commonly occurs
in theMF treatment ofmany-body systems that feature afirst order phase transition. It can be encountered, for
example, in the context of the classical van derWaals gas, described by aMF equation of state [44] or,more
recently, in the context of Rydberg gases, where optical bistability was observed in qualitative agreementwith the
MFpredictions [45].

In the next two sections we investigate how the inclusion of the non-zero atomic detuningDat and non-zero
couplingλ termsmodifies the lD = = 0at solution.

3.1.2. l ¹ 0 regime
In order to shed light on the effect of theλ term independently of theDat term,we keepD = 0at . From (3.8) the
steady state equations read

( ) ˜ ( )ka l a h- + D + = - +w
g

s a
2

, 3.25yR ph I I

( ) ˜ ( )l a ka hD + + = - -w
g

s b
2

, 3.25xph R I R

Figure 2.Graphical representation of the solutions (3.21)with the blue (red) line corresponding to q-cos ( q+cos ) respectively. The
dashed lines serve as the guide for the eye. Parameters used: h h k h= D = =0, 0.5, 0.5I ph R R see text for details.
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∣ ∣ ˜ ( )l a a= -s gw c, 3.25y
2

I

∣ ∣ ˜ ( )l a a=s gw d, 3.25x
2

R

( )a a= -s s e. 3.25y xR I

Finding the steady state solution encompasses solving a 6th order polynomial equation, which in general can
only be done numerically. Nevertheless, some information about the steady state solution can be obtained
analytically as we nowdescribe.

Substituting s s,x y from (3.25c) and (3.25d) to the spin conservation (3.9), we get the following condition for
w

∣ ∣
∣ ∣ ˜

( )l a
l a

=
+

w
g

N . 3.262
2 2

2 2 2
2

Since ∣ ∣ ( ∣ ∣ ˜ ) l a l a + g 12 2 2 2 2 , the relation (3.26) indicates, that there is no further instability ( >w N2 2)when
changingλ, i.e. there are also two transition points * *g g,

1 2
for l ¹ 0.

Next, one can find solutions for asymptotic values of the parameterλ. Clearly, for l  0, one should
recover the solutions of section 3.1.1. On the other hand, for l  ¥, one can look for solution by substituting a
perturbative expansion for all the variables of the form ( )l= å =

¥ -v vn
n n

0 .We provide the details of this
expansion in appendix C. In order to simplify the analytic expressionswe take the imaginary part of the pump to
be zero, h = 0I . In this case, to leading order inλ, the solutions read ( ) ( ) ( )a a= = =s 0yR

0
I
0 0 and

˜
˜ ( )( ) h h

= -s
g

g
N

a
2

for
2

, 3.27x
0

˜
˜ ˜ ( )( ) h
h

h
= - +

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟s

g

g N
g

N
b1 1

2
for

2
. 3.27x

0
2 2

2

Interestingly, since the spin conservation implies ∣ ∣( ) s Nx
0 , the two solutions (3.27a) and (3.27b) yield the same

transition point * h=g N2
1

. This is in contrast to the l = 0 case, where two distinct transition points * *g g,
1 2

were identified.Here, the solution (3.27a) is valid for ˜  hg N2 , whereas (3.27b) is valid for ˜  hg N2 . This
indicates that the transition point *g

2
approaches *g

1
asλ is increased until they become identical in the l  ¥

limit. In other words, the region II of the phase diagram figure 3 is shrinking to zerowidth asλ is increased. For
the intermediate values ofλ, the values of * *g g,

1 2
can be found numerically (selecting only the physically

meaningful solutions of the 6th order polynomial, corresponding to the real values ofw).We plot the shrinking
of the [ ]* *g g,

1 2
region infigure 4(a).

Infigure 5we show the phase diagrams for ∣ ∣a 2 andw for increasing values ofλ. It can be seen from
figures 5(a) and (b), that for some values ofλ, there is a regionwith no apparent stable solution. In nonlinear
systems, this is typically a signature of the appearance of limit cycles which occur through aHopf bifurcation as
the system leaves the stable fixed point by changing the coupling g̃ [46].We represent a limit cycle
corresponding to the point A infigure 5(b) as the time evolution of the global spin infigure 6.

One can carry the analysis further in the largeλ limit and look for asymptotic solutions in the vicinity of the
unique transition point *g

1
. Thefirst non-trivial contribution toα is of order l-1 and given by (see appendix C)

Figure 3. Steady state phase diagram. I–III denote the regions of ˜ *<g g1
, ˜* * g g g1 2

and ˜ *>g g2
respectively. Stable (unstable)

steady state solutions are indicated by solid (dashed) lines. (a) ∣ ∣a 2 and (b)w as functions of the coupling g̃ . Region I exhibits two
possible solutions corresponding to the two solutions of (3.18). Region II exhibits the coexistence of the solutions (3.18) together with
the solution (3.16) indicating bistability. The line colors are used as eye guide to help to identify corresponding ∣ ∣a 2 andw solutions.
Parameter values used are h h k h= D = =0, 0.5, 0.5I ph R R .

7

New J. Phys. 18 (2016) 053035 JMinár ̌ et al



∣ ∣ ( ˜) ˜ (( ˜) ) ( )* *a
l

h
= - + + -⎜ ⎟⎛

⎝
⎞
⎠g g

N
g O g g

1 1

27

10
13 , 3.282

2 1 1

3
2

which is valid for ˜ *g g
1
as the solution for ˜ *>g g

1
is trivial (a = 0). The scaling of the spin observables, sayw,

is simply obtained from the expansion of (3.27), which read

Figure 4. (a) l ¹ 0 regime: the shaded area represents the shrinking of the [ ]* *g g,1 2 region (denoted as region II, see alsofigure 3)with
increasingλ. (b) l = 0 regime: the shaded area corresponds to the region of g̃ exhibiting four solutions for a given g̃ (denoted as
region R, see alsofigures 7(a) and (b)) asDat is increased. The critical value ofDat at which the four simultaneous solutions cease to
exist is represented by the red circle.

Figure 5.The cavity field ∣ ∣a 2 and the expectation valuew of the spin as functions of the coupling strength g̃ for various values of the
nonlinearityλ: l h = 1.3 in (a) and (b) and l h = 100 in (c) and (d). Stable (unstable) solutions are shown as solid (dashed) lines.
Panels (e) and (f) show amagnification of the data shown in (c) and (d) in the vicinity of the critical point *g1 . The dashed dotted lines
represent the analytic scaling solutions (3.28) and (3.29) respectively. In all plots the line colors are used as eye guide to help to identify
the corresponding ∣ ∣a 2 andw solutions. In panel (b), the point A denotes the solution corresponding to the limit cycle, see text and
figure 6 formore details.
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( )˜ ( ˜ ) ˜ ( )( ) * * *
h

=  - + -w N
N

g g O g g g g afor , 3.290
1 1 1

3
2

( )˜ ( ˜) ˜ ( )( ) * * *
h

=  - + -w N
N

g g O g g g g b
3

for , 3.290
1 1 1

3
2

where the sign±depends on the branch ofw considered. Note that the scaling ( ˜ )*-g g
1

1 2 is characteristic of

the Ising typemodel with 2 symmetry and *g
1
is the phase transition critical point.We compare the asymptotic

solutions (3.28) and (3.29)with the solutions obtained by numerically solving (3.25) infigures 5(e) and (f).

3.1.3.λ=0 regimewithD ¹ 0at

Our next aim is to explore the effect of theDat termon the solution in the absence of the nonlinearλ term. In
this case, the structure of the solutions is dictated by the 4th orderw polynomial (3.12) and it is straightforward
to obtain the solutions numerically. For smallDat, there is a range of g̃ -values, which admits four solutions
(corresponding to four real solutions of (3.12)),figures 7(a) and (b). AsDat is increased, this region eventually
disappears leaving uswith only two solutions for all values of g̃ . The latter limit can be simply understood from
theMF equations (3.11). In the largeDat limit, the leading contribution comes from (3.11c) and (3.11d)with the
trivial solutions = =s s 0x y implying = w N 1. The evolution of the solutions towards this largeDat limit
can be seen rather clearly fromfigure 7(d). Next, we have determined numerically the size of the region of g̃
admitting four solutions as a function ofDat. This is shown infigure 4(b). Clearly, there is somemaximalDat

after which there are only two possible solutions, as discussed. This limiting value is represented by the red circle
infigure 4(b). Note, that the inclusion of theDat term also lifts the transition point *g1 , i.e. that all solutions are

smooth in the vicinity of *g1 .

3.2.Multiple cavities
In this sectionwe seek the generalization of the single cavity case to higher dimensional geometries. For
concreteness, we consider a 2D square geometry depicted schematically infigure 1(a).

Before diving in the details of the analysis, wemotivate this section by askingwhether a 2D square geometry
offersMF solutionswhich are qualitatively different from the 1D case studied above. For example, it was shown
in [47] in the context of laser driven and interacting Rydberg gases on a square lattice, that a homogeneous
system admits aMF solution that breaks the lattice symmetry and exhibits antiferromagnetic (AF) order.

We start our discussion by deriving the 2DMF equations, which follow from the operator equations of
motion (A.10) given by theHamiltonian (2.2). Repeating the argument yielding (3.6) leads to the same
conclusion, namely that in the absence of the cavity pump the systemposses only a trivial solution, where the
cavitymodes are empty and all the spins are down (up).Wefirst focus on the situationwithout the nonlinear
term, l = 0. In the following, we consider the cavity pump η, the cavity decayκ and the spin decay γ to be the
same for all cavitymodes and all spins respectively (themotivation for adding the spin decaywill become clear
shortly).We obtain the set ofMF equations

˙ ( ) ˜ ( ) ( )¯
¯

¯ ¯ ¯ ¯a k l a h lb= D - + + + + -n n n n w g s w ai i , 3.30i
i

i i a i iph

˙ ( ) ˜ ( ) ( )¯
¯

¯ ¯ ¯ ¯b k l b h la= D - + + + + -n
n

n n n n w g s w bi i , 3.30i b i i iph

Figure 6. (a) Limit cycle corresponding to l h = 1.3 and ˜ h =gN 2 0.75 (point A infigure 5(b)) represented by the evolution of the
spin on the Bloch sphere.Here the direction of time corresponds to the increasing opacity of the spin evolution line. (b)Evolution ofw
as a function of time. In panel (a)we take the initial (final) time to be the same as in (b), i.e. h =t 0initial and h =t 50final .
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˙ ( )( ) ( ˜ ˜ ) ( )¯¯ ¯ ¯ ¯ ¯ ¯¯ ¯ ¯ ¯¯* *g
l a b a b a b= D - + + + - +n n n n n n⎜ ⎟⎛

⎝
⎞
⎠s s g g w ci i

2
2 , 3.30i i i i a i b iat

˙ [ ( ˜ ˜ ) ] ( ) ( )¯¯ ¯¯ ¯ ¯ ¯¯* a b g= + - - +n n n n w s g g w di 2 h.c. i . 3.30i i a i b i

Here, we allowed for the couplings g̃ and the photon detuningsDph to be different for rows and columnswhile
taking the remaining parameters to be the same for all cavities.

Clearly, the 2D systemprovides higher tunability by enlarging the parameter space. In the following, we
study the problem considering two different perspectives, namely a homogeneous and cluster-MF ansatz.

3.2.1. Square array with homogeneousMF
In order to further simplify theMF equations (3.30), it is reasonable to use the typicalMF ansatz, namely that,
due to translational symmetry in either direction of the 2D array (along rows or columns), the corresponding
cavity fields are the same ( ¯a a=i , ¯b b=n for all ¯ n̄i , ) aswell as the spins, ¯¯ ¯¯= =n ns s w w,i i .We can now
proceed along similar lines as in section 3.1.1 in order to characterize the solutions. In analogy to section 3.1.1we
start with lD = = 0at andwe neglect the spin decay for themoment, g = 0. Considering

¯D º Di a
ph ph and

¯D º Dn b
ph ph for all ¯ n̄i , to be the same along rows or columns, the steady stateMF equations (3.30) simplify to

( ) ˜ ( )k a h= D - + +g N s a0 i , 3.31a
aph C

( ) ˜ ( )k b h= D - + +g N s b0 i , 3.31b
bph R

( ˜ ˜ ) ( )a b= +g g w c0 , 3.31a b

( ˜ ˜ ) ( )* a b= + -s g g d0 h.c. 3.31a b

HereNR (NC) is the number of rows (columns) respectively. Since the fieldsβ andα share the same spin s,β can
be given directly in terms of the fieldα. The situation is then essentially equivalent to the single cavity case
analyzed in section 3.1, thoughwith some extra tunability provided by larger number of parameters. For
example, one can find the transition point *g1 by combining (3.31a) and (3.31b)with ˜ ˜a b+ =g g 0a b , which is
one possible solution of (3.31c). The transition point then corresponds to the situationwherew=0, i.e.

∣ ∣ ∣ ∣
( ˜ ˜ ) ( ˜ ˜ )

( ˜ ˜ ) ( ˜ ˜ )
( )h

k

k
= =

D + D + +

D + D + +
s

g g g g

g N g N g N g N

1

4
. 3.32

b
a

a
b a b

b
a

a
b a b

2 2 ph ph
2 2 2

ph
2

C ph
2

R
2 2

C
2

R
2 2

One can then identify the critical value of e.g. g̃a for all other parameters fixed. As a consistency check, it is easy to
verify that one recovers the single cavity expression ∣ ∣* h=g N2

1
by omitting all the ‘b’ variables and setting

NR=1 and =N NC , the number of spins.

Figure 7. ∣ ∣a 2 andw for hD = 0.5at (a) and (b) and hD = 3.9at (c) and (d). R in (a) and (b) denotes a region exhibiting four distinct
solutions. Stable (unstable) solutions are shown as solid (dashed) lines. The line colors are used as eye guide to help to identify the
corresponding ∣ ∣a 2 andw solutions. Parameter values used are h h k h= D = =0, 0.5, 0.5I ph R R .
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3.2.2. Square array with cluster-MF
In the previous section, we have used the homogeneousMF ansatz and found that the solutions correspond
effectively to a single cavity case with no intriguing spin configurations.However, it is known andwas shown e.g.
in [47], that a suitableMF ansatz can lead to a non-trivial configuration (such as antiferromagnetic ordering)
even if the steady stateMF equations are completely symmetric under exchange of the spin variables. Herewe
will consider the simplest possible case of such ansatz where a cluster is formed by two adjacent inequivalent
spins s w,1 1 and s w,2 2. On the other hand, since the fieldsα andβ couple to both s1 and s2 in the sameway, we
take a b, to be the same along rows (columns) due to translational symmetry. In order to simplify the equations,
we now take all the parameters to be the same along all rows and columns (i.e. we set ˜ ˜ ˜= =g g ga b and

¯ ¯D = D = Dni
ph ph ph for all ¯ n̄i , ). Startingwith the simplest case lD = = 0at , theMF equations (3.30) become

( ) ˜ ( ) ( )k a h= D - + + +
g N

s s a0 i
2

, 3.33ph 1 2

( ) ˜ ( ) ( )k b h= D - + + +
g N

s s b0 i
2

, 3.33ph 1 2

˜ ( ) ( )¯ ¯
g

a b= + +s g w c0 i
2

, 3.33j j

˜ [ ( ) ] ( ) ( )¯ ¯* a b g= + - - + g s w d0 2 h.c. i , 3.33j j

where ¯ =j 1, 2 labels the different spins of the cluster andwe assumed that eachfield a b, couples to the same
number of spins 1 and 2, hence the factor 1/2 in the second termof (3.33a) and (3.33b). HereN denotes the total
number of spins, i.e. there are N spins along rows and along columns.

Until nowwe did not comment on the spin conservation in the 2D case. Going back to themost general
situation, where every individual spin and cavitymode is described in terms of the correspondingMF variables

¯¯ ¯¯n ns w,i i and ¯ ¯a bn,i respectively, the system evolves according to the full set of the 2DMF equations (3.30). One
can verify bymeans of (3.10) that (3.30) actually imply both local

∣ ∣ ¯ ¯ ( )¯¯ ¯¯ n+ = "n nw s i4 1, , 3.34i i
2 2 2

and global spin conservation

∣ ∣ ( )+ S =W N4 , 3.352 2 2

provided g = 0. In (3.35) = nW wi andS = nsi are the global spin components. One should appreciate that
(3.35) actually prevents any spin configuration incompatible with it, including the AF order (which corresponds
to = -w w1 2 whenusing the here considered cluster-MF). In order to see e.g. the AF order, such as in [47], one
needs to break the global spin conservation. This is achieved by the inclusion of the spin decay γ, which breaks
both the local and global spin conservations (3.34) and (3.35).

Allowing for the spin decay, we can now ask, whether the solution of the cluster-MF equation (3.33) features
any non-trivial spin configuration ( ¹w w1 2). First, it follows from (3.33a) and (3.33b) that a b= . Next,
expressing for ¯s j from (3.33c) and substituting to (3.33d), it can be shown that

( )+
=

+
 =

w

w

w

w
w w

1 1
3.361

1

2

2
1 2

and =s s1 2 from (3.33c). Once againwe find that the structure of the equations (3.33) reduces the problem
effectively to the single cavity situation described by a simple set of variables a s w, , and this evenwhen allowing
for inequivalent spin configurations and the spin decay.

Onemight argue, that the equivalence to the single cavity case conjectured in sections 3.2.1 and 3.2.2 is an
artefact of taking lD = = 0at . Indeed, when comparing (3.3) and (3.30), one can note that there is a qualitative
difference between the 1D and 2D situation. Specifically, there is an extra coupling between the a and bmodes,
the last term in (3.30a) and (3.30b).We have numerically verified that, in a general situationwith variables

¯ ¯a b s w, , ,j j , ¯ =j 1, 2 and ˜ ˜¹g ga b,D ¹ Da b
ph ph, lD ¹ ¹0at , the solutions always yield = =s s w w,1 2 1 2.

For completeness we have included in our numerical analysis also the special cases, where any possible
combination of the following conditions can occur: ˜ ˜=g ga b,D = Da b

ph ph,D = 0at , l = 0.
In summary, theMF equations (3.30)with the ansatz considered in sections 3.2.1 and 3.2.2 on a square

lattice reduce to effectively one-dimensional descriptionwith no intriguing spin configurations. It would be
desirable to perform a beyondMF study of the nonlinear two-dimensionalmodel in order to asses the true
nature of the steady state and the corresponding spin and field configurations, including theirmutual
correlations. Alsowe did not fully exploit the possibilities offered by the proposed implementation, such as
taking different geometries of the array or allowing for disordered coupling strengths, whichwe leave for further
investigations.
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4. Conclusion

Motivated by the progress in integrated optical circuits, we have proposed a possible realization of a two-
dimensional cavity arraywith trapped atoms, which is a promising scalable quantumarchitecture.We derived
an effective description of the system in terms of JC likeHamiltonianwith highly tunable parameters and extra
nonlinear terms.We then analyzed the dynamics of the systemusing aMF approach.We have found a rich
behavior including bistable regions, Ising like phase transition or occurrence of limit cycles throughHopf
bifurcations. In the present setup, we have not found conceptual differences between the one and two-
dimensional cases at the level of theMFdescription andwith the geometry considered.We hope that the present
work lays down grounds for future studies of the cavity arrays realizedwith integrated optical circuits. The
problemswhichmight be addressed in the future are e.g. going beyondMFdescription, accounting formore
exotic geometries or studying effective spin physics as a low energy limit of the presented cavityHamiltonian.
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AppendixA. Adiabatic elimination

Herewe derive the effectiveHamiltonian resulting from the adiabatic elimination of the state ∣ ñe and starting
with the full systemHamiltonian given in (2.1), whichwe rewrite in the hard-core boson representationwith
annihilation operators ¯¯m nb i, , m = e s g, , for the atomat position ¯n̄i

( )

( ( ) ) ( )

† † † †

† †

†

w w w w= + + +

+ W +

+ + +

n n n n n n n

n n
w

n n
w

n n n

-

H a a b b b b b b

b b b b

g b b a b

e e

h.c. . A.1

i i i e e i e i s s i s i

e i s i
t

s i e i
t

e i g i i

, , , ,

, ,
i

, ,
i

, ,

T T

First, we determine the transformation to the rotating frame.We consider a general unitary transformation

( )( )† † † †= a b g- + + +n n n n n n n n nU e , A.2t a a b b b b b bi i i i i e i e i i s i s i, , , ,

where a b g, , , are some arbitrary frequencies. The requirement of eliminating all explicit time dependencies
in equation (A.1) leads to the conditions

( )

¯¯ ¯¯
¯ ¯¯

¯ ¯¯

g w
a g
b g

= +
=
=

n n

n

n n. A.3

i i

i i

i

T

Note that in general, it is not possible to bring the levels ∣ ñg and ∣ ñs to degeneracy for all atoms since
¯ ¯w w w w+ = = ns iT cannot be satisfied for all ī and n̄ at the same time.On the other hand, one has a freedom in

the choice of frequencies a - , provided the conditions (A.3) are satisfied.We adopt the following choice

( )
¯ ¯ ¯¯

¯¯
a b g w

w w
= = =
= -

n n

n , A.4
i i

i

aux

aux T

where waux is an arbitrary auxiliary frequency. TheHamiltonian (2.1) then becomes

( ) ( ( ) ) ( )

† † † †

† † †

= D + D + D + D

+ W + + + +

n n n n n n n

n n n n n n n

H a a b b b b b b

b b b b g b b a b h.c. , A.5

i i i e e i e i s s i s i

e i s i s i e i e i g i i

, , , ,

, , , , , ,

where w wD = -x x aux, ¯ n̄=x i e, , and ( )w w wD = - -s s aux T . This leads to the equations ofmotion

( )

˙ ( )
˙ ( )
˙

˙

˙

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

¯ ¯ ¯ ¯ ¯
†

¯
†

¯ ¯ ¯ ¯ ¯ ¯

¯ ¯ ¯ ¯
† ¯

¯ ¯ ¯ ¯
†

¯

å

å

= D + W + +

= +

= D + W

= D +

= D +

n n n n n

n n n

n n n

n
n n

n n n n n A.6

b b b gb a b

b gb a b

b b b

a a g b b

b b g b b

i

i

i

i

i ,

e i e e i s i g i i

g i e i i

s i s s i e i

i i i g i e i

i
g i e i

, , , ,

, ,

, , ,

, ,

, ,
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where the summation over ν and i in the last two equations is emphasized. Setting ˙ ¯¯ =nb 0e i, and substituting ˙ ¯n̄be i,

to the remaining equations yields

˙ ( )( ) ( )

˙ ( )

˙ ( )

˙ ( ) ( )

¯¯ ¯
†

¯
† ¯ ¯ ¯¯ ¯

†
¯
† ¯¯

¯¯ ¯¯ ¯¯ ¯¯ ¯ ¯

¯ ¯ ¯ ¯
† ¯ ¯ ¯

† ¯

¯ ¯ ¯ ¯
†

¯ ¯ ¯
†

¯

å

å

= -
D

+ + + -
W

D
+

= D + -
W
D

+ -
W

D
+

= D + -
D

+ + -
W

D

= D + -
D

+ + -
W

D

n n n n n n

n n n n n

n
n n n n n

n n n n n n n n

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

b
g

a b a b b
g

a b b

b b b
g
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g

b b a b
g

b b

b b
g

b b a b
g

b b

i

i

i

i . A.7

g i
e

i i g i
e

i s i

s i s s i
e

s i
e

g i i

i i i
e

g i g i i
e

g i s i

i e
g i g i i
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g i s i

,

2
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2
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2
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2

, , , ,

Switching back to the Paulimatrices representation, now in the {∣ ∣ }ñ ñs g, basis, the effectiveHamiltonian reads

˜ ˜ ( ( ) ) ( )† † w
s s= D + D + + + + +n n n

n
n n n n

+H a a b b g a b F
2

h.c. , A.8i i i
a i

i
z

i i i
,

where

˜
( )( )

˜

( )( )
( )

¯¯
¯
†

¯
† ¯ ¯

¯¯
¯
†

¯
† ¯ ¯

w =D -
W - + +

D

=-
W

D

= D -
W + + +

D

n
n n

n
n n

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

g a b a b

g
g

F
g a b a b1

2
. A.9

a i s
i i

e

e

i s
i i

e

,

2 2

2 2

The corresponding equations ofmotion for the operators read

˙ ( ) ˜ ( ) ( )¯
¯

¯ ¯ ¯ ¯k ls s l s= D - + + + -n n n n
- a a g b ai i , A.10i

i
i
z

i i i
z

ph

˙ ( ) ˜ ( ) ( )¯
¯

¯ ¯ ¯ ¯k ls s l s= D - + + + -n
n

n n n n
- b b g a bi i , A.10i

z
i i i

z
ph

˙ ( )( ) ˜ ( ) ( )¯¯ ¯
†

¯
† ¯ ¯ ¯¯ ¯ ¯ ¯¯s

g
l s s= D - + + + - +n n n n n n

- -⎡
⎣⎢

⎤
⎦⎥a b a b g a b ci i

2
2 , , A.10i i i i i i

z
at

˙ ˜ [ ( ) ] ( ) ( )¯¯ ¯¯ ¯ ¯ ¯¯s s g s= + - - +n n n n
+ g a b di 2 h.c. i , A.10i

z
i i i

z

where

( )l

D = D -
W
D

D = D -
D

=-
D

g

g

2

2
A.11

s
e

l
l

e

e

at

2

ph

2

2

andwe have introduced the cavity and spin decays k g, whichwe take to be the same for all cavitymodes and all
spins respectively.

Appendix B.General stabilitymatrix

ThematrixM used in the stability study, equation (3.23), can be simply obtained from theMF equations of
motion (3.8) and reads

¯ ¯

¯ ¯

¯ ¯ ˜ ¯ ¯ ¯ ( ∣ ¯ ∣ ) ˜ ¯
˜ ¯ ¯ ¯ ¯ ¯ ( ∣ ¯ ∣ ) ˜ ¯

˜ ¯ ˜ ¯ ˜ ¯ ˜ ¯

( )

˜

˜

k l la

l k la

la la l a a

la la l a a
a a

=

- D + -

-D - - - -

- - - -D + -

- + D + -

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥

M

w

w

s gw s g

gw s s g

gs gs g g

0

0

4 2 4 0 2 2

2 4 4 2 0 2

2 2 2 2 0

, B.1

g

g

y y

x x

y x

ph 2 I

ph 2 R

R I at
2

I

R I at
2

R

I R

where ∣ ¯ ∣ ¯ ¯a a a= +2
R
2

I
2 and v̄ are the steady state solutions, ¯ { ¯ ¯ ¯ ¯ ¯}a aÎv s s w, , , ,x yR I .
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AppendixC. Largeλ expansion

Herewe seek a perturbative solution of the algebraic steady state equations (3.9) and (3.25) in the largeλ limit.
This can be done using a perturbative ansatz for the variables of the form

( )( ) ( ) ( ) ( ) ål l l= = + + +
=

¥
- - -v v v v v . C.1

n

n n

0

0 1 1 2 2

The set of equations of order l1 read

( )

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

a

a

a a

a a

=

=

+ =

+ =

w

w

s

s

0

0

0

0, C.2

y

x

I
0 0

R
0 0

I
0 2

I
0 2 0

I
0 2

I
0 2 0

which yield the solution for ( ) ( )a a= = 0R
0

I
0 . Using this result, order l0 equations simplify to

˜
( )( )

( )

( )a
h

= -
+gs

w
a

2

2
, C.3x

R
1

0
R

0

˜
( )( )

( )

( )a
h

=
-gs

w
b

2

2
, C.3

y
I
1

0
I

0

( )( ) ( ) ( )+ + =s s w N c. C.3x y
0 2 0 2 0 2 2

In order to proceed, we realize that the equation (3.25e) at order l-1 reads

( )( ) ( ) ( ) ( )a a= -s s . C.4y xR
1 0

I
1 0

Substituting for ( ) ( )a a,R
1

I
1 from (C.3a) and (C.3b), it can be cast to the form

( )
( )

( )
h
h

- =
s

s
. C.5

y

x

0

0
I

R

In order to simplify the treatment further, we put h = 0I which implies ( ) =s 0y
0 and by the sake of (C.3b)

( )a = 0I
1 .Wewill use these solutions inwhat follows.
Order l-1 equations, after the substitutions of the solutions ( ) ( )a a= = 0R

0
I
0 read

( ) ˜ ( )( ) ( ) ( ) ( ) ( ) ( )ka a a= - + D + - +w
g

s w a0
2

, C.6yR
1

ph
1

I
1 1

I
2 0

( ) ˜ ( )( ) ( ) ( ) ( ) ( ) ( )a ka a= - D + - - -w
g

s w b0
2

, C.6xph
1

R
1

I
1 1

R
2 0

˜ ∣ ∣ ( )( ) ( ) ( ) ( )a a= +g w s c0 , C.6yI
1 0 1 2 0

˜ ∣ ∣ ( )( ) ( ) ( ) ( )a a= -g w s d0 , C.6xR
1 0 1 2 0

( )( ) ( ) ( ) ( ) ( ) ( )= + +w w s s s s e0 . C.6x x y y
0 1 0 1 0 1

When substituting the solutions for ( ) ( )a= =s 0y
0

I
1 , (C.6c) is trivial and the equations (C.6) simplify to

˜ ( )( ) ( ) ( ) ( )ka a= - - +
g

s w a0
2

, C.7yR
1 1

I
2 0

( ) ˜ ( )( ) ( ) ( ) ( ) ( )a a= - D + - -w
g

s w b0
2

, C.7xph
1

R
1 1

R
2 0

˜ ( )( ) ( ) ( ) ( )a a= -g w s c0 , C.7xR
1 0

R
1 2 0

( )( ) ( ) ( ) ( )= +w w s s d0 . C.7x x
0 1 0 1

Substituting the solution for ( )aR
1 from (C.3a) into (C.7c) yields

( ˜ )[ ˜ ( ˜ ) ] ( )( ) ( ) ( ) ( )h h+ + + =gs gw gs s2 2 2 0 C.8x x x
0

R
0 2 0

R
0

which has the solutions

˜
( )( ) h

= -s
g

a
2

, C.9x
0
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˜
˜ ( )( ) h
h

=  +

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟s

g

g N
b1 1

2
, C.9x,

0
2 2

2

where h h= R andwe have used the spin conservation ( ) ( )+ =w s Nx
0 2 0 2 2. Since ∣ ∣( ) s Nx

0 , the solution
(C.9a) is valid for ˜ * h=g g N2

1 . Next, we remark, that the function ( ˜)( )
+s gx,

0 ismonotonously decreasing
with the limit

( ˜) ( )
˜

( ) = >
¥

+s g N Nlim 2 , C.10
g

x,
0

i.e. is unphysical.We are thus left with the solution ( ˜)( )
-s gx,

0 which is alsomonotonously decreasing functionwith
the asymptotes

( ˜)

( ˜) ( )
˜

( )

˜
( )

=

=-


-

¥
-

s g

s g N

lim 0

lim 2 . C.11

g
x

g
x

0
,
0

,
0

It is thus clear that the solution ( )
-sx,

0 is valid for [ ]*Îg g0, , where g* is some critical value forwhich ( )
-sx,

0 reaches

the physically allowedmaximum ∣ ∣( ) =-s Nx,
0 . It is easy tofind, that * *=g g

1
. This completes the leading order

solutions and yields the expressions (3.27a) and (3.27b).
The equations (C.2), (C.3) and (C.6) yield a closed set for spin variables up to the order l-1 and forα up to

l-2. It is straightforward tofind the solutions up to the respective order explicitly, giving however rather lengthy
algebraic expressions. These can be simplified in specific situations. For example, as we discuss in themain text,
when looking for solutions in the vicinity of the transition point * h=g N2

1 , the leading order contribution to

∣ ∣a 2 is of order l-2, namely

∣ ∣ ( ) ( )( )a
l

a l= + -O
1

, C.122
2 R

1 2 3

which gives the relation (3.28). Similarly, the leading contribution tow is of order l0 yielding the
expressions (3.29).
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