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ABSTRACT 1 

Background: Poorly absorbed, fermentable carbohydrates can provoke irritable 2 

bowel syndrome (IBS) symptoms by escaping absorption in the small bowel and 3 

being rapidly fermented in the colon in some susceptible subjects. IBS patients are 4 

often anxious and stressed and stress accelerates small bowel transit which may 5 

exacerbate malabsorption. 6 

Objective: In this study we investigated the effect of intravenous injection of 7 

corticotrophin releasing factor (CRF) on fructose malabsorption and the resulting 8 

volume of water in the small bowel. 9 

Design:  We performed a randomised, placebo controlled, cross-over study of CRF 10 

versus saline injection in 11 male and 10 female  healthy subjects, examining the 11 

effect on the malabsorption of a 40 g fructose test meal and its transit through the 12 

gut which was assessed by serial Magnetic Resonance imaging (MRI) and breath 13 

hydrogen measurement. Orocaecal transit was assessed using the lactose-ureide 14 

C13 breath test and the adrenal response to CRF assessed by serial salivary cortisol 15 

measurements. 16 

Results: (Mean ± SD) CRF injection caused a significant rise in salivary cortisol 17 

which lasted 135 minutes. Small bowel water content (SBWC) rose from baseline, 18 

peaking at 45 minutes after fructose ingestion while breath hydrogen peaked later at 19 

75 minutes. The area under the curve (AUC) for SBWC from -15 - 135 minutes was 20 

significantly lower after CRF versus saline (mean difference [95% CI] 7433 [275, 21 

14591] mL.min, P = 0.04). Ascending colon volume rose after CRF, significantly 22 

more for male volunteers than female (P = 0.025).  23 

Conclusions: CRF constricts the small bowel and increases fructose malabsorption 24 

as shown by increased ascending colon volumes. This mechanism may help to 25 
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explain the increased sensitivity of some stressed individuals to fructose 26 

malabsorption. 27 

This trial was registered at ClinicalTrials.gov as NCT01763281.28 

http://clinicaltrials.gov/show/NCT01763281


5 
 

INTRODUCTION 29 

IBS is characterised by abdominal pain and erratic bowel habits, and food 30 

undoubtedly plays a role in causing symptoms. Poorly absorbed fermentable oligo-31 

di-mono-saccharides and polyhydric alcohols (FODMAPs) have been shown in a 32 

randomised, placebo controlled trial to provoke symptoms of pain, bloating and 33 

flatulence in IBS patients (1, 2). A recent randomized control trial (RCT) showed a 34 

low FODMAPs diet reduced symptoms in IBS patients (3). However malabsorption 35 

per se is not enough to provoke symptoms as clearly shown in a study of lactose 36 

malabsorption in China (4).  It affected 90% of the Chinese population, however only 37 

a minority experienced symptoms. Anxiety was a strong predictor of developing 38 

symptoms during a lactose challenge (4) suggesting an interaction between 39 

FODMAP malabsorption and psychological state.   40 

 One of the most consistent features in IBS patients is the association with anxiety, 41 

depression and somatisation (5). Patients often report that the onset of the condition 42 

was associated with stress (6).  However the link of symptoms to stressful events is 43 

not straightforward and when stress and bowel symptoms are recorded over 44 

prolonged periods the correlation of symptoms and stress is only modest (r = 0.27) 45 

(7).  Others have shown a chronic activation of the hypothalamic- pituitary adrenal 46 

axis in IBS-D patients who have elevated basal and stimulated cortisol levels which 47 

correlate with anxiety symptoms (8). Previous studies have shown that psychological 48 

stress (9) and clinical anxiety are both associated with accelerated small bowel 49 

transit (10). We have previously investigated IBS-D patients using MRI and shown 50 

that they have constricted small intestines and accelerated mouth to caecum transit 51 

time which correlated with anxiety (11).  We also recently demonstrated that IBS-D 52 

patients show a failure of the ascending colon to relax postprandially (12) which 53 
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could lead to increased wall tension and hence increased symptoms when the colon 54 

is distended by the arrival of FODMAPs such as fructose or lactose.  Previous 55 

animal studies showed an acceleration of whole gut transit with stress and suggest 56 

that CRF is a key element, since CRF antagonist can block this acceleration (13, 57 

14).  Recently we have shown that CRF injections constrict the small bowel in 58 

healthy volunteers to levels seen in IBS-D patients, suggesting that a similar 59 

mechanism might be operating in humans (15). Our previous MRI study showed that 60 

40 g of fructose distended the small bowel, increasing its volume 4 fold. In some 61 

individuals, a portion escaped absorption, entered the colon, leading to a rise in 62 

breath hydrogen (16). 63 

We hypothesised that accelerating small bowel transit using CRF intravenous 64 

injections would exacerbate fructose malabsorption as assessed by breath hydrogen 65 

and colonic volumes after a fructose challenge. We therefore carried out a RCT of 66 

CRF versus a saline placebo in healthy volunteers who ingested a 40 g fructose 67 

meal.  68 



7 
 

SUBJECTS AND METHODS 69 

Study participants 70 

A total of 21 healthy volunteers (11 male and 10 female) were recruited. Of these, 1 71 

male withdrew consent, and 20 (age 23 ± 3 years, BMI 24.4 ± 3.4 kgm-2) were 72 

randomised to take part. Participants were considered eligible if they were non-73 

smokers, aged between 18 and 60 years old, BMI between 18 and 30 kg m-2, and 74 

without any history of serious acute or chronic illness, particularly gastrointestinal 75 

disease. Pregnant or breast feeding females were excluded, and pregnancy tests 76 

were available to verify this. Any participants on antibiotics, probiotics, or medication 77 

that interferes with gastrointestinal motility were excluded. Subjects were not allowed 78 

to have taken part in a clinical study within the 3 months prior to the present study.  79 

All volunteers completed the Patient Health Questionnaire 15 (PHQ 15) and the 80 

Hospital Anxiety and Depression Scale (HADS), and were screened for MRI 81 

contraindications with a safety screening questionnaire prior to randomisation. The 82 

participants were recruited and enrolled by KAM, SR and CL. CL also created the 83 

computer-generated randomisation code for the participants, allocated and 84 

administered their treatments and was the only person involved who was not blinded 85 

on the study day. All participant data were given a special identifier and therefore, 86 

during data analysis, KAM, SR and CL remained blinded to allocated treatment to 87 

avoid any possible bias.  88 

 89 

Study design 90 

The study was a single-centre, randomised, two-way, double-blind, crossover study, 91 

consisting of a screening visit and two MRI scan days which were approximately 7 92 

days apart. Data were collected at the 1.5T MRI scanning unit of the Sir Peter 93 
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Mansfield Imaging Centre, located at the University Park campus of the University of 94 

Nottingham. The participants were asked to fast from 20:00 h on the day before 95 

scanning and refrain from alcohol, caffeine and strenuous activity for 18 hours prior. 96 

They were also asked to refrain from eating foods such as bran, wheat, rye, fruit and 97 

vegetables high in FODMAPs (fermentable, oligo-,di- mono-saccharides and 98 

polyhydric alcohols ) and excessively spicy foods on the day before the study, as 99 

these could all alter intestinal volumes. On arrival, they were asked to rinse their 100 

mouth with mouthwash (Corsodyl Daily, GlaxoSmithKline Consumer Healthcare, 101 

Brentford, UK) to reduce the number of oral bacteria which could ferment oral 102 

carbohydrate to give a misleading early breath hydrogen rise. A sustained rise in 103 

breath hydrogen of more than 20 ppm was considered to be a sign of malabsorption. 104 

Volunteers underwent a baseline scan before having an intravenous cannula 105 

positioned (0.8 mm cannula, Biovalve, E.C Laboratories, VYGON, France). A local 106 

anaesthetic cream (EMLA, AstraZeneca, Luton) was applied to the arm to minimise 107 

discomfort during the process. Following cannulation, the volunteers had a second 108 

scan before receiving an intravenous dose of either a saline solution (0.9% NaCl) or 109 

100 µg human Corticotrophin releasing factor (CRF [Corticorelin Trifluoroacetate, 110 

FERRING GmbH, Kiel]). Due to the short half-life of CRF, the bolus injection lasted 111 

for only 1 second and was followed by a 5mL saline flush. The short bolus injection 112 

time followed by the saline flush was to allow the peptide to reach the peripheral 113 

system quickly. The dosage was prepared before the participants entered the clinical 114 

area and they only saw a colourless liquid in the syringe on both arms of the trial. As 115 

a result, both arms of the study were sufficiently similar to prevent participants and 116 

researchers ever knowing which treatment was received. Volunteers were then given 117 

a test drink consisting of 500 mL of water containing 40 g of fructose (Holland & 118 
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Barrett, Nuneaton, UK) with 5ml of pure lemon juice (PLJ) (Healthy Food Brands, 119 

West Sussex, UK) added to improve palatability. This dose of 40 g was selected as 120 

our previous study (16) showed that with a 40g dose, good distension of the small 121 

bowel is obtained and easily seen on the MR images. They received serial scans 122 

after this at time 15, 45, 75, 105, 135, 195, 255 and 315 minutes postprandially, with 123 

samples of saliva for cortisol measurement, end expiratory breath for hydrogen (H2) 124 

measurement (Gastro+ Gastrolyzer, Bedfont Scientific, Kent, UK) and symptom 125 

questionnaires, all being collected after each scan. Pulse and blood pressure 126 

measurements were taken after each scan and a State-Trait Anxiety Inventory 127 

(STAI) questionnaire was administered on a single occasion halfway through the 128 

scan day. 129 

The primary outcome was the effect of CRF on the area under curve volume versus 130 

time curve for water in the small bowel (in mL.min). Secondary outcomes were 131 

gastric volumes (in mL), breath hydrogen (in ppm), ascending colon volumes (in mL), 132 

ascending colon gas volumes (in mL), orocaecal transit time (min) and symptom 133 

VAS questionnaires on the study days (in mm). Ascending colon volumes were 134 

reported as the % change from baseline. While volumes were expected to increase 135 

on both arms of the study in response to fructose (17), assessing the % change from 136 

immediately before intravenous injection (t = -45 min) until the point where CRF no 137 

longer had an effect was done to determine if the increase was significantly greater 138 

as a result of acute experimental stress.  139 

The study was carried out following Good Clinical Practice (GCP) protocols and the 140 

Declaration of Helsinki with approval by the University of Nottingham Medical School 141 

Ethics Committee. Volunteers gave written informed consent prior to their 142 
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participation and the trial ended after the final volunteer had completed both arms. 143 

The study was registered on clinicaltrials.gov identifier NCT01763281. 144 

MRI protocol 145 

Images were collected using a whole-body, research-dedicated, 1.5T MR scanner 146 

(Achieva, Philips Medical System, Best, The Netherlands). Each imaging period 147 

lasted for 10 minutes and volunteers were positioned supine with a 16-element coil 148 

wrapped around the abdomen. The volunteers were allowed to sit upright away from 149 

the scanner between scans. The volume of freely mobile water in the small bowel 150 

(SBWC) was measured as described previously (18), using a coronal single-shot 151 

turbo spin-echo sequence. This acquired 24 slices in a single 24 second expiration 152 

breath hold (TR/TE = 8000/320 ms, 512x512 reconstructed matrix, voxel size 153 

0.78x0.78x7 mm3). A coronal dual-echo gradient echo sequence was used to 154 

determine the volume of the ascending colon (12) as well as the volume of gas. This 155 

sequence allowed simultaneous 24 slice collection of both in-phase and out-of-phase 156 

images in a single 15 second expiration breath hold (TR/TE1/TE2 = 157/2.30/4.60 157 

ms, 256x256 reconstructed matrix, voxel size1.76x1.76x7 mm3). Gastric volumes 158 

were measured with a balanced gradient echo sequence (TR/TE = 2.98 / 1.49 ms, 159 

flip angle 80o, 256 x 256 reconstructed matrix, reconstructed in-plane resolution 1.56 160 

x 1.56 x 5 mm3, SENSE 2.0) (19), acquiring 50 transverse slices in a 16.5 second 161 

breath hold.  162 

Lactose Ureide Breath Test (LUBT) 163 

A previously validated LUBT protocol was used (20). Participants ingested 1 g of 164 

unlabelled lactose ureide (Euriso-top®, Saint-Aubin Cedix, France) 3 times a day 165 

with meals on the day before each study day, to stimulate glucose ureide hydrolase 166 

enzyme activity in the colonic bacteria. On the study day, participants provided a 167 

http://clinicaltrials.gov/show/NCT01763281
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baseline breath sample before receiving their test drink (details above). The drink 168 

was mixed with 500 mg of labelled 13C lactose ureide (Euriso-top®, Saint-Aubin 169 

Cedix, France). Breath samples were taken every 10 minutes for an hour, then every 170 

15 minutes for an additional 4 hours. Analysis of breath samples was carried out on 171 

an IRIS®-Lab analyser (Wagner Analysen Technik, Bremen, and Germany) and the 172 

result was expressed as delta over baseline: the difference between the 13CO2/12CO2 173 

ratio in the post meal breath sample and the corresponding ratio in the baseline 174 

sample. The OCTT was manually determined by two experienced operators looking 175 

at plots of delta over baseline as a function of time and was taken as the time at 176 

which there was a rise of more than 2 ppm in 13C above the baseline after 177 

consumption of the drink. 178 

Data analysis, statistics and sample size 179 

 SBWC was measured using a previously described and validated method (18). 180 

Ascending colon volumes were measured using Analyze© 9.0 (Biomedical Imaging 181 

Resource, Mayo Clinic, Rochester, MN, USA) (12) and the volume of gas in the 182 

ascending colon was assessed from Analyze-generated object maps using a 183 

programme written in-house (IDL®, Research Systems Inc, Boulder, Colorado, 184 

USA). This programme first summed the in phase and out of phase coronal images 185 

of the colon. Colonic gas was operator-defined as a region of interest where the sum 186 

of the two images appeared completely black. These regions were then 187 

automatically summed along the entire ascending colon, giving a total gas volume.  188 

Gastric volumes; consisting of liquid and gas in the stomach, were defined using an 189 

intensity based region growing algorithm developed in IDL® (Research Systems Inc, 190 

Boulder, Colorado, USA)  (19). All symptom scores were assessed using a 100 mm 191 

visual analogue score (VAS), and the STAI questionnaire was scored as described 192 
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by the Spielberger State-Trait Anxiety Inventory (21). Salivary cortisol was 193 

determined using enzyme-linked immunosorbent assay (Salimetrics, Suffolk UK). 194 

Statistical analyses were carried out using Prism 6 (GraphPad Software Inc., San 195 

Diego, CA, USA). Data were first tested for normality using the Shapiro-Wilk’s test of 196 

normality, after which paired, two-tailed t-tests were used to determine the 197 

significance of the differences for normally distributed data and Wilcoxon signed rank 198 

tests were used to test the significance of differences of non-normally distributed 199 

data. The varied responses of males and females to the treatments were 200 

investigated and two way analysis of variance (ANOVA) was used to determine the 201 

effect of treatment and gender on the outcomes.  Differences were considered 202 

significant at P < 0.05. 203 

Previous work in healthy volunteers using 40 g fructose in 500 mL (16), showed a 204 

postprandial SBWC volume at 75 minutes of 413 ± 123 mL (mean ± SD). This 205 

indicates that using 15 participants we should be able to detect a 27% change in 206 

SBWC with 90% power with α <0.05. Another study previously using CRF showed a 207 

reduction of SBWC by 36% in 15 healthy subjects when CRF was given 208 

intravenously (15). To allow for dropouts, 20 participants were enrolled in the study. 209 

 210 

RESULTS 211 

Study procedures were well tolerated by the volunteers. All 20 successfully 212 

completed the study (see Consort diagram in Supplemental Figure 1) and were 213 

included in the analyses. There were no adverse reactions to cannulation or injection 214 

and only a few reported feeling flushed after injection. Pulse and blood pressure 215 

measurements did not change. There were differences noted between the response 216 

to an injection followed by a fructose meal for males and females on both arms of the 217 



13 
 

study, and as a result the data for males and females are presented separately. 218 

Normally distributed data are presented in tables as mean ± SD, while non-normally 219 

distributed data are shown as median [IQR]. Data in the figures are presented as the 220 

average at each time point across the study day and the error bars are the standard 221 

error of the mean (SEM).  222 

 223 

Stress response 224 

The salivary cortisol concentrations throughout the study day are shown in Figure 1. 225 

Cortisol levels were initially higher on both arms of the study, but fell at the point of 226 

cannulation. After CRF injection, salivary cortisol concentrations rose steadily and 227 

peaked after 30 minutes at 0.49 ± 0.27 µg dL-1.  In comparison, cortisol levels after 228 

injection with saline rose to a maximum of 0.18 ± 0.23 µg dL-1. The cortisol response 229 

lasted until 135 minutes after drinking fructose, and the time period from 15 minutes 230 

before to 135 minutes after (t = -15 – 135 minutes) was selected as being 231 

physiologically relevant for comparisons. The t = -15 – 135 min AUC (Table 1) for 232 

salivary cortisol on the CRF arm of the study was significantly greater than saline 233 

(mean difference [95% CI] 22.4 [12.3, 32.5] µg dL-1 .min, P = 0.0002). After CRF 234 

injection, female participants had a numerically higher salivary cortisol concentration 235 

than males (Table 1) but this difference was not statistically significant (mean 236 

difference 15.3 ± 8.5 µg dL-1 .min, P = 0.09; Student’s t test). 237 

 238 

Breath H2 239 

The breath H2 concentration of the 20 volunteers across the study day for both 240 

treatment arms is shown in Figure 2. Consumption of fructose led to an immediate 241 

increase in H2 concentration, which peaked at 75 minutes postprandial (54 ± 20 ppm 242 
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CRF arm, 44 ± 12 ppm saline arm) and then returned to baseline levels. This trend 243 

was seen for both arms of the study, and there was no significant difference between 244 

the CRF and saline arm. Table 1 shows the differences between the breath H2 245 

responses for males and females. There were no significant differences between the 246 

CRF and saline arms for either group, although CRF injection in males produced a 247 

numerically larger volume of breath H2 than saline median difference [95% CI] 2400 248 

[-3675, 7193] ppm.min, P = 0.38. Breath H2 was significantly larger for males after 249 

both CRF and saline injection (Table 1); 6 males showed a rise in breath H2 of more 250 

than 20 ppm after CRF compared to 2 females, while 7 males showed an increase 251 

after saline injection, compared to only 3 females. The gender effect on the 252 

measured breath H2 was significant (P = 0.035; two way ANOVA), there was also a 253 

significant time effect (P = 0.0001; two way ANOVA), with a positive time x gender 254 

interaction (P = 0.0001; two way ANOVA).  255 

 256 

Gastric emptying 257 

The volume of liquid and air in the stomach was easily visualised and quantified. The 258 

AUC for gastric volume from t = -15 min – t = 135 min is shown in Table 1 for both 259 

arms of the study. The maximum gastric volume was no different after CRF (484 ± 260 

67 mL) than after saline injection (469 ± 88 mL), when all subjects were considered 261 

together (P = 0.40). There were however differences in gastric volumes between the 262 

male (Figure 3A) and female participants (Figure 3B) across the study day. CRF 263 

significantly delayed gastric emptying in female participants relative to the saline 264 

(mean difference ± SD in AUC (t = -15 – t = 135 min) 5067 ± 6062 mL.min, P = 265 

0.027, Student’s t test), but this delay was not observed for the male participants, 266 

where the gastric volume was greater for saline than that for CRF (mean difference ± 267 



15 
 

SD 1959 ± 8463 mL.min, P = 0.48, Student’s t test). The difference between male 268 

and female gastric emptying was not significant on the CRF arm of the study (P = 269 

0.085, two way ANOVA), but there was a significant time effect (P = 0.0001, two way 270 

ANOVA) and time x gender interaction (P = 0.0001, two way ANOVA). Differences 271 

between males and females were also not significant on the saline arm of the study 272 

(P = 0.72, two way ANOVA), and while there was a significant time effect (P = 273 

0.0001, two way ANOVA) there was no interaction.  274 

 275 

Small bowel water content (SBWC) 276 

After the fructose drink, the volume of free water in the small bowel increased from 277 

(mean ± SD) 74 ± 50 mL at t = -15 minutes and peaked at 416 ± 133 mL after CRF 278 

and 75 ± 43 mL peaking at 489 ± 144  mL after saline. The time to peak was 45 279 

minutes postprandial, and volumes returned to baseline by the end of the study day 280 

(Figure 4). There was a reduction in SBWC in the CRF treatment arm relative to the 281 

saline arm and this could be seen on the MR images. Figure 5 shows a 282 

representative example of the differences seen 45 minutes postprandial.  Over the 283 

entire study day there was no significant difference, mean difference ± SD 5291 ± 284 

18987mL.min, n = 20 P = 0.1, Student’s t test). The CRF injection did however 285 

decrease small bowel water immediately after the fructose drink but this effect only 286 

lasted for 135 minutes postprandially, paralleling the cortisol response. The AUC for 287 

these time points (Table 1) was significantly lower after CRF than observed after 288 

saline, mean difference [95% CI] 7433 [275, 14591] mL.min (n = 20, P = 0.04, paired 289 

Student’s t test) . There were significant differences between male and female 290 

SBWC on both arms of the study (Table 1). The effect of time was significant on both 291 
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arms of the study as obtained with two way ANOVA, with a positive time x gender 292 

interaction on the CRF arm (Table 1).  293 

 294 

Ascending colon volume 295 

The percentage change in the volume of the ascending colon from immediately 296 

before the injection (t – 45 min) was assessed for both the CRF and saline arms of 297 

the study. Figure 6 shows the trend across the study day after both CRF and saline 298 

injection. The volume increased from baseline (t – 45) of 210 ± 77 to 270 ± 109 mL 299 

(29%) 45 minutes after the fructose drink for the CRF arm of the study, significantly 300 

greater than the increase from baseline of 226 ± 74  to 252 ± 83 mL (12%) observed 301 

after the saline injection, (data not shown, P = 0.048; Student’s t test). Male 302 

volunteers had a significantly larger colon on their CRF arm of the study, but there 303 

were no significant treatment differences recorded for female volunteers (Table 1).  304 

Male volunteers also had significantly larger colons than females after CRF (mean 305 

difference [95% CI] 7729 [1096, 14362] mL.min, P = 0.025; Student’s t test) but not 306 

saline (mean difference [95% CI] 2991 [-492.6, 6474] mL.min, P = 0.09; Student’s t 307 

test). Ascending colon gas volumes were also determined but the change on the 308 

CRF arm of the study (507 [232, 1449] mL.min v 350 [198, 934] mL.min for saline), 309 

was not significantly different from the change observed with saline (P = 0.45).  310 

 311 

Orocaecal transit time (OCTT) 312 

OCTT was manually assessed by 2 operators, and defined as the first sustained rise 313 

of 2ppm in 13C concentration after the drink. Data were inconsistent and did not show 314 

the smooth rise that is characteristic of LUBT curves, data from only 18 volunteers 315 

could be reliably analysed. Transit time with saline (mean ± SD) 49 ± 20 min was 316 
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significantly shorter than after injection with CRF (mean ± SD) 59 ± 23 min, mean 317 

difference [95% CI] 10.6 [2.1,19.0] min, P = 0.02. The median orocaecal transit time 318 

for male volunteers was numerically shorter than for females but these differences 319 

were not statistically significant.  320 

Questionnaires 321 

One volunteer did not return a STAI questionnaire on the CRF arm of the study, and 322 

STAI analyses are therefore performed on data from 19 volunteers. The average 323 

State anxiety score after CRF injection was 32.7 ± 7, significantly greater than the 324 

average score after saline injection, 28.8 ± 7 (P = 0.047), while there were no 325 

significant differences between the two treatments for the Trait anxiety score. Using 326 

Spearman rank correlation coefficient, there was a significant correlation between 327 

cortisol concentration and State-anxiety scores (r = 0.53, P = 0.02) for the CRF arm 328 

but not the saline. There were no correlations between cortisol concentration and T-329 

anxiety scores for either treatment. STAI scores also did not correlate with SBWC, 330 

ascending colon volume or breath H2. There were no significant differences between 331 

the two treatment arms for measures of bloating, distension, fullness or nausea 332 

(Table 2). All volunteers were within the normal range of the HADS (anxiety 3 (1.3 – 333 

5.8), depression 0.5 (0 – 2.5) and PHQ-15 (2 (0.25 – 3) questionnaires.  334 

 335 

DISCUSSION 336 

This study sought to simulate experimentally the psychological and physiological 337 

changes that are seen in anxious patients with IBS whom we have previously shown 338 

to have constricted small bowels, accelerated small bowel transit  and incompliant 339 

ascending colons (11, 12). We hypothesised that accelerated transit, by reducing the 340 

time for absorption, would exacerbate fructose malabsorption and increase colonic 341 
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volumes. Our study confirmed earlier studies using the same MRI technique which 342 

showed that CRF reduced small bowel water content (15). It should be noted 343 

however that since we used a very different meal, the shape of the small bowel 344 

water content looked rather different. The previous study (15) used a mixed solid/ 345 

liquid phase meal in which the liquid phase was orange juice which contained 346 

glucose in approximately equal amounts (3 g) as fructose together with sucrose 347 

which are all rapidly absorbed. This leads to an initial rapid fall in SBWC which then 348 

rises as pancreatic secretions are stimulated by the later emptying, solid phase. Our 349 

current study used a liquid only test meal containing a much large dose (40g) of 350 

fructose which, in the absence of glucose, is poorly absorbed. This  increased small 351 

bowel water content and caused increased colonic gas and fluid with a concomitant 352 

rise in breath hydrogen as we have previously shown (16).  In keeping with other 353 

studies we showed  that intravenously administered CRF inhibits gastric emptying in 354 

females and delays small intestinal transit  in both genders (22). The new finding 355 

was that CRF increased ascending colonic volumes after fructose ingestion, 356 

suggesting that acute stress could worsen symptoms due to ingestion of FODMAPs.  357 

The CRF effect on the hypothalamic-adrenal axis as shown by salivary cortisol was 358 

only significant for 135 minutes, in keeping with its known short half-life (23). This is 359 

also in keeping with binding of CRF with CRF-binding protein, which increases after 360 

injection and neutralises the biological activity of CRF. Levels of bound and free CRF 361 

are undetectable after 2 hours (24).  Similarly its effect on the stomach, small bowel 362 

and colon were only apparent for the first 135 minutes suggesting the end organ 363 

effects are short lived after a single injection. The CRF effect on males and females 364 

differed, with females showing a higher though not significant salivary cortisol 365 

concentration. This is in keeping with previous studies, where cortisol levels were 366 
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found to be, depending on the stressor, either comparable between men and women 367 

or higher in women (25). 368 

Gastric emptying has been shown to be inhibited by acute stress in dogs (26), rats 369 

(27) and humans (28), also by the action of intravenous or intraperitoneal 370 

administration of CRF (22). The results for the complete cohort of volunteers showed 371 

a greater AUC after CRF, but this was not significantly different after saline. The 372 

effect on gastric emptying of females was more pronounced however, and they 373 

showed a significant delay in emptying on the CRF arm relative to the saline arm. A 374 

similar effect has been recorded with male and female mice; the females showed 375 

significantly slower upper gastrointestinal transit relative to males after an acute 376 

stressor (29). It should be noted that all the gender comparisons were unplanned 377 

post hoc analyses. A larger sample size would have been necessary if any of these 378 

differences had been the primary endpoint. 379 

The results showed a significantly increased postprandial rise in ascending colon 380 

volume as the fructose entered the colon on the CRF arm of the study, as well as an 381 

increased (though not significantly so) ascending colon gas volume, suggesting CRF 382 

possibly increased fructose malabsorption. Post prandial breath hydrogen was not 383 

significantly increased by CRF but this depends on the colonic bacteria and as our 384 

study shows does not reliably reflect malabsorption.  Although the increase in 385 

ascending colon gas was not significant this may have been due to our study being 386 

underpowered for this more variable endpoint. It has previously been hypothesized 387 

that FODMAPs trigger gastrointestinal symptoms by distension of the colonic lumen, 388 

mainly through the production of gas (2). Our results show that the colon volume was 389 

increased by fructose ingestion, an effect further increased by CRF from 0-135 390 

minutes post injection. Male volunteers had a significantly larger increase in their 391 
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ascending colon volume than females on the CRF arm of the study, but this gender 392 

difference was not seen on the saline arm. This observation did not correlate with 393 

symptoms for bloating, distension, fullness or nausea and was also somewhat 394 

surprising considering that abdominal bloating is reported more frequently by 395 

females, although this may be a result of them describing the symptom in a different 396 

way (30). 397 

Most healthy volunteers seem able to tolerate changes in gas loads, unlike patients 398 

with functional disorders such as IBS who show visceral hypersensitivity (5). The 399 

colonic responses to stress are also more pronounced in IBS patients (31, 32); the 400 

reasons for this are still unknown.  401 

Previous studies have shown that CRF increases small bowel motor activity in IBS-D 402 

patients more than controls  but whether or not this accelerated transit was not 403 

assessed (33, 34), while other studies have indicated a delay in small bowel transit 404 

due to CRF injection (35). The present study using the C13-ureide breath test 405 

showed a delay in orocaecal transit. Stengel and Taché (36) have highlighted that 406 

injection of CRF inhibits duodenal transit, although they reported that results on 407 

stress-induced changes of small intestinal motility are conflicting. It may well be that 408 

the constriction of the small bowel which reduces SBWC does not always lead to 409 

faster transit if the CRF induced motor pattern is non-propulsive. It is worth noting 410 

that this recently validated OCTT  test (37) was standardised for use with a solid 411 

meal, and may not be optimal for assessment of transit with an osmotically active 412 

liquid meal such as we used. 413 

All participants in the study received a standard dose of CRF; it is likely that a 414 

dosage based on individual weight would have been more appropriate. Another 415 

limitation of the study was that no gender-based hormonal fluctuations were 416 
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considered when assessing the response to CRF. It has been recorded that women 417 

are more vulnerable to stress-related illnesses (38), and the degree of 418 

gastrointestinal motor responsiveness to acute stress in experimental animals at 419 

least, varies depending on gender, oestrus cycles and prior exposure to stress (39). 420 

The reasons why the male and female gastrointestinal responses to acute stress are 421 

so varied require further exploration. 422 

MRI has allowed the non-invasive assessment of the small bowel and colon after 423 

intravenous CRF injection followed by a fructose meal, and has demonstrated for the 424 

first time that CRF combined with a FODMAP challenge increases ascending colon 425 

volume, possibly due to increased fructose malabsorption. This may explain why 426 

food intolerances can be inconsistent from day to day, perhaps depending on the 427 

psychological state of the subject. Future studies should focus on the effects of acute 428 

stress stimuli in sufferers of functional gastrointestinal disorders such as IBS in 429 

whom this effect may be even more pronounced.  430 
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TABLES 

Table 1: Comparison of study outcomes after intravenous dosing of CRF or 

saline in healthy volunteers 

 CRF1,2 Saline P-value3 

Salivary cortisol4 

 (µg dL-1 .min) (N = 20) 

43.6  ± 20.1 21.2 ± 11.3 0.0002 

Females (N = 10) 51.3 ± 22.6 22.0 ± 11.2 0.004 

Males (N = 10) 36.0 ± 14.6 20.4 ± 11.9 0.005 

Breath H2
5 (ppm.min)  

(N = 20) 

1500 (743 – 7868) 3420 (1043 – 6739) 0.99 

Females (N = 10) 818 (679 – 1635) 1208 (758 – 3735) 0.2 

Males (N = 10) 9210 ± 9750 6311 ± 4031 0.38 

Comparison of 

males versus 

females P 

0.035 0.077  

Gastric volume6 (mL.min) 

(N = 20)  

31776 ± 9560 30222 ± 7571 0.4 

Females (N = 10) 36601 ± 7388 31534 ± 6645 0.03 

Males (N = 10) 26952 ± 9307 28910 ± 8547 0.48 

Comparison of 

males versus 

females P 

0.085 0.72  

SBWC (mL.min) (N = 20)7 48515 ± 15719  55948 ± 19169 0.04 

Females (N = 10) 52902 ± 19704 65501 ± 20890 0.04 

Males (N = 10) 44129 ± 9521 46396 ± 11687 0.57 

Comparison of 

males versus 

females P 

0.067 0.009  

AUC of % change from 

baseline against time in 

ACV8,9 (N = 20) expressed 

as %.min 

1983 (-2246 – 6941) -603.5 (-1610 – 2895) 0.048 

Females (N = 10) -1358 (-2494 – 2175) -1248 (-1935 – 569.9) 0.66 

Males (N = 10) 6921 (1788 – 9995) 1153 (-1112 – 4978) 0.037 

Comparison of 

males versus 

females P 

0.026 0.09  

OCTT10 (min) (N = 18) 60 (40 – 75) 40 (40 – 52.5) 0.02 

Females (N = 9) 75 (45 – 75) 50 (40 – 62.5) 0.22 

Males (N = 9) 40 (30 – 75) 40 (30 – 50) 0.077 
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1Data are shown as mean ± SD when normally distributed and median (IQR) when 

non-normal 

2Unless otherwise stated, data are for area under the curve (AUC) t = -15 min – t = 

135 min 

3P-values were calculated using Wilcoxon matched pairs signed rank tests for non-

normally distributed data and paired t-tests when normally distributed 

4 Not a significant P interaction for sex; for male versus females CRF P = 0.083, 

saline P = 0.58  

5 Time x sex interaction: CRF P = 0.0001, saline P = 0.0051 

6 Time x sex interaction: CRF P = 0.0001, saline P = 0.52 

7 SBWC: Small bowel water content. Time x sex interaction: CRF P = 0.0001, saline 

P = 0.0012 

8 ACV: ascending colon volume, AUC t = -45 – t = 135 min 

9 Time x sex interaction: CRF P = 0.0002, saline P = 0.02 

10OCTT: Orocaecal transit time. This is not an AUC, no 2-way ANOVA performed on 

the data  
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Table 2:  Effect of CRF versus saline on abdominal symptoms  

 CRF1,2 Saline P- value3 

Symptoms  Fullness 488 (151 – 703) 362 (205 – 561) 0.25 

Bloating 153 (33 – 393) 101 (29 – 301) 0.32 

Distension 102 (17 – 171) 113 (3.4 – 323) 0.99 

Nausea 41 (5 – 89)  8 (0 – 93)  0.60 

Abdominal 

pain 

60 (14 – 166)   68 (3 – 284)  0.29 

1 Data are presented as AUC median (IQR) mm.min, obtained from VAS 

2 Data are presented for N = 20 volunteers 

3 P-values were calculated using Wilcoxon matched pairs signed rank tests 
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Figure legends 

Figure 1: Salivary cortisol concentrations (mean ± SEM) throughout the study day for 

the 20 volunteers for the CRF (●) and saline (▪) arms of the study. The time of 

injection just before t = -45 min is indicated with the solid arrow, while the time at 

which the fructose drink is taken at t = 0 min is shown with the dashed arrow. 

Salivary cortisol concentrations were significantly larger (P = 0.0005, Student’s t test) 

after injection with CRF.    

 

Figure 2: Mean ± SEM breath H2 concentration of the 20 volunteers throughout the 

study day for the CRF (●) and saline (▪) arms of the study. The time of injection just 

before t = -45 min is indicated with the solid arrow, while the time at which the 

fructose drink is taken at t = 0 min is shown with the dashed arrow. There was no 

significant difference in breath H2 concentration for the two arms of the study (P = 

0.99, Student’s t test).   

 

Figure 3: Mean ± SEM gastric volumes for (A) 10 male and (B)10 female volunteers 

after intravenous injection of CRF (●, solid connecting line) or saline (▪, dashed 

connecting line), followed by a fructose drink. The time of injection just before t = -45 

min is indicated with the solid arrow, while the time at which the fructose drink is 

taken at t = 0 min is shown with the dashed arrow. Only female volunteers showed a 

significantly different gastric emptying between CRF and saline and there was a 

significant time x gender effect (P = 0.0001, two way ANOVA).   

 

Figure 4:  Small bowel water content (SBWC, mean ± SEM) for 20 volunteers after 

intravenous injection of CRF (●) or saline (▪), followed by a fructose drink. The time 
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of injection just before t = -45 min is indicated with the solid arrow, while the time at 

which the fructose drink is taken at t = 0 min is shown with the dashed arrow. SBWC 

was significantly larger on the saline arm of the study from t = -15 – t = 135 min (P = 

0.04, Student’s t test).    

 

Figure 5: An example of heavily T2-weighted coronal MR images from the abdominal 

region of a single volunteer 45 minutes after a fructose drink. On these images, 

freely mobile water is shown as bright white and tissues are dark. The volume of 

water in the small bowel (SBWC) after intravenous CRF (left) and saline (right) are 

compared.   

 

Figure 6: The percentage change in ascending colon volume (ACV) for 20 volunteers 

from immediately before injection of CRF (●) or saline (▪) followed by a fructose 

drink. The time of injection just before t = -45 min is indicated with the solid arrow, 

while the time at which the fructose drink is taken at t = 0 min is shown with the 

dashed arrow. The % change was significantly greater on the CRF arm of the study 

(P = 0.048, Student’s t test).   


