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Abstract: The aim of this paper is to look into the achievable repeatability and accuracy from Precise Point Positioning 

(PPP) daily solutions when using GPS only (PPP GPS), GLONASS only (PPP GLO), and GPS plus GLONASS (PPP 

GPS+GLO) for static positioning. As part of the assessment, a comparison with global double difference (DD) GPS 

daily solutions is presented.  It is shown, therefore, that all of the PPP daily solutions can achieve millimetric level 

repeatability, similar to the global DD GPS solutions. Furthermore, the mean of the biases between the PPP daily 

solutions and the global DD GPS daily solutions are constellation type dependent, while an improvement is found in the 

vertical component for PPP GPS+GLO over PPP GLO, as the latter may be more affected by any imperfections in the 

models for GLONASS antenna phase centre variations. It is concluded that PPP GLO daily solutions have the ability to 

be used as independent solutions to PPP GPS daily solutions for static positioning, and as an alternative to PPP 

GPS+GLO or global DD GPS daily solutions. 
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Introduction 

Different GNSS constellations are available these days.  This has led to an increase in the number of satellites available 

for the user, and the potential for improvements in the repeatability and accuracy of daily solutions for static 

positioning, which are significant factors when evaluating the use of multi-constellations as one constellation or a 

combination.  At the same time, the Precise Point Positioning (PPP) technique (Zumberge et al., 1997) has also 

developed to potentially provide daily solution estimates with millimetric level repeatability and accuracy for static 

positioning (Larson et al., 2004), as an alternative to the double-difference (DD) technique.  Following the restoration of 

the GLONASS constellation to a similar level as the GPS constellation, much research has been carried out on PPP 

when using GPS only (PPP GPS) and PPP when using GPS plus GLONASS (PPP GPS+GLO), i.e. using GLONASS as 

an aid to GPS. For instance Cai (2009) concluded that when using PPP GPS+GLO as opposed to PPP GPS, 

improvements in accuracy were 40% and 28% in the east and north components respectively and 24 % in the vertical 

coordinate component. However, according to Cai and Gao (2013) the accuracy will not be significantly improved if 

there are sufficient numbers of GPS satellites with good geometry.  Separately, Reussner and Wanninger (2011) showed 

that GPS+GLO had a reduced average horizontal coordinate error when compared to PPP GPS, Jokinen et al. (2013a) 

found that when changing from PPP GPS to PPP GPS+GLO the average vertical and horizontal coordinate errors were 

reduced by 17% and 4% respectively, and Jokinen et al. (2013b) showed that horizontal, vertical and 3D coordinate 

errors were reduced by 40%, 24% and 32% respectively when considering PPP GPS+GLO instead of PPP GPS. Alcay 

et al. (2012)  concluded that there is no significant difference between GPS and GPS+GLO for two networks, however 

they concluded that GLO is not accurate as GPS or GPS+GLO. While Anquela et al. (2013) concluded that PPP GLO is 

not accurate as PPP GPS or PPP GPS+GLO in either static or kinematic. Clearly, all of this previous research has 

tended to focus on comparisons of PPP GPS and PPP GPS+GLO, without any evaluation of PPP GLO itself.  Hence, in 

this paper, as an investigation of the potential benefits to static positioning from using PPP with a single or multi-

constellation, the achievable repeatability and accuracy from PPP GLO daily solutions, as independent solutions to PPP 

GPS daily solutions, and as an alternative to PPP GPS+GLO or global DD GPS daily solutions, will be assessed. 

PPP Daily Solutions Methodology 

All of the PPP daily solutions presented in this paper were processed using the POINT software, which was developed 

as part of the iNsight project (www.insight-gnss.org).  The POINT software is programmed in C++, and its core is the 

extended Kalman filter (EKF), as presented in Feng et al. (2008). 

http://www.insight-gnss.org/
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Undifferenced observations are used for each PPP daily solution, with the general observation equations for code and 

phase being as follows:  

For pseudo-range using C/A-Code on L
1
:
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Where: 

i is the satellite index; 

F represents the index of the GNSS frequency - for GPS satellites F = 1 (GPS L1) and F = 2 (GPS L2), while for GLO 

satellites F = 1 (GLO L1) and F = 2 (GLO L2) with 

                  (4) 

                  (5) 

and 

k represents the frequency channel;      = 1602 MHz for GLONASS L1 band;      = 562.5 kHz frequency separation 

between GLONASS carriers in the L1 band;      = 1246 MHz for GLONASS L2 band;      = 437.5 kHz frequency 

separation between GLONASS carriers in the L2 band. 

   represents the geometric distance from the receiver to the satellite;     is the receiver clock offset;     is the satellite 

clock offset;    is the first-order ionospheric bias term;    is the second-order ionospheric bias term; fF is the GNSS 

frequency in Hz;    is the tropospheric bias;    
  is the multipath error for pseudo-range measurements on the 

frequency F;    
  is the multipath error for C/A code measurements on L1;   

  is the multipath error for carrier-phase 

measurements on the frequency F;     
  is the noise for the pseudo-range measurements on the frequency F;    

  is the 
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noise for the C/A code measurements on L1;   
  is the noise for the carrier-phase measurements on the frequency F; 

        is the receiver code bias for pseudo-range measurements on the frequency F;        is the receiver code bias 

for C/A code measurements on L1;         
   is the satellite code bias for pseudo-range measurements on the frequency 

F;       
   is the satellite code bias for C/A code measurements on L1;    is the wavelength on the frequency F;   

  is 

the carrier phase ambiguity term on the frequency F;    is the receiver fractional cycle bias (FCB) on the frequency F; 

  
  is a satellite fractional cycle bias (FCB) on the frequency F. 

For all of the PPP daily solutions, a decoupled receiver clock is applied for both GPS and GLO (Collins et al., 2010), 

and the ionospherically-free observable is used, with no second order ionospheric bias corrections applied.  The 

ionospherically-free combinations for the code and phase observables follow (Dach et al., 2007a): 
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Where: 

P3 and L3 refer to the ionospherically-free code and ionospherically-free carrier combinations respectively;     and     

refer to the pseudo-range measurements on L1 and L2 respectively; L1 and L2 refer to carrier phase measurements on L1 

and L2 frequency; fi is the frequency on the L
1
 carrier; fj  is the frequency on the L2 carrier; and i = 1, j = 2 for GPS and 

GLO, except that for GLO f1 and f2 come from equations (4) and (5). 

In terms of the troposphere, the hydrostatic component of the zenith total delay is modelled using Saastamoinen 

(Saastamoinen, 1973) and the wet component of the zenith total delay is estimated as a state in the Kalman filter for 

every epoch, i.e. at 30 second intervals.  For describing how the slant tropospheric delay varies with respect to the 

receiver-to-satellite elevation angle, the Niell Mapping function (Niell, 1996) or NMF is used.  The azimuthal 

inhomogeneity of the troposphere is also taken into account by estimating two states for tropospheric gradient (E, N) 

using the Chen model (Meindl et al., 2004) and the Chen mapping function (Chen and Herring, 1997) to map the 

tropospheric gradient into the range domain. The Differential Code Bias (DCB) between C
1
 and P

1
, and between C

2
 and 

P
2
 are corrected using the products from the Centre for Orbit Determination in European (CODE) (Dach et al., 2007a). 

To look at the actual performance of the individual constellation, no weighting functions are applied to the observations, 

except for the measurement noise standard deviations that is needed for the EKF and is set to 2.0 m for pseudo-range 

measurements, and 0.01 m  for carrier phase measurements, for both GPS and GLO.  

In addition, for all of the PPP daily solutions: 
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Natural Resources Canada (NRCan) final precise ephemeris products are used as input, for satellite coordinates and 

satellite clock corrections; satellite and receiver antenna phase centre offsets and variations are corrected using an 

Antenna Exchange Format (ANTEX) (Kouba, 2009) file from the IGS, i.e. the I08.ATX file which is consistent with 

what was used in the creation of the precise ephemerides;periodic deformations of the Earth’s crust as solid Earth tides 

and ocean tidal loading are taken into account following Kouba (2009); phase wind up correction is also applied in 

accordance with Wu et al. (1993). Sub-daily pole and nutation motions are corrected according to the IERS conventions 

(McCarthy and Petit, 2004). Lastly, for all of the PPP daily solutions the carrier phase ambiguities were not fixed to 

integers, but kept as float, and the cycle slip detection method implemented follows Liu (2011). 

Global DD GPS Daily Solutions Methodology 

All of the global DD GPS daily solutions presented in this paper were processed using the Bernese software version 5.2 

(Dach et al., 2007b) .  These daily solutions were created by the NERC British Isles continuous GNSS Facility (BIGF) 

from a re-processing and re-analysis of daily data from 1997 to 2014.  The daily solution coordinate estimates were 

created using: C13 (CODE repro2/repro_2013) re-analysed satellite orbit and earth orientation parameter products; a 

global network, the IGb08 reference frame; mitigation of 1
st
 and higher order (2

nd
 and 3

rd
 order and ray bending) 

ionospheric effects; a-priori modelling of troposphere effects using VMF1G and mitigation using zenith path delay and 

gradient parameters; I08.ATX models for antenna phase centre variations; ambiguities were fixed to integer; and 

models for Solid Earth tides, ocean tidal loading and atmospheric tidal loading. A total of approximately 150 

continuous GNSS stations (CGNSS) in the British Isles, including 100+ that are part of the Ordnance Survey of Great 

Britain (OSGB) national network, were included in the processing along with some 200+ IGS stations, as illustrated in 

Figure 1. The epoch of the DD solutions is the observed day, with the daily coordinates of the 200+ IGS stations 

motioned forward from the IGb08 reference epoch of 2005-01-01 to the observed day using the IGb08 velocities. No 

stations are fixed for the network solution, but rather an adjustment of the global network on to the IGb08 reference 

frame is effected using a no-net translation and no-net scale minimum constraints approach. 
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Fig. 1  The network used for the global DD GPS daily solution on 12/01/2014 

Experimental Results 

For rigorous testing of the PPP daily solutions, as well as the stability of the precise ephemeris products and the POINT 

software, a reasonably long term data set is needed.  For the purposes of this study, a data set focussing on the 100+ 

OSGB CGNSS stations that have daily RINEX observation data files archived as part of BIGF and were included in the 

global DD GPS daily solutions created by BIGF was chosen, with the CGNSS station locations illustrated in Figure 2. 

 

Fig. 2  The 100+ OSGB CGNSS stations included in BIGF that were used for the assessment of PPP in this study. 

Experimental Results: Initial Investigation 

An initial investigation was carried out by choosing two OSGB CGNSS stations with continuous records and optimal 

24 hour observations recorded each day during the year 2014.  The two OSGB CGNSS stations selected were 

Amersham (AMER) and Aldeburgh (ALDB) with 350 and 354 days respectively.  For each of the three PPP daily 

solutions (GPS, GLO and GPS+GLO) and the global DD GPS daily solution, the mean of the daily solution coordinate 

estimates for one year were calculated.  The daily solution coordinate estimates for each day were then subtracted from 
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the mean to create daily coordinate differences in terms of Easting, Northing and Up components, as shown in Figure 3 

and Figure 4 for ALDB and AMER stations respectively after removing the trend caused by the tectonic plate motion.  

Figure 3 and 4 clearly illustrate the stability of the daily solutions as well as the products used for all scenarios, i.e. PPP 

(GPS, GLO and GPS+GLO) and global DD GPS.  Following this, it was possible to use the daily coordinate differences 

in order to calculate the repeatability of the daily solution coordinate estimates in each case in terms of Easting, 

Northing and Up components, following (Blewitt, 1989):  

      

 

 
 

   
 

 
        

  
 

 
   

 
 
  

 
 
   

 

  (1) 

Where n is the number of days processed;    is the daily solution estimated coordinate component for day “i”;    is the 

standard error of the daily solution estimated coordinate component for day “i”; and    is the mean of the daily 

solution estimated coordinate component. 

 

Fig 3 daily coordinates differences from the mean for one year for the AMER of 350 days 
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Fig 4 Daily coordinate differences from the mean for one year for the ALDB of 354 days. 

 

Bar charts representing the repeatability of the daily solution coordinate estimates as individual coordinate components 

(Easting, Northing, and Up) for the ALDB and AMER CGNSS stations are presented in Figures 5 and 6 respectively. 

 

Fig. 5 Repeatability of the daily solution coordinate estimates from PPP (GPS, GLO and GPS+GLO) and global DD 

GPS for ALDB CGNSS station. 
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Fig. 6 Repeatability of the daily solution coordinate estimates from PPP (GPS, GLO and GPS+GLO) and global DD 

GPS for AMER CGNSS station. 

It can be seen from Figures 5 and 6 that PPP GPS, PPP GLO and PPP GPS+GLO have similar repeatabilities in the 

Easting and Northing coordinate components as global DD GPS, and that PPP GPS+GLO has similar repeatability in 

the Up coordinate component as global DD GPS.  Furthermore, it is clear that PPP GLO has similar repeatbilities to 

PPP GPS in all coordinate components. 

Experimental Results: Extended Investigation 

Following the promising results from the initial investigation, an extended investigation was carried out based on all 

100+ OSGB CGNSS stations (see Figure 2) over a 7 week period, as detailed in Table 1.  In this extended investigation, 

only OSGB CGNSS stations that were continuous for a specific GPS week, had optimal 24 hour observations recorded 

each day, and were also present in the global DD daily solutions were included, which led between 56 and 85 OSGB 

CGNSS stations per week being available for analysis, as also detailed in Table 1. Bear in mind that the GPS week 1775 

stations (56) are the common stations for the 7 weeks. 

Table 1 GPS week and the number of OSGB CGNSS stations considered in the analysis for each week 

GPS Week No. of CGNSS Stations 

1775 56 

1776 85 

1777 79 

1778 74 

1783 74 

1784 76 

1785 79 
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Apart from that, the analysis in terms of repeatability followed a similar approach to the analysis used in the initial 

investigation but, in some instances, also considered weekly solution coordinate estimates as opposed to daily solution 

coordinate estimates for the stations mentioned in Table 1 with their relevant GPS week.  In these instances, for each of 

the three PPP daily solutions (GPS, GLO and GPS+GLO) and the global DD GPS daily solution, the mean of the daily 

solution coordinate estimates for seven weeks were calculated.  The weekly solution coordinate estimates for each week 

were then subtracted from the mean to create weekly coordinate differences in terms of Easting, Northing and Up 

components.  Following this, it was possible to use the weekly coordinate differences in order to calculate the 

repeatability of the weekly solution coordinate estimates in each case in terms of Easting, Northing and Up components. 

A bar chart representing the RMS of the repeatabilities of the weekly solution coordinate estimates from PPP (GPS, 

GLO and GPS+GLO) and global DD GPS as individual coordinate components (Easting, Northing, and Up) for all of 

the CGNSS stations considered is presented in Figure 7. 

 

Fig. 7  RMS of the repeatabilities of the weekly solution coordinate estimates from PPP (GPS, GLO and GPS+GLO) 

and global DD GPS for all CGNSS stations considered. 

As can be seen from Figure 7, the RMS of the repeatabilities of the weekly solution coordinate estimates in terms of 

Easting, Northing and Up components respectively is found to be: 2.1, 1.4 and 3.4 mm for PPP GPS; 1.6, 1.8 and 3.3 

mm for PPP GLO; 1.6, 1.7 and 2.8 mm, and 1.6, 1.7 and 2.8 mm for PPP GPS+GLO; and 1.9, 1.1 and 4.6 mm for 

global DD GPS.  Considering PPP GPS and PPP GLO, it can be seen from that the repeatabilities are the same to within 

sub-millimetres, which provides an indication of the potential for using PPP GLO as an independent solution to PPP 

GPS, rather than simply using GLONASS to aid GPS (PPP GPS+GLO). 

In addition to repeatability, it is also possible to estimate any differences between the weekly solution coordinate 

estimates from PPP (GPS, GLO and GPS+GLO) and the weekly solution coordinate estimates from global DD GPS.  In 
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this regard, measures of accuracy are obtained if the weekly solution coordinate estimates from global DD GPS, which 

are independent of the weekly solution coordinate estimates from PPP, are assumed to represent the most probable 

values. 

A bar chart representing the RMS of the differences between the weekly solution coordinate estimates from PPP (GPS, 

GLO and GPS+GLO) and the weekly solution coordinate estimates from global DD GPS as individual coordinate 

components (Easting, Northing, and Up) for all of the CGNSS stations considered is presented in Figure 8. 

 

Fig. 8  RMS of the differences between the weekly solution coordinate estimates from PPP (GPS, GLO and GPS+GLO) 

and the weekly solution coordinate estimates from global DD GPS for all CGNSS stations considered. 

As can be seen from Figure 8, the RMS of the differences between the weekly solution coordinate estimates from PPP 

(GPS, GLO and GPS+GLO) and the weekly solution coordinate estimates from global DD GPS in terms of the Easting, 

Northing and Up components respectively are found to be: 2.6, 2.5 and 5.5 mm for PPP GPS; 2.1, 4.4 and 8.6 mm for 

PPP GLO; and 2.0, 3.3 and 5.5 mm for PPP GPS+GLO, which provides a further indication of the potential for using 

PPP GLO as an independent solution to PPP GPS, rather than simply using GLONASS to aid GPS (PPP GPS+GLO). 

As a further check, a bar chart representing the RMS of the differences between the daily solution coordinate estimates 

from PPP (GPS, GLO and GPS+GLO) and the daily solution coordinate estimates from global DD GPS as individual 

coordinate components (Easting, Northing, and Up) for all of the CGNSS stations considered is presented in Figure 9. 
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Fig. 9  RMS of the differences between the daily solution coordinate estimates from PPP (GPS, GLO and GPS+GLO) 

and the daily solution coordinate estimates from global DD GPS for all CGNSS stations considered. 

As can be seen from Figure 9, the RMS of the differences between the daily solution coordinate estimates from PPP 

(GPS, GLO and GPS+GLO) and the daily solution coordinate estimates from global DD GPS in terms of the Easting, 

Northing and Up components respectively is found to be: 3.6, 3.1 and 7.6 mm for PPP GPS; 3.7, 4.9 and 10.7 mm for 

PPP GLO; and 3.8, 4.0 and 7.8 mm for PPP GPS+GLO, which confirms the previous statements made with regards to 

the potential for using PPP GLO as an independent solution to PPP GPS, rather than simply using GLONASS to aid 

GPS (PPP GPS+GLO). 

However, it is clear that the RMS of the differences statistic does not give a complete picture of any biases present, as it 

does not consider the fact that these differences can be positive or negative. To overcome this, a bar chart representing 

the mean of the differences, or the biases, between the daily solution coordinate estimates from PPP (GPS, GLO and 

GPS+GLO) and the daily solution coordinate estimates from global DD GPS as individual coordinate components 

(Easting, Northing, and Up) for all of the CGNSS stations considered is presented in Figure 10. 

 

Fig. 10  Mean of the differences, or the biases, between the daily solution coordinate estimates from PPP (GPS, GLO 

and GPS+GLO) and the daily solution coordinate estimates from global DD GPS for all CGNSS stations considered. 
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It is clear from Figure 10, therefore, that the mean of the differences, or the biases, between the daily solution 

coordinate estimates from PPP (GPS, GLO and GPS+GLO) and the daily solution coordinate estimates from global DD 

GPS are constellation type dependent. There is also a slight worsening in the Easting and Northing coordinate 

components and an obvious worsening in the Up coordinate component for PPP GLO when compared to PPP GPS. 

At this stage, it is also worth considering the validity of the assumption that the weekly/daily solution coordinate 

estimates from global DD GPS, which are independent of the weekly solution coordinate estimates from PPP (GPS, 

GLO and GPS+GLO), are assumed to represent the most probable values.  It is clear from Figure 10 that there is a 

consistently larger bias in the Northing component than in the Easting component, with the Northing component from 

PPP (GPS, GLO and GPS+GLO) being to the north of the Northing component from global DD GPS.  One reason for 

this could be a reference frame issue, as while the PPP technique relies only on the precise ephemeris products, the DD 

technique relies on these but is also affected by the network of global CGNSS stations that were used.  Re-considering 

Figure 1, which gives an example of the network that was used for the global DD GPS solution on 2014/01/12 (DOY 

012 of 2014), the global network contains 97 CGNSS stations to the south of the lowest latitude OSGB CGNSS station 

(SCIL, lat = 49.9) but only 19 CGNSS stations to the north of the highest latitude OSGB CGNSS station (KIRW, lat = 

58.9). 

Furthermore, the subtle differences in the biases for the Northing coordinate component for PPP GLO and PPP GPS 

could be a constellation issue related to the higher inclination of the GLONASS satellites when compared to GPS, 

which results in a significantly different pattern for the GLONASS and GPS constellations as shown in Figure 11. 

 

Fig. 11  Representative satellite constellation availability (Left: GPS, Right: GLONASS) for ALDB station on DOY 12, 

2014. 
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To support that idea, the differences between the mean weekly solution of PPP GPS, PPP GLO and PPP GPS+GLO 

were subtracted from the mean weekly solution from the global DD GPS; see Figure 12 for 85 stations in GPS week 

1776. 

 

Fig. 12 North biases relative to the DD Solution for 85 stations in GPS week 1775.  

It is clear from the Figure 12, that all PPP scenarios’ northing differences have almost the same shape and increasing 

differences with the increasing of the station latitude. These increasing differences indicate the effect of the reduced 

CGNSS stations to the north for global DD GPS solution. In addition, while PPP GLO has available satellites to the 

north, it has larger differences than PPP GPS because of the reduced availability of the GPS constellation with the 

increasing of the station latitude. While PPP GPS+GLO will has the balanced differences between both constellations 

as shown in Figure 12.  

Lastly, considering the biases in the Up coordinate component, it is clear that in the case of PPP GPS+GLO there is 

effectively a balancing of the errors present in PPP GPS and PPP GLO.  This clearly results in an improvement in the 

Up component for PPP GPS+GLO over PPP GLO, as the latter may be more affected by any imperfections in the 

models for GLONASS antenna phase centre variations. 
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Conclusions 

In this paper, the achievable repeatability and accuracy from PPP daily solutions when using GPS only (PPP GPS), 

GLONASS only (PPP GLO), and GPS plus GLONASS (PPP GPS+GLO) for static positioning has been assessed.  As 

part of the assessment, a comparison with global DD GPS daily solutions has been presented.  Based on the RMS of the 

repeatabilities of the weekly solution coordinate estimates, and the RMS of the differences between the PPP daily 

solution coordinate estimates and the global DD GPS daily solution coordinate estimates, it is shown that all of the PPP 

daily solutions can achieve millimetric level repeatability, similar to the global DD GPS solutions.  Furthermore, the 

mean of the biases between the PPP daily solutions and the global DD GPS daily solutions are constellation type 

dependent, while an improvement is found in the Up component for PPP GPS+GLO over PPP GLO, as the latter may 

be more affected by any imperfections in the models for GLONASS antenna phase centre variations. 

It is concluded, therefore, that PPP GLO daily solutions have the ability to be used as independent solutions to PPP GPS 

daily solutions for static positioning, and as an alternative to PPP GPS+GLO or global DD GPS daily solutions. 
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Highlights 

 Comparison between Precise Point Positioning (PPP) and Global Double Difference (DD). 

 PPP GLO can reach the Accuracy and the Precision of the Global DD. 

 PPP has a constellation type biases because of the geometry of the constellation. 

 PPP biases are affected by the station’s latitude. 

 


