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Archaeology and archaeometallurgy: some
unresolved areas in the interpretation of
analytical data
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Abstract This paper uses examples from Mediterranean and in particular Italian prehistory to explore the interface between

prehistoric archaeology and metals analysis by examining three areas: the usefulness of data from past analyses (‘what is it

made of?’), lead isotope analysis and the problem of unpublished data (‘where is it from?’), and the interpretation of analytical

data (‘what does it mean?’). Issues discussed include big data, the integration of datasets from different analytical

programmes (especially where analytical results are in disagreement), and open access and the withholding of data

through incomplete publication, which means that conclusions cannot be verified. It offers some suggestions as to how

communication between archaeologists and archaeometallurgists can be improved.
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Statement of significance
Investigation is science when it asks specific questions
and when its conclusions can be repeated and verified.
This paper applies the important themes of big data
(the integration and mining of disparate datasets)
and open access (the free availability of scientific
data) to the study of ancient metallurgy. It argues
that communication between archaeologists and
archaeometallurgists needs to be improved, and
offers practical suggestions as to how that may be
achieved, in order to integrate analytical findings
more effectively into archaeological discourse.

Data availability
All data used in this article are fully published and
referenced.

Introduction
This brief discussion paper looks at the interface
between prehistoric archaeology and metals analysis,
from the point of view of Mediterranean and in par-
ticular Italian prehistory, by examining three areas
where problems in the interpretation of analytical
results are unresolved. These comprise the usefulness
of data from past analyses (‘what is it made of?’),
lead isotope analysis and the problem of unpublished

data (‘where is it from?’), and the interpretation of
analytical data (‘what does it mean?’).

My approach is that of a prehistoric archaeologist
rather than that of a materials scientist, but I make
no apologies for that, as analytical data from materials
science is only of use to archaeology if it answers
specific questions, and as will become clear, I believe
that there is a serious deficit in the use of analytical
data by prehistoric archaeologists.

Using data from past analytical
programmes
Compositional data has been generated for prehistoric
artefacts since at least the end of the eighteenth
century (Pollard 2013), and ‘what is it made of?’ was
the first question that was asked of materials scientists
(e.g. in Britain, Pearson 1796). Compositional data is
typically used for two purposes, to infer provenance
and to track technological innovation. In an evolution-
ary paradigm where prehistoric copper metallurgy
‘progressed’ from the working of native copper to
smelting and then from arsenical copper to tin
bronze (a paradigm which may now be questioned,
at least for the Americas – Lechtman 1996), the ques-
tion of an artefact’s composition was long perceived
to have great heuristic value, not least as an indication
of relative chronology. However as the accuracy and
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precision of analytical techniques has improved
through time, and the range of component elements
detected has widened from major to minor, rare
earth and trace elements, a large number of data of
varying reliability have been produced. Moreover,
and it would be invidious to cite particular examples,
especially in Mediterranean archaeology many ana-
lyses have been carried out using inappropriate tech-
niques (perhaps because a specialist in the local
University offered their services for free) and without
necessarily a clear research question; indeed the lack
of a clear research question is perhaps often the
reason why inappropriate techniques are chosen. In
the specific case of Italian prehistory, analytical data
are often published in conference proceedings, local
journals and other publications which may rarely circu-
late outside Italy or indeed even the region in which
they were produced.

The amount of data available should not be under-
estimated: for example, the Stuttgart optical emission
spectroscopy analytical programme published 22,000
determinations (Junghans, Sangmeister and Schröder
1960; 1968; 1974), and 801 of these relate to artefacts
with a provenance in present-day Italy (Pearce 1998,
51). Such a large dataset, for which most of the data
was generated using the same analytical techniques
and equipment and is therefore presumably internally
consistent, allows large-scale statistical investigation.
The Stuttgart team carried out univariate statistical
analysis on five of the 11 elements determined
(Arsenic, Antimony, Silver, Nickel and Bismuth - Jun-
ghans, Klein and Scheufele 1954; Junghans, Sangmeis-
ter and Schröder 1960, 57–90). However we might
doubt the metallurgical groups which they identified.
One of the elements included in the statistical analysis
was Arsenic, which is potentially the result of alloying
or, at the very least, the result of deliberate selection
of ores for particular artefact classes (Pearce 2007,
84–86) and which can be lost through oxidation
when an artefact is re-melted so that Arsenic content
can be used as a proxy to detect recycling (Bray and
Pollard 2012; Pollard, Bray and Gosden 2014).
Another was Bismuth, which (like Lead) segregates
during solidification and so will vary in different parts
of an artefact (Slater and Charles 1970). The Stuttgart
group included the results of other analytical pro-
grammes in their statistical analysis: the 1374 spectro-
metric analyses carried out from 1931 by Otto and
Witter (1952), plus 98 analyses of artefacts from
Britain and Ireland (Coghlan and Case 1958), 37 from
France (Briard and Giot 1956) and 21 from Slovakia
(Novotná 1955). More recently, Rüdiger Krause (2003;
cf. Pernicka 1995, 79–99) has reassessed the compo-
sitional groups proposed by the Stuttgart team, and
his cluster analysis suggests that they are largely
valid. The challenge is however the integration of
this data with that from other analytical programmes,
such as (to stick with my Italian focus) Barker and
Slater’s dataset from metalwork in the Rome Pigorini
Museum, amounting to 106 analyses (Barker 1971;

Slater 1971). This latter dataset was produced by
atomic absorption spectroscopy and arc emission
spectroscopy and determined the same range of
elements as the Stuttgart programme, so integration
should arguably be relatively easy (but cf. Table 1).
However, a vast range of analytical techniques have
been applied to Italian prehistoric metalwork,
ranging from wet chemistry to atomic absorption
spectrometry and instrumental neutron activation
analysis (e.g. Berzero et al. 1991).

Anyone who has tried to collect and simply collate
such data will know that there are a number of macro-
scopic problems which need resolution, such as the
different ranges of elements determined and the
limits of detection of the technique and equipment
used, but perhaps the most obvious problem arises
where the same artefact has been analysed more than
once and the results are not in agreement. Tables 1
and 2 (Pearce 1994, 54–55, tabs 7 & 9) provide an
example: according to the Stuttgart analyses, the six
axes from the Pieve Albignola hoard conserved at
Rome have an Arsenic content of between 0.15% and
0.02% (average 0.78%), whereas Slater did not detect
the element (Table 1); the Stuttgart programme ana-
lysed just one axe from the same hoard conserved at
Pavia and found it to have an Arsenic content of
0.03% but neutron activation analysis by Berzero et al.
(1991, n.31) gave a determination of 0.002971% (Table
2). In all, Berzero and colleagues (1991) analysed 26 of
the axes from the Pieve Albignola hoard conserved at
Pavia, and their Arsenic content was found to vary
between 0.003361% and 0.001371% (average
0.002209%; Figure 1). As we have seen, Arsenic was
one of the elements used by the Stuttgart team to
establish their compositional groups and can be used
as a proxy for recycling, but the discrepancy between
the analytical programmes is so great (an order of mag-
nitude) as to throw any considerations based on its
content in these axes into doubt. The analyses by
Berzero et al. also suggest that Slater’s rather than the
Stuttgart figures for Arsenic are correct, despite Per-
nicka’s (1995, 85, Abb.33) dismissal of them.

Müller and Pernicka (2009) acknowledged that
there are differences between the results obtained
on Iberian material by different analytical programmes,
especially as regards Silver and Antimony, but argued
that they were broadly comparable and that there was
no effect on the compositional groups identified. A
number of explanations for such discrepancies may
be adduced, such as analytical error, but the doubt
remains that they may be due to compositional vari-
ation within individual artefacts. Compositional vari-
ation was acknowledged by Junghans, Klein and
Scheufele (1954, 102, Abb.18, Tab.4) but they dis-
missed its impact on their compositional groups. It is
however worth noting that most of the copper-
based metalwork analysed in Europe relates to early
periods of metalworking when we may imagine that
metallurgy was relatively unsophisticated. If compo-
sitional variation within an artefact is greater than
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the range of experimental error then compositional
data may be of limited value, however reliable the
analytical techniques used (indeed it should be

stressed that the more precise such techniques are,
the greater the potential impact of compositional
variability!).

Table 1. Comparison between two different programmes of spectroscopic analysis, for six early Bronze Age
flanged axes from Pieve Albignola (PV, Italy) at Rome, Pigorini Museum (Pearce 1994, tab.9). Data is reported as
published: SAM = Junghans, Sangmeister and Schröder 1974, 318–9, n.20422-20427; Slater 1971, n.4i, 4j, 7c-g;
n.d. = not determined; Tr. = trace; + = presence

Axe n.23190 Axe n.23191 Axe n.23192 Axe n.23193 Axe n.23194 Axe n.23195

% SAM
Slater
1971 SAM

Slater
1971 SAM

Slater
1971 SAM

Slater
1971 SAM

Slater
1971 SAM

Slater
1971

Sn 5 1.49 1.8 0.92 3.9 2.52 3.9 2.27 0.77 1.62 0.58 1.78
Pb 0 0 0.08 0.029 0 0 0 0 0 0 0 0
As 0.15 0 0.03 0 0.15 0 0.07 0 0.02 0 0.05 0
Sb Tr 0.0427 0 0.096 Tr 0.039 Tr 0.042 Tr 0.019 Tr 0.032
Ag Tr 0.0017 Tr 0.0024 Tr 0 Tr 0.002 Tr 0 Tr 0.005
Ni Tr 0 Tr 0 0 0.24 0 0 Tr 0 Tr 0
Bi 0 n.d. 0 n.d. 0 n.d. 0 n.d. 0 n.d. 0 n.d.
Au 0 n.d. 0 n.d. 0 n.d. 0 n.d. 0 n.d. 0 n.d.
Zn 0 0.008 0 0.059 0 0.012 0 0.008 0 0.002 0 0.036
Co 0 n.d. 0 n.d. 0 n.d. 0 n.d. 0 n.d. 0 n.d.
Fe +++ 0.042 + 0.023 +++ 0.24 +++ 0.042 0 0.029 +++ 1.19

Table 2. Comparison between different analytical techniques, for an early Bronze Age flanged axe from Pieve
Albignola (PV, Italy) at Pavia, Musei Civici (Pearce 1994: tab.7). Data sources: Optical emission spectroscopy –

Junghans, Sangmeister and Schröder 1960, 108, 127, n.635; neutron activation analysis and atomic absorption
spectroscopy – Berzero et al. 1991, n.31; n.d. = not determined.

Element % Optical emission spectroscopy
Neutron activation analysis (except Pb,

determined by atomic absorption spectroscopy)

Sn 0.78 0.851
Pb 0 0.008930
As 0.03 0.002971
Sb 0 0.001731
Ag 0 0.010936
Ni 0.02 0.4963
Bi 0 n.d.
Au 0 0.000451
Zn 0 0.000493
Co 0 0.001831
Fe 0.04 0.037

Figure 1. Plot of As versus Ag in early Bronze Age flanged axes from Pieve Albignola (PV, Italy) at Pavia, Musei
Civici. Data source: Berzero et al. 1991, tabs II and III.
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A further problem relates to the validation of ana-
lyses: how do we verify published results when there
are discrepancies between analytical programmes?
Not all publications detail the exact procedures fol-
lowed, their experimental error or even whether they
have used reference standards. This is particularly a
problem where data is published in archaeological
journals or appendices to archaeological works rather
than in publications where such details are required
as part of the normal editorial standards, as in main-
stream archaeological science journals.

There are therefore a number of specific challenges
concerning this large body of data, but it simply
cannot be ignored, as it unfortunately tends to be by
most prehistoric archaeologists (Pearce 1998, 51); I
explore some of the reasons for this below. There are
many reasons why we need to consider this data,
but they include the simple fact that once an artefact
has been sampled (and early analyses tended to
require large samples), most museum curators or heri-
tage managers are loathe to permit further damage to
the objects in their care. ‘Big data’, or the integration
and mining of large and disparate datasets, has
become a key priority in a wide range of scientific dis-
ciplines (see e.g. for Archaeology, Bevan 2012; e.g. for
other disciplines, Reichman, Jones and Schildhauer
2011; Ratib et al. 2014), not least because data which
exists should be exploited as far as possible, and it is
my contention that the exploration and integration
of existing analytical datasets is a major priority for
archaeological research.

How can this be done, given the range of analytical
techniques used, the differing elements determined
and the problems of varying precision and accuracy?
One approach, applied by Krause, has been explora-
tory comparison of two variables at a time (i.e. compo-
sitional elements) using graphs with logarithmic scales
(e.g. Krause 1988, Abb.76–8; cf. my Figure 1). Others,
such as Liversage (2000) and de Marinis (1979; 2006),
have used Waterbolk and Butler’s (1965) frequency dis-
tribution histograms. Bray and Pollard have recently
suggested using the presence/absence (based gener-
ally on a cut-off at 0.1%, renormalizing to account for
alloying) of Arsenic, Antimony, Silver and Nickel to
define groups (Bray and Pollard 2012; Pollard and
Bray 2014; Bray et al. 2015). These approaches are of
course limited to the lowest common denominator
of the elements determined by the greatest number
of analytical programmes, and it is by no means sure
that these elements are those with the greatest heur-
istic value, but they have arguably yielded important
results.

The problem of unpublished data: lead
isotope analysis
It has become clear that lead isotope analysis is a
powerful tool for investigating the provenance of pre-
historic metalwork (‘where is it from?’), as was shown
by the debate concerning the ox-hide ingots of the

late Bronze Age Mediterranean basin (usefully sum-
marised in Lo Schiavo et al. 2009). Indeed, and
counter-intuitively, it is now generally agreed that
the ox-hide ingots found in copper-rich Sardinia
were imported all the way from copper-rich Cyprus,
rather than being made from local ores, though the
reason why ‘coal was taken to Newcastle’ in this way
is still not understood (Hauptmann 2009).

Lead isotope ratios are generally presented in two-
dimensional plots (e.g. Figure 2) which may be easily
generated from spreadsheets, but in reality there is
rarely an unequivocal correlation between the field
relating to the ore body and that relating to the arte-
fact(s) analysed (Pollard 2009, 184, 187), even where
the artefacts were found in the neighbourhood of
the outcrop and so their provenance would seem
prima facie easy to establish (Artioli et al. 2012, 171–
3, figs 3 and 4). There may be a number of reasons
for this discrepancy, ranging from variations in lead
isotope ratios within the ore body itself (the result of
a complex geological history), as yet not understood
effects of the smelting and alloying processes, or
simply that the actual ore-body exploited in prehistory
has not yet been sampled (a rather dangerous
argumentum e silentio), but the discrepancy needs elu-
cidating and investigating, rather than denying.

A more serious problem relates to the way that
lead isotope analyses are published, or perhaps it
would be better to say, sometimes not published.
The problem seems to be the great investment
needed to create a reference database of relevant
ore bodies, which gives those who have created it an
advantage over those who have perhaps analytical
data pertaining to artefacts that they have analysed,
but lack the full range comparative data with which
to compare their results, and so cannot reach useful
conclusions. In the early period of the application of
lead isotope data to problems of archaeological prove-
nance, the Gales were (perhaps justly) accused of not
always publishing their data fully, limiting their data
presentation to two-dimensional plots of isotope
ratios, and inconsistencies in the reporting of analyses
(Budd et al. 1995, 5). This meant that others could not
easily verify the correlations that they claimed or
reproduce their results. They answered their critics by
publishing databases for ore-bodies of the western
Mediterranean (Stos-Gale et al. 1995), the Aegean
(Stos-Gale, Gale and Annetts 1996), Cyprus (Gale
et al. 1997), Bulgaria (Stos-Gale et al. 1998) and the
British Isles (Rohl 1996) and more recently their
dataset of analyses has slowly begun to be put on
line (OXALID, the Oxford Archaeological Lead Isotope
Database available at http://oxalid.arch.ox.ac.uk/,
accessed 10 February 2015).

It is of course axiomatic that science should be ver-
ifiable and repeatable, and so we might expect that
lead isotope data should now be fully published and
available to the scientific community, but this is not
always the case. Thus for example Jung, Mehofer and
Pernicka (2011) present lead isotope ratio plots in a
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scientific publication for artefacts whose provenance is
of great archaeological importance, assuring us that
the full data ‘ …will be published elsewhere… ’
(Jung, Mehofer and Pernicka 2011, 236; promised
again in Jung and Mehofer 2013, 187 note 33, but
still unpublished at the time of submission of this
paper, April 2015!), or analytical data for the artefacts
is published, but the reference ore-body dataset from
which the provenances are deduced remains unpub-
lished or unreferenced (e.g. Stos 2009).

In fairness to these authors, many scientific journals
(and other publications) do not like to publish large
amounts of raw data, but this lack of publication
means that the conclusions drawn are neither verifi-
able nor repeatable (using the datasets used by the
authors). I would argue therefore that we might ques-
tion whether these publications constitute true
science. There is also another consideration, which
relates to the ‘open access debate’ (see for example
Darley, Reynolds and Wickham 2014) and it is appro-
priate to raise this issue in Science and Technology of
Archaeological Research, which is of course an open-
access journal with a data availability policy. Most
archaeometrical research in Europe at least is publicly
funded, either through direct project grants or
indirectly through the salaries of public employees
working in publicly funded laboratories. As such it is
arguable that the results of such research should be
available to the public; certainly the data is not
private property.

It is therefore my contention that editors of jour-
nals, conference proceedings and other publications
should refuse to publish the conclusions of lead
isotope analysis programmes where the data

necessary for the verification of those conclusions are
not available to readers, whether in the same publi-
cation, another publication, or an on-line data reposi-
tory. Those colleagues called upon to referee such
works should make the same point.

The effect of such a policy would be to allow an
immediate and major advance in the interpretation
of the results of the many programmes of analysis
undertaken to date. It would also allow new analytical
programmes to enter the arena, competing on a level
playing field with those that have existed for a long
time but unfortunately have not published their geo-
logical data.

Lack of engagement with mainstream
archaeology
Analytical data from materials science is only of use to
archaeology if it answers specific questions (‘what
does it mean?’); analysis is of course not an end in
itself. It is, however, my contention that there con-
tinues to exist a serious deficit in the use of analytical
data by prehistoric archaeologists. There are a
number of reasons for this.

In an insightful contribution to the lead isotope
debate, James Muhly commented on the difficult
relationship between analytical scientists and archae-
ologists, noting how ‘ … far-reaching claims were
made early on, claims that could not be supported
on the basis of the available evidence. Practitioners
[55] came to be seen as scholars who were making
up the rules as they went along’ (Muhly 1995, 54–5).
He further noted ‘Most archaeologists welcome scien-
tific evidence but abhor scientific controversy. They

Figure 2. 208Pb/206Pb versus 207Pb/206Pb Lead isotope plot, suggesting that some of the Bronze Age bronzes
from the Lake Garda lake villages were made from south Alpine copper. Data sources: south Alpine ores – Nimis
et al. 2011: tab.2 and for Val Mala, Köppel and Schroll 1985, tab.4; Garda bronzes – Pernicka and Salzani 2011,
tab.4.
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want answers: if those answers derive from some of
the most sophisticated techniques known to science,
so much the better, but it is the answer, not the tech-
nique, that interests the archaeologist’ (Muhly 1995,
55). I do not want to argue that the technique is not
important: indeed its refinement, its limitations and
its applicability are all important aspects of scientific
research. The problem is that archaeological scientists
often seem more interested in the technique than in
the specific answers that it can give to archaeological
problems.

Archaeometallurgists seem to have formed a
ghetto (Killick 2015, 298), with their own conferences
(such as the very successful ‘Archaeometallurgy in
Europe’ series) and journals (whether specific to
archaeometallurgy like Historical Metallurgy or more
general archaeological science journals, like Archaeo-
metry or Journal of Archaeological Science). It is rare
that articles appear in mainstream journals discussing
archaeometallurgical topics (though see, for example,
Pearce 1998 or the 1995 Special section on ‘Lead
isotope analysis and the Mediterranean metals trade’
in Journal of Mediterranean Archaeology 8 (1), 1995,
1–75), and when sessions are organised at more
general archaeological congresses, like the Annual
Meetings of the European Association of Archaeolo-
gists, they tend to be dominated by discussion of tech-
nique rather than the contribution that these can offer
to the resolution of archaeological problems, and so
are deserted by the generalist archaeologists who
are uninterested in the minutiae of technical problems.
If archaeometallurgists want to escape the appendices
of archaeological reports they must leave their ghetto
and engage with the mainstream archaeological
debate. This is not to argue that the generalist archae-
ologists are not also responsible for this lack of com-
munication. Too many (especially in the USA – Muhly
1980, 102) lack specific training in archaeological
science to equip them to use archaeometallurgical
data, and improving the training of archaeologists,
for example in statistics, may alleviate this problem,
but as Muhly (1980, 102) remarked, “As archaeology
grows ever more technical and scientific the problems
of control and comprehension facing the humanist
grow greater’. My point is that if archaeometallurgists
want their data to be used they have to communicate
them to the generalists, and in a way that can be
understood without misrepresenting their complexity.
I would add that if the data are not used, if they do not
answer specific questions, then they are probably not
true science.

A further reason for the lack of communication
with mainstream archaeology is the fact that many
senior figures in archaeometallurgy were not trained
as archaeologists and thus do not feel the need to
engage with the debate about social, symbolic or
other aspects of interest to archaeologists (Killick
2015, 298). They also do not always understand the
point that ‘archaeologists relish the use of scientific
evidence and the conclusions drawn therefrom, if

they fit within the limits of a general sense of “historic
probability”’ (Muhly 1995, 57): that is to say, archaeolo-
gical data has an important role in the framing of the
interpretations and hypotheses resulting from analyti-
cal data.

Conclusions
Answering the important questions ‘what is it made
of?’ and ‘where is it from?’ is primarily specific to the
domain of archaeometallurgists (though of course
the latter also involves typological and other studies),
but their interpretation (‘what does it mean?’) is perti-
nent to mainstream archaeology. Answering this latter
question requires better communication between
archaeometallurgists and archaeologists, and in this
short polemic I have tried to offer some suggestions
for the improvement of dialogue between them,
which I hope will lead to more use of analytical data
by archaeologists and thus ultimately to better science.
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