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Key point’s summary 

• This study aimed to provide molecular insight into the differential effects of age and 

physical inactivity on the regulation of substrate metabolism during moderate intensity 

exercise. 

• Using the A-V balance technique, we studied the effect of one-leg immobilization for 2 

weeks, on leg substrate utilization in young and older men during two-legged dynamic knee-

extensor moderate intensity exercise, as well as changes in key proteins in muscle substrate 

metabolism before and after exercise.  

• Age and immobilization did not affect relative carbohydrate and fat utilization during 

exercise, but the older men had higher uptake of exogenous fatty acids (FA), while the 

young men relied more on endogenous FA during exercise. 

• Having used a combined whole leg and molecular approach we provide evidence to suggest 

that both age and physical inactivity result in metabolic inflexibility, but that this only 

partially occurs through the same mechanisms.  

  



3 
 

Abstract 

Age and inactivity have been associated with metabolic inflexibility. Here, we attempt to 

disentangle these factors by studying the effect of 2 weeks’ unilateral leg immobilization on 

substrate utilization across the legs during moderate intensity exercise in young (n=17; 23±1 years) 

and older (n=15; 68±1 years)  men, while the contralateral leg served as control. After 

immobilization, the participants performed two-legged isolated knee-extensor exercise with each 

leg kicking in a separate ergometer at 20±1 Watt (~50% Wattmax) for 45 min with catheters inserted 

in the brachial artery and both femoral veins. Biopsy samples obtained from vastus lateralis 

muscles of both legs before and after exercise were used for analysis of protein content and enzyme 

activities. During exercise, leg substrate utilization (RQ) did not differ between groups or legs. Leg 

fatty acid (FA) uptake was greater in older than in young men, and while young men demonstrated 

net leg glycerol release during exercise, older men showed net glycerol uptake. At baseline, muscle 

pyruvate dehydrogenase complex activity, protein content of adipose triglyceride lipase (ATGL), 

acetyl-CoA carboxylase 2, AMP-activated protein kinase (AMPK)γ3 were higher in young than in 

older men. Furthermore, ATGL, plasma membrane-associated FA binding protein, and AMPKγ3 

subunit protein content were lower in the immobilized than the contralateral leg in young and older 

men. Despite no change in RQ, there were several changes in muscle with immobilization, thus 

suggesting a deranged regulation of substrate utilization, which could lead to metabolic inflexibility. 

Furthermore, the young and older men preferentially mobilized FA for oxidation from different 

sources during moderate intensity exercise. 
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Abbreviations list: ACC2, Acetyl-CoA carboxylase 2; AMPK, AMP-activated protein kinase; 

ATGL, adipose triglyceride lipase; AUC, area under the curve; CON, control leg; CS, citrate 

synthase activity; DANHES, Danish Health Examination Survey; DXA, dual energy X-ray 

absorptiometry; FA, fatty acid; FABPpm, plasma membrane-associated fatty acid binding protein; 

HAD, β-hydroxyacyl-CoA dehydrogenase; HSL, hormone-sensitive lipase; IM, immobilized leg; 

IMTG, intramuscular triglyceride; LPL, lipoprotein lipase; PDC, pyruvate dehydrogenase complex; 

RER, respiratory exchange ratio, RQ, respiratory quotient; VDAC, voltage dependent ion channel. 
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Introduction 

Metabolic inflexibility is defined as the inability to adjust substrate oxidation and storage to 

substrate availability (Bonadonna et al., 1994; Ritz et al., 1998; Kelley & Mandarino, 2000; Kelley 

et al., 2002; Storlien et al., 2004). Both age and inactivity are associated with muscle metabolic 

inflexibility although it is currently not known whether one is secondary to the other or if the effects 

are additive. Thus, there is a gap in our knowledge as to how age and inactivity affect muscle 

substrate uptake, storage and oxidation both at rest and during exercise and how this may be 

coupled to metabolic inflexibility and subsequent lipid accumulation. This potentially has major 

health implications because metabolic inflexibility promotes lipid accumulation that may lead to 

impaired glucose metabolism (Kelley & Mandarino, 2000).  

The relative rate of fuel oxidation is influenced by training status and exercise intensity/duration 

(Henriksson, 1977; Hurley et al., 1986; Martin et al., 1993; Friedlander et al., 2007; Helge et al., 

2007), as well as plasma FA availability (O'Neill et al., 2004; Watt et al., 2004). Since whole-body 

aerobic capacity is decreased with age and inactivity (Lexell et al., 1988; Fielding et al., 2011) the 

latter two may be associated with a decline in muscle fat oxidation  (Meredith et al., 1989; 

Lonnqvist et al., 1990; Sial et al., 1996; Levadoux et al., 2001; Solomon et al., 2008). Although this 

might be secondary to a decrease in physical activity level with age. In line with this contention, the 

decline in skeletal muscle respiratory capacity (Sial et al., 1996; Conley et al., 2000) and the 

observed lipid accumulation in skeletal muscle (Petersen et al., 2003; Cree et al., 2004; Wall et al., 

2015) may account for the age-related changes in whole body composition (Levadoux et al., 2001).  

Several intramusclular steps in metabolism are likely to play a role in age and inactivity mediated 

lipid accumulation (e.g. fatty acid (FA) uptake, lipid uptake and storage and regulation of 

mitochondrial substrate uptake). Indeed, while expression of muscle FABPpm, although not CD36 
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and FATP, is higher in trained than untrained individuals (Kiens et al., 2004) and higher after one-

leg training for 3 weeks (≈50%) (Kiens et al., 1997), it is still unclear whether aging and inactivity 

affect muscle FABPpm and CD36. 

The regulation of lipolysis  is probably another pivotal factor in lipid accumulation. At rest ~50 % 

of the FA taken up by the skeletal muscle is stored in intramuscular lipid droplets and there is a 

complete turnover of the lipid pool in ~29 hours (Sacchetti et al., 2004). Therefore, the influence of 

acute, as well as chronic activity and inactivity on the regulation storage and release of FA from the  

lipid droplets for oxidation, has recieved considerable attention. In young men endurance training 

increases protein levels of adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) 

activity (increased Ser660 and decreased Ser565 phosphorylation, but not HSL protein level; (Alsted 

et al., 2009), whereas conversely bed rest decreases HSL activity (increased Ser565 phosphorylation; 

(Alibegovic et al., 2010). However, the effect of age and inactivity on ATGL and HSL is not well 

described. 

AMPK is considered a master switch in muscle metabolism and key in the regulation of transport of 

fuel into the mitochondria for oxidation. During exercise increased AMPK activity stimulates FA 

utilization (Fentz et al., 2015) and inhibits other energy-consuming processes (Jorgensen et al., 

2004; Jensen et al., 2009; Richter & Ruderman, 2009; Hardie, 2011). Furthermore, AMPK may 

partly favor FA oxidation through inhibition of Acetyl-CoA carboxylase 2 (ACC2) (Stephens et al., 

2002), although this may not be a limiting factor (Dzamko et al., 2008). Additionally, older 

individuals seem to have augmented AMPK activation in response to acute exercise (Drummond et 

al., 2008; Mortensen et al., 2009). As AMPK also inhibits pyruvate dehydrogenase complex (PDC) 

activity (Klein et al., 2007) that controls the rate of pyruvate transport into the mitochondria 

(Constantin-Teodosiu et al., 1992), this may partly account for the lower rate of glucose disposal in 

older compared to young individuals during exercise. Immobilization for 2 weeks did not affect 
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AMPKα1, α2, β2 or α-subunit level (Eijnde et al., 2005) in young men whereas bed rest for seven 

days was associated with a lower AMPKαThr172 phosphorylation after 45 min one-legged knee-

extensor exercise at ~60 % of Wattmax  compared to before bed rest (Ringholm et al., 2011). Overall, 

the effect of inactivity and age on AMPK, ACC2 and PDC activity and how these mechanisms 

affects muscle metabolic inflexibility remains to be fully elucidated. 

To date, most studies have investigated the effect of endurance training on metabolic inflexibility in 

young and older men, but information on the effect of inactivity in these groups is lacking. 

Furthermore, there is a gap in our knowledge whether age and inactivity affect the same or different 

mechanisms that control fuel mobilization and oxidation. To address this question, we immobilized 

one leg in both young and older men for 2 weeks while the other leg served as control. After 

immobilization, the participants performed a bout of 45 min isolated one-leg kicking exercise at 

moderate intensity with both legs. The AV-balance technique was used to assess indirect 

calorimetry and source of substrate mobilized for oxidation in the legs. Our hypothesis was that 

both age-difference and inactivity would be associated with changes that could be related to IMTG 

accumulation and hence metabolic inflexibility. We hypothesized that this would be associated with 

an increased relative glucose utilization (i.e. the opposite adaptation of endurance training) and a 

derangement of several key proteins regulating substrate metabolism in skeletal muscle. This would 

lead to more FA being mobilized from the circulation without being oxidized, which would lead to 

IMTG accumulation and in turn metabolic inflexibility. 
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Methods 

Subjects 

Seventeen young and 15 older men were included. Age inclusion criteria were 20-27 and 60-75 yrs, 

respectively. The participants were selected to have average VO2max (42-49 and 25-35 ml 

O2/min/kg), BMI (22-27 and 20-29 kg/m2) and whole-body fat percent (15-25 % and 20-30 %, for 

young and older men, respectively) for their age-group according to the Danish Health Examination 

Survey (DANHES) (Eriksen et al., 2011) (Table I). The study was performed according to the 

Declaration of Helsinki and was approved by the Ethics Committee of Copenhagen (H-4-2010-85). 

All subjects were carefully informed (verbal and written material) about the possible risks and 

discomfort involved before written consent to participate was obtained. The subjects received 

remuneration for participation and all transportation costs during the immobilization and to/from 

meetings at the department were reimbursed. 

Experimental protocol 

The experimental protocol has been previously described in detail (Nørregaard et al., 2014). Both 

young and older men were screened prior to recruitment to exclude individuals with diabetes 

(measured by glycated hemoglobin (HbA1c > 6.5 mmmol/mol)), musculoskeletal disease, 

cardiovascular disease (resting ECG in the older men) or known predisposition to deep venous 

thrombosis. None of the young men took medication, but some of the older men were in medical 

treatment for hypertension (n = 2; thiazide diuretic + angiotensin II inhibitor; angiotensin II receptor 

antagonist), prostate enlargement (n = 2; α-blocker), mild asthma (n = 1; anticholinergic pro re 

nata), mild depression (n = 1; Selective serotonin reuptake inhibitor) and attention deficit 

hyperactive disorder (n = 1; modafinil). None of the participants were smokers.  
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The participants were instructed to eat a weight-maintaining diet throughout the study following the 

national guidelines for macro-nutrient composition (Fogelholm, 2013). In the three days prior to 

each biopsy sampling, the subjects were instructed to abstain from alcohol intake. In addition, the 

participants were instructed to avoid strenuous exercise three days before the test days. 

The present study is a part of a larger study on the effect of immobilization and aerobic retraining in 

young and older men. The previous studies have investigated IL-6 and TNFα release during 

exercise in the young men (Reihmane et al., 2013); and changes in mitochondrial respiration and 

H2O2 production (Gram et al., 2014; Gram et al., 2015), leg function (e.g. leg lean mass, strength 

and muscle fiber type composition) (Vigelsø et al., 2015b), and plasma lipid profile (Nørregaard et 

al., 2014) with immobilization and retraining. It follows that most of the descriptive data on these 

subjects have been reported previously (Reihmane et al., 2013; Gram et al., 2014; Nørregaard et al., 

2014; Vigelso et al., 2015) and this will be clearly referenced in the present paper.  

Anthropometric measurements 

Body composition was determined by dual energy X-ray absorptiometry (DXA) scanning (Lunar 

iDXA, GE Medical Systems, Madison, US) at inclusion and after immobilization. EnCORE 

software (encore software version 14.10.022, GE Medical Systems, Madison, US) automatically 

determined the regions of interest (e.g. the legs). 

At inclusion and after immobilization, a graded VO2max test and a test of the maximal work capacity 

of each leg (Wattmax) was performed. VO2max was achieved, when two criteria were met: plateau in 

oxygen consumption in spite of increasing workload and respiratory exchange ratio above 1.15 for 

the young and 1.05 for the elderly on average over 20 s (Howley et al., 1995). Polar RS400 heart 

rate monitors (Polar Electro Oy, Kempele, Finland) were used to measure heart rate. At the Wattmax 

test prior to the experiment the participants were accustomed to exercise in the knee extension 
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ergometer. The maximal work capacity (Wattmax) of each leg was then determined (Andersen et al. 

1985). In brief, a graded test (starting at 10 watts + 2 min at 20 watt and then 5 watt/2 min 

increments) was performed, and pulmonary VO2, VCO2, and heart rate were measured. The 

workload at which exercise could not be performed without involving additional muscle was 

defined as one-leg Wattmax. 

Immobilization 

The immobilized leg was chosen by randomization. The chosen leg was immobilized (IM) with a 

DonJoy® knee brace (DJO Nordic, Malmö, Sweden) locked at 60° for 2 weeks. The other leg 

served as control (CON). The DonJoy® was secured with plastic strips that, if broken, would reveal 

that the brace had been removed. The subjects were given a pair of crutches and were repeatedly 

instructed not to engage in any weight-bearing activity with the immobilized leg. However, they 

ambulated freely during the entire 2 weeks. The subjects reported to the laboratory at least once 

during the 2-week immobilization to control and adjust the DonJoy® brace. All subjects received 

75 mg acetylsalicylic acid per day in the first 10 days to reduce the risk of deep venous thrombosis. 

This treatment was withdrawn the last 4 days before the experimental days to remove potential 

interference with the measurements.  

Acute exercise 

After 2 weeks’ immobilization of one leg, the subjects reported to the laboratory in the morning 

after an overnight fast (12 hours). A DXA scan was performed to determine the impact of 

immobilization on leg muscle mass. A muscle biopsy was obtained from both legs. The procedure 

was done after local anesthesia (lidocaine; 5 mg/ml, Amgros I/S, Copenhagen, Denmark) of the 

skin and the superficial muscle fascia using the Bergström needle modified with suction 

(Bergstrom, 1979). The biopsy was immediately frozen in liquid nitrogen and stored at -80 °C for 
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further analysis. Thereafter, catheters were placed in the brachial artery (20G arterial cannula, 

Becton Dickinson A/S, Albertslund, Denmark) and both femoral veins (14G catheter, Arrow 

International, ViCare Medical, Birkeroed Denmark) under local anesthesia. The catheters were 

inserted into the femoral vein distal to the inguinal ligament and in the antegrade direction. The 

catheters were kept patent by a slow drip of isotonic sodium chloride infusate. On one occasion, a 

subject was unable to perform acute exercise due to a vasovagal syncope and on five occasions we 

were unable to insert a catheter in one of the legs. Hence, the data presented here is for 14 and 13 

control legs and 16 and 14 immobilized legs in the young and older men, respectively. After one 

hour of rest, the subject were positioned in a custom-made isolated one-leg knee extension 

ergometer in a semi-supine position. Blood was sampled simultaneously from the brachial artery 

and femoral veins -15 min and just before exercise at time 0 min. Subsequently, the subjects 

performed 45 min isolated dynamic knee-extensor exercise with both legs with each leg in a 

separate one-legged ergometer. The absolute leg workload was set to 50 % of Wattmax, which was 

determined before the immobilization, i.e. both legs performed the same absolute amount of work. 

During exercise, blood was sampled at 15, 30 and 45 min. Femoral arterial blood flow was 

measured at all time points in both legs by Doppler ultrasound (ACUSON S2000, Siemens 

Healthcare, Ballerup, Denmark). Heart rate was recorded continuously before and during the 

exercise. Furthermore, subjects were requested to report perceived work load on a scale from 1-10 

(1 was: “Can go on forever” and 10 was “I have to stop within seconds”) after 5, 25 and 40 min of 

exercise. Whole-body oxygen consumption was measured from 20 to 27 min of exercise using an 

Oxycon Pro (Jaeger, CareFusion GmbH, Hoechberg, Germany). Throughout the experiment 

participants had free access to water and exercise was performed at an ambient temperature of 

20°C. Another muscle biopsy was obtained from both legs immediately (5-10 min) after the acute 

exercise. The participants reported to the laboratory the day after in order to determine changes in 
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Wattmax after immobilization. The test was performed the day after the acute exercise so it could not 

interfere with the effects of immobilization. 

Analytical procedures 

Blood was sampled anaerobically and distributed into tubes containing heparin or Trasylol/EDTA. 

The heparinized samples were immediately analyzed for hematocrit (ABL800 Flex, Radiometer, 

Copenhagen, Denmark). Plasma for determination of glucose, glycerol and FA was cooled down 

and separated by centrifugation at 2000 g at 4°C for 10 min, frozen on dry ice, and stored at -80°C 

until further analysis. Plasma glucose, FFA, and glycerol were analyzed on a Cobas 6000 c 501 

(Roche, Glostrup, Denmark). 

Calculations 

The plasma concentration of O2 and CO2 were calculated as previously described (Siggaard-

Andersen et al., 1988; Peronnet & Massicotte, 1991). The Fick principle was used to calculate the 

leg uptake or release of O2, CO2, glucose, lactate, FA and glycerol across the legs at rest and during 

exercise (i.e. the brachial arterial and femoral venous plasma concentration differences multiplied 

by plasma flow (blood flow x (1-Hct)). Indirect calorimetry was used to calculate total energy 

contribution of glucose and FA oxidation (Peronnet & Massicotte, 1991). The energy contribution 

from FA uptake and glycerol release was calculated by converting the rate of oxidation (µmol/min) 

to its molar mass equivalent (272.4 and 860 g/mole, respectively; (Jeukendrup & Wallis, 2005) and 

by assuming that oxidation of 1 gram of triglycerides yields 9.75 calories (Jeukendrup & Wallis, 

2005). The area under the curve (AUC) was calculated by the trapezoid method with x-axis as a 

baseline. However, AUC for leg glycerol release is presented with the resting value as a baseline 

because the young men had a net release, and the older men had a net uptake (Figure 2C).  

Western blotting  
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Two laboratories performed the Western blotting analysis of protein content and, therefore, two 

Western blotting procedures are described. The protein content was analyzed in the biopsies 

obtained before the acute exercise (i.e. and phosphorylation of proteins were analyzed in the 

biopsies obtained both before and after the exercise (i.e. ACC2 and pACC Ser221). 

Lipid metabolism related proteins 

The analysis was performed as previously described in detail (Larsen et al., 2014; Vigelsø et al., 

2015a). In brief: 4.0-4.5 mg (dry weight) of skeletal muscle were homogenized in cold RIPA buffer 

enriched with protease and phosphatase inhibitors (50 mM Tris pH 8.0, 150 mM NaCl, 1 % NP-40, 

0.5 % Na-Deoxycholate, 0.1 % SDS, 2.5 mM PMSF, 20 mM β-glycerophosphate, 10 mM 

Pyrophosphate, 2 mM Sodium Ortovanadate, including mini EDTA-free protease inhibitor tablet 

according to the instructions of the manufacturer (Roche Diagnostics, Mannheim, Germany). 

Protein concentration was measured by bicinchoninic acid assay (Pierce, Rockford, IL, USA) in 

triplicate, and a maximal coefficient of variation of 5 % between replicates was accepted. 

Twenty µg of protein lysate in sample buffer was heated to 95 ˚C for 10 min and separated on 12 % 

Criterion TGX Stain-Free polyacrylamide sodium dodecyl sulfate pre-casted gels (Criterion, 

BioRad, Copenhagen, Denmark). After SDS-electrophoresis, the gels were activated with UV light 

for 5 min followed by a 1 s image in an LAS 4000 image analyzer (GE Healthcare, Little Chalfont, 

UK). The activated gel was transferred to a polyvinylidene fluoride (PVDF) membrane (0.2 µm 

pores, BioRad, Copenhagen, Denmark) using the Trans-Blot Turbo Transfer System (BioRad, 

Copenhagen, Denmark) with Trans-Blot Turbo Midi Transfer Packs. After the transfer, another 1 s 

image of the membrane and gel with UV light to visualize protein transfer was taken. The 

membranes were blocked for 1½ hr at room temperature with either skimmed milk or bovine serum 

albumin (BSA) diluted in Tris-buffered saline (10 mM Tris Base, 150 mM NaCl, pH 7.4) + 0.05 % 
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Tween 20. The membranes were then probed with primary antibodies: anti-ATGL (Ab109251, 

Abcam, Cambridge, UK), anti-FABPpm (GOT2, Ab93928, Abcam, Cambridge, UK), anti-HSL 

(G7, sc-74489, Santa Cruz biotechnology, Inc., Heidelberg, Germany), and anti-LPL (H53, sc-

32885, Santa Cruz biotechnology, Inc., Heidelberg, Germany) overnight at 4°C. Thereafter, a 

horseradish peroxidase-conjugated secondary goat antibody against rabbit were added (Dako, 

Glostrup, Denmark). After primary and secondary antibody incubations, the membranes were 

washed 3 x 10 min in Tris-buffered saline +/- 0.05 % Tween 20. Blots were developed in ECL 

detection reagents (GE Healthcare), and the chemiluminescence emitted from immune-complexes 

was visualized with an LAS 4000 image analyzer (GE Healthcare). The images of the membranes 

and stain-free gels were quantified by ImageQuant TL software version 7.0 (GE Healthcare). 

Because we previously have observed that GAPDH, β-actin and α-tubulin not are suitable as 

loading control in this dataset (Vigelsø et al., 2015a), the intensities of the bands of interest were 

normalized to the total Stain-Free fluorescence (total protein). 

Muscle lysate preparation for AMPK analysis  

Lysates were prepared from 20 mg freeze-dried muscle, dissected free of visible connective tissue, 

blood and fat and homogenized in 50 mM HEPES (pH 7.5), 10% glycerol, 20 mM Na-

pyrophosphate, 150 mM NaCl, 1% NP-40, 20 mM β-glycerophosphate, 10 mM NaF, 2 mM PMSF, 

1 mM EDTA, 1 mM EGTA, 10 μg ml-1 aprotinin, 10 μg ml-1 leupeptin, 2 mM Na3VO4, 3 mM 

benzamidine. Homogenates rotated end over end at 4 °C for one hour. Lysates were prepared by 

centrifugation of the homogenates for 20 min at 16,000 g. Total lysate protein content was analyzed 

by the bicinchoninic acid method (Pierce Biotechnology, USA).  
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SDS-PAGE and Western blotting 

AMPK subunit isoform protein levels, AMPK (Thr172) and pACC2 Ser221 phosphorylation were 

measured on lysate mixed in sample buffer (350 mM Tris-HCl, pH 6.8, 30 % Glycerol, 350 mM 

SDS, 600 mM DTT, 0.2 mM Bromophenol blue) and heated 5 min at 96 °C. Fifteen μg of protein 

were separated using 7.5 and 10 % Criterion TGX Stain-Free Precast Gels (BioRad, CA) and 

transferred (semi-dry) at 20 V for 30 min (BioRad Trans-Blot Turbo Transfer System) to PVDF 

membranes (Immobilon Transfer Membrane; Millipore, Denmark). After blocking (in Tris-buffered 

saline + 0.05 % Tween-20 (TBST) + 2 % skim milk) for 45 min at room temperature, the 

membranes were incubated with primary antibodies (in TBST + 2 % skimmed milk) overnight. The 

antibodies used were: α1AMPK (Abcam ab32047), β1AMPK (Arexis, (Mahlapuu et al., 2004), 

β2AMPK (donated by Grahame Hardie, College of Life Sciences, The University of Dundee), 

AMPKγ1 (Abcam, ab32508), AMPKα2 (SC19131), AMPKγ3 (Santa Cruz biotechnology, Inc., 

Heidelberg, Germany, sc-20166), pACCSer221 (Millipore, 07-303), pAMPKThr172 (Cell 

Signaling, #2531). Membranes were incubated with the appropriate horseradish peroxidase-

conjugated (HRP) secondary antibody for 45 min at RT (TBST + 2 % skimmed milk) (DAKO, 

Denmark or Jackson ImmunoResearch, PA). Detection of ACC was performed by incubating the 

blocked (3% BSA) membrane with HRP-conjugated streptavidin (Dako, P0397) (in 3 % BSA) 

overnight. Blots were developed in ECL detection reagent (ECL, Millipore ECL Forte) and 

visualized by a charge-coupled device camera (ChemiDocTM MP System BioRad, CA). Band 

densitometry was performed using BioRad ImageLab (version 4.0). The protein content was 

expressed in arbitrary units subtracted background and related to the mean of a human skeletal 

muscle standard sample loaded twice on the corresponding gel in order to minimize assay variation. 
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By loading a control-sample in different amounts, it was ensured that quantification was within the 

linear response range for each particular protein probed for.  

One membrane (25-50 kDa) was sequentially probed for γ1 (38 kDa) and then β2 (30 kDa) since 

they have distinguishable molecular weights and bands. Two membranes were reprobed with an 

alternate antibody (pACC -> ACC and α1 -> α2) after being incubated for 60 min at 50⁰C in 

stripping buffer (62.3 mM Tris-HCl, 69.4 mM SDS, ddH2O and 0.8 % β-Mercaptoethanol) and 

tested for signal from the first antibody.  

AMPK activity assay 

AMPK complex specific activities were measured on heterotrimeric complexes isolated by a 

sequential immunoprecipitation. A mixture of 300 μg of muscle lysate protein, a γ3 isoform-specific 

antibody (Dr. Hardie, Dundee) and protein G-agarose beads (Milipore, # 16-266)) in IP-buffer (50 

mM NaCl, 1 % Triton-X 100, 50 mM NaF, 5 mM Na-pyrophosphate, 20 mM Trizma Base pH 7.5, 

500 μM PMSF, 2 mM DTT, 4 μg/ml Leupeptin, 50 μg/ml Soybean Trypsin Inhibitor T9128, 6 mM 

Benzamidine, 250 mM Sucrose) rotated end over end overnight at 4 °C. The samples were 

centrifuged for 2x60 s at 520 g at 4 ⁰C. The immunoprecipitate (IP) with bound α2β2γ3 was washed 

once in IP-buffer, once in 480 mM HEPES (pH 7.0) and 240 mM NaCl, and twice in 240 mM 

HEPES (pH 7.0) and 120 mM NaCl leaving only the agarose after last wash. The kinase reaction ran 

for 30 min at 30 °C in a total volume of 30 μl containing 833 μM DTT, 200 μM AMP, 100 μM 

AMARA-peptide, 5 mM MgCl2, 200 μM ATP and 2 μCi of ATP[γ-33P] (Perkin Elmer, DK). The 

reaction was stopped by adding 10 μl of 1 % phosphoric acid to the reaction, after which 20 μl was 

spotted onto P81 filter paper (Whatman, GE Healthcare, DK), which was then washed 4x15 min in 

1 % phosphoric acid. The dried filter paper was analyzed for activity using a Storm 840 

PhosphoImager (Molecular Dynamics). The α2β2γ1 activity was analyzed on a α2 (Dr. Hardie, 

Dundie) IP on supernatant immunodepleted for α2β2γ3. α1β2γ1 activity was measured an α1 (Dr. 
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Hardie, Dundie) IP on supernatant immunodepleted for both α2β2γ3 and α2β2γ1- as performed 

previously (Birk & Wojtaszewski, 2006).  

 

HAD enzyme activity 

β-hydroxyacyl-CoA dehydrogenase (HAD) was measured using spectrophotometry. Approximately 

2 mg of the dissected tissue were homogenized in 600 μl 0.3 M K2 HPO4, 0.05 % BSA, pH 7.7 for 2 

min on a Tissuelyzer (Qiagen, Venlo, Limburg, Netherlands). Six µl of 10 % triton was added and 

the samples were left on ice for 15 min before they were stored at -80 °C for later analysis. The 

homogenate was diluted 70 times in a solution containing 0.33mM acetoacetyl-CoA, 180 μM 

reduced nicotinamide adenine dinucleotide (NADH), 41.7 μM ethylenediaminetetraacetic acid 

(EDTA), 27.1 mM imidazole (pH 7.0). The changes in NADH at 37°C were measured 

spectrophotometrically at 340 nm  (Bergmeyer, 1974) on an automatic analyzer, Cobas 6000, C 501 

(Roche Diagnostics). Enzyme activities are expressed as micromoles substrate per minute per gram 

dry weight of muscle tissue. 

Muscle PDC enzyme activity assay 

A small portion of frozen ‘wet’ muscle was used to determine PDC activity as previously described 

(Constantin-Teodosiu et al., 1991). Briefly, the activity of PDC in its dephosphorylated active form 

(PDCa) was assayed in a buffer containing NaF and DCA, and was expressed as a rate of acetyl-

CoA formation (mmol/min/kg wet muscle) at 37◦C. 

Statistics 

To investigate the effects of group (young and older men), leg (immobilized and control) and acute 

exercise (rest (-15 and 0 min), 15, 30 and 45 min) and possible interactions (group x leg x acute 

exercise), a mixed model ANOVA was performed with least squares post hoc tests followed by a 
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Tukey-Kramer adjustment. Systematic effects in the model were group, leg and acute exercise with 

random levels for leg nested within subject. When interactions were non-significant, the statistical 

model was reduced accordingly. Data that were not normally distributed or had unequal variance 

were log-transformed before statistical analysis. In the case of randomly missing values, the 

Satterthwaite approximation was used. Outliers were systematically removed from the dataset if the 

data point was > mean ± 2 SD. The level of significance was set at P < 0.05. Statistical analysis was 

conducted in SAS Enterprise Guide 4.3 (SAS Institutes, Cary, NC, USA). All data are presented as 

mean ± SEM.  

Results 

Anthropometric data 

The participants were included to be representative for their age-group. Hence, the older men had 

higher BMI and body fat percent and the young men had higher VO2max (Table 1) (Reihmane et 

al., 2013; Gram et al., 2014; Nørregaard et al., 2014).  

Wattmax and workload during acute exercise 

During the acute exercise, there was no difference in workload (watt), heart rate relative to maximal 

heart rate, whole-body respiratory exchange ratio (RER) between the groups (Table 2). At 

inclusion, there was no difference in Wattmax between the groups or the legs (Vigelsø et al., 2015b). 

With immobilization Wattmax decreased by -14 ± 5 % (P<0.05) and - 9 ± 4 % (P<0.05) in the young 

and older men’s immobilized leg, respectively. Wattmax did not change in the control leg in either 

group (Vigelsø et al., 2015b) (Table 2). Hence, the immobilized leg worked at a relatively higher 

workload compared to the control leg in both young and older volunteers (Table 2).  
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Reported perceived exertion (1-10) for the individual legs increased (P<0.05) in both groups (main 

effect) and legs (main effect) from the beginning (5 min) compared to after 25 and 40 min of 

exercise. Throughout the exercise, the participants reported greater perceived exertion in the 

immobilized leg compared to the control leg (P<0.05; main effect, data not shown). Hence the 

average perceived exertion was reported to be higher (main effect, P<0.05) in the immobilized leg 

compared to the control leg (corresponding to 4: “I can continue for several hours”, 5: “I have to 

stop within an hour”, Table 2).  

Acute exercise, blood flow, RQ 

Average blood flow during exercise was 41 % greater (P<0.05) in the young compared to the older 

men with no difference between the legs, but oxygen extraction was 14 % higher (P<0.05) in the 

older compared with the young men. Nevertheless, the young men had 32 % greater (P<0.05) 

absolute leg VO2 during the acute exercise, but this difference disappeared when VO2max was 

normalized to leg lean mass (Figure 1A). However, the young men had higher leg O2 uptake over 

the complete exercise bout (area under the curve) compared to the older men (Figure 1B). In the 

older men, the RQ was higher (P<0.05) after 15 and 30 min of exercise compared to 0 (rest) and 45 

min (Figure 1C). During exercise the RQ for both legs in the older men increased (P<0.05) to the 

level of the young men (Figure 1C).  

Exogenous substrate utilization 

Leg glucose uptake increased (P<0.05) with the onset of exercise with no difference between 

groups or legs during exercise (Figure 2A). At rest leg FA uptake and leg glycerol release did not 

differ between the legs in either young or older men (Figure 2B and C). From rest to exercise, leg 

FA uptake increased (P<0.05) in both groups and legs. Moreover the older men (both legs) had a 

greater FA uptake (P<0.05) compared to the young men (Figure 2 B and C). However, leg glycerol 
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release only increased (P<0.05) from rest to exercise in the young men (main effect) and not in the 

older men. Hence, the young men had a net leg glycerol release and the older men had a net 

glycerol uptake (Figure 2C). 

Arterial delivery of FA per leg lean mass (young: control leg: 2.0 ± 0.2; immobilized leg: 2.2 ± 0.3 

µmol/kg LLM/45 min and older men: control leg:2.1 ± 0.3; immobilized leg: 2.0 ± 0.2 mmol/kg 

LLM/45 min) and glycerol (young: control leg: 281 ± 81;  immobilized leg:319 ± 35 µmol/kg 

LLM/45 min, and older men: control leg: 252 ± 40;  immobilized leg:299 ± 56 µmol/kg LLM/45 

min) did not differ between the  groups  or the legs, respectively. 

Lactate release increased (P<0.05) in both groups and legs (main effect) from rest to exercise 

(Figure 2D). Furthermore, the lactate release was greater (main effect) in the immobilized leg 

compared to the control leg in both groups (Figure 2D).  

Endogenous substrate utilization 

After immobilization, but before the acute exercise, the older men had 69 and 89 % greater 

(P<0.05) IMTG than the young men in the control and immobilized leg, respectively (Table 2). 

Furthermore, IMTG was 50 ± 23 and 45 ± 20 % higher (main effect, P>0.05) in the immobilized leg 

compared to the control leg after immobilization in the young and older men, respectively (Table 

2). IMTG content did not change with acute exercise in either groups or legs (Table 2).  

Muscle glycogen content was greater (main effect, P>0.05, 17 %) in the older men compared to the 

young men (Table 2). The muscle glycogen content decreased (main effect, P>0.05) with acute 

exercise (Table 2). 
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Enzyme activity 

Muscle HAD activity at rest did not differ between the groups and was significantly greater in the 

control leg than in the immobilized leg in both age-groups (12 ± 6 % and 10 ± 6 %, respectively; 

P<0.05, Table 2).  

Proteins in lipid metabolism 

Protein content of FABPpm tended (main effect, P=0.08) to be 20 % higher in the young compared 

to the older men. Additionally, there was 25% more (P<0.05) FAPBpm protein in the control leg 

(main effect) compared to the immobilized leg (Figure 3A). ATGL protein levels were 30 % higher 

(P<0.05) in the young compared to the older men. Likewise, the ATGL protein content was 20 % 

higher (main effect, P<0.05) in the control leg compared to the immobilized leg (Figure 3B). 

Furthermore, there was a trend (main effect, P=0.06) of 32 % higher LPL content in the older men 

(Table 3). There was no difference between the legs or groups in HSL protein content (Table 3). 

AMPK and ACC2 protein content 

AMPKα1 and α2 protein content did not differ between age-groups. The protein content of 

AMPKβ2 was higher (P<0.05) in the young compared to the older men (Table 3). AMPKβ1 protein 

content was lower (main effect, P<0.05) in the control leg compared to the immobilized leg in both 

groups (Table 3). AMPKγ1 protein content did not differ between age-groups or the legs (Table 3). 

AMPKγ3 protein content was higher in young compared to older men and in the control leg than in 

the immobilized leg in both age-groups (P<0.05; Table 3).  

ACC2 protein content in the young was higher than in the older men (Figure 4A). Furthermore, 

phosphorylation of ACCSer221 increased (main effect, P<0.05) with acute exercise in both groups 

and legs (Figure 4B). Moreover, the acute exercise-induced ACCSer221 phosphorylation was 
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higher (P<0.05) in the immobilized compared to the control leg (Figure 4B). Collectively, the 

ACCSer221 phosphorylation to ACC2 protein content-ratio increased (main effect, P<0.05) with 

acute exercise and was higher in the immobilized leg (main effect, P<0.05). Additionally, there was 

a trend (main effect, P=0.07) towards higher ACCSer221 phosphorylation to ACC2 protein content-

ratio in the immobilized leg (Figure 4C). 

AMPK complex specific activity and PDC activity 

The activity of AMPKα1β2γ1 in the young men was lower (main effect, P<0.05) than in the older 

men. Moreover, in response to acute exercise AMPKα1β2γ1 activity decreased (main effect, P<0.05) 

in the immobilized leg (Figure 5A). There was no difference between the age-groups, between legs 

or in response to acute exercise in AMPKα2β2γ1-activity (Figure 5B) or AMPKThr172 

phosphorylation, representing total AMPK activity (Table 3). There was an increase across age and 

treatment groups (main effect) in AMPKα2β2γ3 activity with acute exercise (Figure 5C).  

Muscle PDC activity in the young was higher (main effect, P<0.05) than in the older men (Figure 

6A). Furthermore, there was a negative correlation (R2 = 0.40, P<0.05) between the AUC for lactate 

release (Figure 2D) and ∆PDC activity pre- and post-exercise (Figure 6B).  

Calculations of energy consumption: indirect calorimetry and substrate utilization  

The relative glucose and lipid oxidation calculated by indirect calorimetry did not differ between 

groups or legs (young men (glucose/lipid): 72 ± 5 % / 28 ± 5 % and 75 ± 5 % / 25 ± 5 %; Older 

men: 70 ± 6 % / 30 ± 6 % and 72 ± 6 % / 28 ± 6 % for the control and immobilized leg, 

respectively). The young men had an equal contribution of FA derived exogenously (control leg: 44 

± 7 % and immobilized leg: 33 ± 6 %) and endogenously in the leg (control leg: 56 ± 7 % and 

immobilized leg: 67 ± 6 %). Whereas, the older men that had a larger exogenous contribution 
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(control leg: 85 ± 6 % and immobilized leg: 79 ± 4 %) compared to the endogenous contribution 

(control leg: 15 ± 6 % and immobilized leg: 21 ± 4 %). 
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Discussion 

In this study, our main finding was that older men have greater uptake of exogenous FA, while the 

young men have greater use of endogenous fat stores during an acute bout of exercise performed 

with both legs each in a separate one-legged ergometer. This finding is based on the difference in 

net leg glycerol release between groups. The proposed difference in fat mobilization between young 

and older men may have been accounted for by the higher ATGL protein content recorded in the 

young than in the older men, which could explain greater skeletal muscle lipolysis rates in the 

young men. In addition, higher AMPKβ2 and AMPKγ3 subunit protein content was observed in 

young compared to older men, which support the contention of augmented AMPK expression with 

age (Drummond et al., 2008; Mortensen et al., 2009). In contrast to our hypothesis and despite the 

muscle adaptations to the leg immobilization (i.e. decreased HAD activity, ATGL, AMPKβ1 and 

AMPKγ3 protein content) and the age-difference (i.e. greater ATGL and ACC2 content and PDC 

activity in the young than the older men) did not change the relative carbohydrate and fat 

utilization. Overall, we demonstrate that both inactivity and age are associated with metabolic 

inflexibility seen as an IMTG accumulation, but that this only partially occurs through the same 

mechanisms. 

Respiratory quotient and relative substrate utilization 

We hypothesized that age and immobilization would increase the glucose uptake and hence lead to 

an increased RQ during a subsequent exercise bout at moderate intensity. However, we found no 

differences in RQ between the immobilized and control leg during acute one-legged exercise in 

young or older men. The immobilization protocol was sufficent to induce changes in muscle 

metabolism (e.g. increased relative work load, decreased CS and mitochondrial respiration (Gram et 

al., 2014) and HAD activity, a lower AMPKβ2 (in the young men only), AMPKγ3, ATGL and 

FABPpm protein content and a higher ACCSer221 phosphorylation after acute exercise). Hence, 
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the metabolic changes induced by immobilization were either insufficient to induce a change in RQ, 

and/or the workload was not sufficiently high to elicit a difference. We cannot rule out that a 

difference in substrate utilization for young and older men may become detectable at a higher 

exercise intensity. However, based on pilot studies we found that higher intensities were not 

feasible for the participants. Moreover, the relevance of using the present exercise intensity may 

bear a clinical and physiological significance because it elucidates limitations in substrate 

mobilization during an intensity that mimics an everyday work-intensity.  

Lipid mobilization during exercise 

We hypothesized that immobilization and age would change the source of FA mobilized during 

exercise to rely more on exogenous FA. Leg FA uptake did indeed increase during exercise, 

although this was greater in older men than in young men. In addition, in response to exercise, 

young men skeletal muscle showed net leg glycerol release, whereas in contrast, exercise induced 

net leg glycerol uptake in older men.  

Suppression of adipose tissue lipolysis with nicotinic acid has been shown to be associated to 

increases in IMTG utilization in young men (Watt et al., 2004), leading the authors to suggest that 

plasma FA availability is a regulator of IMTG utilization (O'Neill et al., 2004; Watt et al., 2004). 

However, presently there was no difference in the delivery of FA and glycerol throughout the 

exercise and the observed difference can thus not be explained by substrate availability during 

exercise. Nevertheless, we have previously reported that older men have higher fasting plasma FA 

and visceral adipose tissue (Nørregaard et al., 2014). Hence, increased exogenous FA utilization 

may be an age-related adaptation to chronic high resting FA availability. FA infusion has been 

shown to lead to IMTG accumulation (Schenk et al., 2005), and high plasma FA are known to 

inhibit IMTG utilization (O'Neill et al., 2004; Watt et al., 2004). Hence, the higher resting fasting 

plasma FA in the older men may have contributed to induce the observed higher IMTG. IMTG 
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accumulation is related to insulin resistance, although not necessarily causual, and it is thus likely 

that the IMTG accumulation in the older men at some point will lead to insulin resistance (Unger, 

2002; Moro et al., 2008). We have previously reported that young and older men did not differ in 

capillarization, muscle fibre type distribution, or muscle fiber size (Vigelsø et al., 2015b), and 

therefore the muscle morphology cannot explain the higher FA uptake and ATGL protein content in 

the young men. Interestingly, ATGL has been proposed as the major lipase in skeletal muscle 

during contraction (Alsted et al., 2013) and this indicates that young men have a higher 

intramuscular lipolytic capacity, and thus a higher endogenous FA supply capacity, which may 

explain the higher leg glycerol release during exercise. 

Lipid uptake and lipolytic proteins 

FABPpm (Kiens et al., 1997; Kiens et al., 2004) and ATGL (Alsted et al., 2009; Louche et al., 

2013) have previously been shown to increase with endurance training. This is the first study to 

show that these proteins decrease with immobilization for 2 weeks. Furthermore, it is also novel 

that the protein content of ATGL was higher in young than in older men.  

AMPK and regulation of β-oxidation 

It is a new finding that protein content of ACC2 and AMPKβ2 subunit were higher in young than in 

older men. However, our observation of decreased AMPKγ3 protein in the immobilized legs of both 

the young and older men is in contrast to two studies which employed different models of 

inactivity. Mortensen et al. observed increased AMPKγ3 protein content after 9 days bedrest 

(Mortensen et al., 2014), while Kostovski et al. observed increased AMPKγ3 in long term 

compared to recent spinal injuried individuals (Kostovski et al., 2013). 

In skeletal muscle, AMPK may partly regulate fatty acid β-oxidation through the inhibition of 

ACC2 and thereby decreasing CPT1 mediated FA uptake in the mitochondria (Stephens et al., 
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2002). Little is known about this pathway in relation to immobilization and age. In this study, acute 

exercise increased the phosphorylation of ACC2Ser221 in the immobilized legs of both groups. 

Paradoxically, this implies that the acute exercise in the immobilized leg increased mitochondrial 

FA supply and oxidation, which was not the case. We speculate that this may be related to the 

higher relative workload in the immobilized leg or that the ACC2 pathway possibly compensates 

for a decreased contribution of other pathways affected by the immobilization. The latter contention 

is supported by the observation that muscle fatty oxidation can occur without changes in malonyl-

CoA concentrations (Odland et al., 1996; Odland et al., 1998; Dean et al., 2000). If the 

concentration of malonyl-CoA is not essential for switching between glucose and fat oxidation in 

skeletal muscle, it seems unlikely that AMPK mediated ACC2 inhibition plays a vital role in 

regulation of FA uptake by the mitochondria. Support for this notion is provided in a recent study in 

AMPKα KO-mice where Fentz et al. suggested that the AMPKα subunit exerts additional indirect 

effects on FA utilization during exercise through regulation of FABPpm content (Fentz et al., 

2015).  

PDC activity and lactate release 

To our knowledge, this is the first evidence that muscle mitochondrial PDC activation status at rest 

is lower in older men than in young and this remained unchanged after exercise. Although these 

observations would be intuitively expected given that PDC activation status is related to the 

aerobic/mitochondrial capacity (Constantin-Teodosiu, 2013), this is in contrast to the recent report 

by Wall et al. where muscle PDC activation is reported to increase in older men, but not in young, 

following 5 days of leg immobilization (Wall et al., 2015). Additionally, another important finding 

of the current study was that leg lactate release (AUC) during exercise was negatively associated 

with the change in PDC activation during exercise (Figure 6A and B).  
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Indeed, PDC activity is the rate-limiting step in glucose oxidation and therefore, at least partly, 

controls muscle glucose and FA oxidation (Constantin-Teodosiu et al., 1992; van Loon et al., 

2001). The lower PDC activity in the older men therefore implies a lower capacity of muscle to 

oxidize glucose. However, this was not detected as a decreased glucose utilization during exercise. 

Moreover, the difference in PDC activity could not be related to differences in the mitochondrial 

content or function, as previously suggested (Constantin-Teodosiu, 2013). We have previously 

published that mitochondrial content (measured as CS activity, voltage dependent ion channel 

(VDAC), mitochondrial complex protein content and mitochondrial respiratory capacity) did not 

differ between the groups (Gram et al., 2014).  Since IMTG accumulation has been proposed to be 

an inhibitor of PDC activity (Gurd et al., 2008) the lower PDC activity in the older men could be 

potentially accounted for by the greater levels of IMTG.   

AMPKα1 and protein synthesis  

Although it was not our primary hypothesis, it is a noteworthy finding that AMPKα1 specific 

activity was higher in older men than in young (Fig. 5A), despite no difference in AMPKα1 protein 

content. High specific activity of AMPKα1 has been suggested to inhibit the mTORC1 pathway, 

thereby inhibiting protein synthesis in skeletal muscle (Mounier et al., 2009; Mounier et al., 2011), 

and to be important for lipid metabolism (Fentz et al., 2015). Hence, high AMPKα1 activity in 

older men could contribute to a lower contraction induced protein synthesis by mTORC1, which 

have been linked, albeit in rodents, to sarcopenia (Parkington et al., 2004; Thomson & Gordon, 

2006). 

Implications for metabolic inflexibility 

In agreement with others, we observed that age was associated with metabolic inflexibility seen as 

IMTG accumulation (Petersen et al., 2003; Cree et al., 2004; Wall et al., 2015). However, in 



29 
 

contrast to another recent study using 5 days’ one-leg immobilization (Wall et al., 2015), we 

observed IMTG accumulation with our immobilization intervention. It is likely that over time the 

IMTG accumulation observed in older men and in the immobilized leg will lead to insulin 

resistance (Unger, 2002; Moro et al., 2008). The IMTG accumulation may have arisen from the 

age-related shift in source of FA for oxidation and an inactivity related decline in ATGL and FA 

oxidative capacity.  

Limitations  

It is a limitation that we did not use tracers, such that we could have distinguished between sources 

of glycerol release, i.e. glycerol coming from blood lipoproteins (VLDL), plasma TG or IMTG. 

However, the primary aim was to investigate the overall difference in substrate utilization measured 

by indirect calorimetry and to elucidate the source of FA mobilization (exogenous or endogenous) 

during a bout of moderate intesity exercise undertaken by young and older men. Equally, it is 

important to note that glycerol is both released and taken up by tissues (van Hall et al., 2002; 

Stallknecht et al., 2004; Helge et al., 2007) and the net glycerol release is probably underestimating 

total glycerol release. On the other hand, the catheters were inserted in the anterograde direction and 

therefore the measurements of glycerol release may be slightly overestimated and FA uptake 

slightly underestimated due to contamination of venous blood from v. circumflexea ilium 

superficialis (van Hall et al., 1999). However, this contribution is minor (van Hall et al., 1999) and 

since this was done systematically the contamination is likely to have equally affected both groups 

and legs. Finally, the protein content obtained by Western blotting does not provide information on 

intramuscular compartmentalization, functionality or activity (Prats et al., 2011), and this should be 

a topic for future research. 

Conclusions  
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Using an efficient immobilization protocol, we found that immobilization and age-difference did 

not affect relative substrate metabolism during a bout of exercise of moderate intensity. This 

occurred despite impairments in muscle metabolism (lower PDC activity, AMPKβ2 and AMPKγ3 

protein content) with age and despite an clear effect of the immobilization (i.e. lower muscle HAD 

activity; lower ATGL protein; lower AMPKα1, β1 and γ3 protein; higher ACCser221 

phosphorylation and higher lactate release during exercise in the young and older men with 

immobilization). Thus, our data support the idea that AMPK is impaired with both immobilization 

and age. Furthermore, the higher lipolytic capacity in the young men, as suggested by their higher 

ATGL protein content than in the older men, probably contributed to the increased endogenous FA 

utilization and higher glycerol release during exercise. In agreement with others, we report that age 

and inactivity are associated with metabolic inflexibility seen as IMTG accumulation. However, our 

findings indicate that age and immobilization only partly lead to IMTG accumulation through the 

same mechanisms. Thus, the age-related metabolic inflexibility may be related to a shift in the 

source of mobilized FA (i.e. primarily reliance on exogenous FA recruited from the circulation), 

whereas the immobilization-related metabolic inflexibility was only seen at the muscle protein 

level.  
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Tables 

Table 1. Characteristics of the young and older men at inclusion and after immobilization for 2 weeks. 

Data are means ± SEM. * p < 0.05 and (*) 0.05<P>0.1 young vs. older men same time point; # p < 0.05  vs. 

inclusion in the young men. 
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Table 2. Whole-body and single-leg data after immobilization for 2 weeks and during 45 min acute isolated 

kicking exercise at moderate intensity in young and older men. 

Data are means ± SEM. * p < 0.05 and (*) 0.1 > P < 0.05 young vs. older men (main effect); & p < 0.05 

control leg vs. immobilized leg same group (main effect). § previously published data (Reihmane et al., 2013; 

Gram et al., 2014; Nørregaard et al., 2014). SsVO2: steady state oxygen uptake during exercise i.e. the 

average of 30-45 min. 

 

 

  

Whole body
Work load (watt) 20 ± 1 20 ± 1
Heart rate (beats/min) 113 ± 4 * 95 ± 5
%Hrmax (%) 59 ± 2 61 ± 4
ssVO2 (ml/min) (20-30min) 1066 ± 38 (*) 874 ± 35
ssVCO2 (ml/min) (20-30 min) 931 ± 35 (*) 738 ± 35
Respiratory exchange rate (RER) 0.87 ± 0.01 0.86 ± 0.01

Immobilized leg
Isolated leg
§Leg lean mass (kg) 10.7 ± 0.3 10.1 ± 0.3 * 9.3 ± 0.3 9.2 ± 0.3
§Wattmax (W) 42 ± 3 37 ± 3 45 ± 3 40 ± 3
Relative work load (% of Wattmax) 50 ± 2 57 ± 3 47 ± 4 52 ± 3
ssVO2 (ml/min) (30-45 min) 212 ± 9 220 ± 12 * 148 ± 10 154 ± 14
§IMTG at rest  (µmol/g d.w.) 68 ± 9 92 ± 11 * 114 ± 13 174 ± 39
IMTG utilization (µmol/g d.w.) 20 ± 17 20 ± 13 18 ± 18 48 ± 21
§Glycogen at rest  (µmol/g d.w.) 221 ± 24 214 ± 23 * 257 ± 27 265 ± 37
Glycogen utilization (µmol/g d.w.) -36 ± 11 -12 ± 23 * -41 ± 13 0 ± 16
§HAD activity (µmol/min/g d.w.) 102 ± 4 87 ± 5 101 ± 7 88 ± 5
Reported perceived exertion (1-10) 4.3 ± 0.4 4.9 ± 0.4 4.2 ± 0.4 4.3 ± 0.4

Young men Older men

Control leg Control leg Immobilized leg

&
&

&

&

&
& &

&

&

&
&
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Table 3. Protein content measured by Western blotting. 

 

Data are means ± SEM. * p < 0.05 and (*) 0.1 > P < 0.05 young vs. older men; & p < 0.05 immobilized leg 

vs. control. It is a main effect of either group or leg if marked in “main effect” or an interaction between 

group and leg if marked in the table (AMPKβ2). See representative Western blots in Figure 7. 

  

Main effect
Lipoprotein lipase 0.95 ± 0.18 1.07 ± 0.21 1.30 ± 0.19 1.53 ± 0.22
Hormone-sensitive lipase 0.60 ± 0.10 0.48 ± 0.07 0.53 ± 0.06 0.64 ± 0.14
pAMPKthr172 1.08 ± 0.09 1.15 ± 0.09 1.00 ± 0.12 1.12 ± 0.13
AMPKα1 0.95 ± 0.09 1.03 ± 0.06 0.91 ± 0.11 1.02 ± 0.10
AMPKα2 0.97 ± 0.03 0.95 ± 0.02 0.93 ± 0.03 0.96 ± 0.04
AMPKβ1 0.90 ± 0.09 1.14 ± 0.09 0.97 ± 0.12 1.24 ± 0.11
AMPKβ2 1.24 ± 0.08 1.11 ± 0.05 0.98 ± 0.06 0.99 ± 0.05
AMPKγ1 1.35 ± 0.07 1.44 ± 0.09 1.21 ± 0.11 1.34 ± 0.13
AMPKγ3 1.90 ± 0.17 1.64 ± 0.16 1.37 ± 0.13 1.21 ± 0.10

Young men Older men
Control leg Immobilized leg Control leg Immobilized leg

&

&

&

&*

*

(*)
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Figures and legends 

 

Figure 1. Indirect calorimetry. A) Leg O2-uptake, B) area under curve (AUC) for leg O2-uptake 

and C) RQ in young and older men after 2 weeks’ unilateral immobilization (IMMO) with the other 

leg serving as control (CON) during 45 min moderate intensity exercise. * P<0.05 and (*) 

0.05>P<0.1 young vs. older men; # P<0.05 rest (0 min) vs. exercise (15, 30 and 45 min); & P<0.05 

15 and 30 min vs. 0 and 45 min in older men. Data are means ± SEM. 
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Figure 2. Utilization of exogenous substrates. Leg A) glucose uptake, B) fatty acid uptake and C) 

glycerol release in young and older men after 2 weeks’ unilateral immobilization (IMMO) with the 

other leg serving as control (CON) during 45 min moderate intensity exercise with both legs, with 

the corresponding area under curve (AUC). * P<0.05 young vs. older men (main effect); & P < 0.05 

and (&) 0.05 <P>0.1 immobilized leg vs. control leg (main effect); # P<0.05 0 min vs. 15, 30 and 45 

min; § P<0.05 15 min vs. 30 and 45 min. Data are mean ± SEM.  
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Figure 3. Protein content of A) plasma membrane (pm) bound fatty acid binding protein and 

B) adipose triglyceride lipase (ATGL) in young and older men after 2 weeks’ unilateral 

immobilization with the other leg serving as a control. &P < 0.05 immobilized leg vs. control leg 

same group. *P<0.05 and (*) 0.05>P<0.1 young vs. older men (main effect). Data are means ± 

SEM. IM: immobilized and CON control leg. See representative Western blots in Figure 7. 
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Figure 4. ACC2 activation. Protein content of A) ACC2 B) pACC2Ser221 and C) relative 

ACC2 activation (pACC2Ser221/ACC2 ratio) in young and older men after 2 weeks’ unilateral 

immobilization with the other leg serving as a control. Pre and post 45 min isolated kicking 

exercise (EX) at moderate intensity with both legs.*P<0.05 and (*) 0.05>P<0.1 young vs. older men 

(main effect), &P < 0.05 immobilized leg vs. control leg same group, #P<0.05 Pre vs. Post EX (main 

effect). Data are means ± SEM. See representative Western blots in Figure 7. 
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Figure 5. AMPK complex specific activity of A) AMPKα2β2γ3 B) AMPKα2β2γ1 C) 

AMPKα1β2γ1 in young and older men after 2 weeks’ unilateral immobilization with the other 

leg serving as a control. Pre and post 45 min isolated kicking exercise (EX) at moderate intensity 

with both legs. * P < 0.05 young vs. older men. #P < 0.05 Pre vs. post EX. &P < 0.05 pre vs. post 

EX same leg. Data are means ± SEM. 
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Figure 6. A) Pyruvate dehydrogenase complex (PDC) specific activity and B) correlation 

between ∆PDC activity and area under the curve for leg lactate release (Figure 2D) in young 

and older men after 2 weeks’ unilateral immobilization with the other leg serving as a control. 

Pre and post 45 min isolated kicking exercise (EX) at moderate intensity with both legs. * P < 0.05 

young vs. older men. Data are means ± SEM. 
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Figure 7. Representative Western blots for Table 3, Figure 2 and 3. ACC2, Acetyl-CoA 

carboxylase 2 (and phosphorylation (p) at serine 221 (ser221); AMPK, AMP-activated protein 

kinase; ATGL, adipose triglyceride lipase; CON, control leg; FABPpm, plasma membrane-

associated fatty acid binding protein; HSL, hormone-sensitive lipase; IM, immobilized leg; LPL, 

lipoprotein lipase;  

 


