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Abstract: We propose a mobile peer to peer personal cloud 

architecture which allows users to capture, store, analyse, 

interact with and share different types of personal and context 

data with no privacy leakage. Our mobile personal cloud can host 

multiple different services which are intelligent, distributed, 

dynamic and operate in real time. In this paper we describe one 

service that we designed and deployed on our mobile personal 

cloud called Mobile Wellbeing Companion Cloud (MWCC). 

Using low-cost, off-the-shelf hardware components and open-

source software, our MWCC combines several sensor network 

technologies to allow users to monitor and interact with their 

personal data and environment in real time without privacy 

leakage. MWCC augments heterogeneous sensors data with state 

of the art machine learning algorithms for signal filtering, fast 

classification and analysis and provides interactive data 

visualisation for transparent user interaction. We show that our 

MWCC is easy to use and highly accurate while managing to 

keep resource costs low.  

 
Keywords — Opportunistic Disruption Tolerant Networks, 

Mobile computing and applications. 

I. INTRODUCTION 

With continuous increase of different cloud services available 

at seemingly no cost to the users, large volumes of user data, 

some of which personal, is being stored, processed, controlled 

and owned by third party companies. Even though the 

majority of users are not aware of the technical details of what 

happens to their data once they use cloud services, they are 

increasingly aware that many service providers analyze their 

personal data to build profiles which they "trade" with other 

agencies such as advertising or credit companies [1]. In this 

paper, we address this problem by proposing a mobile low 

cost, intelligent and adaptive human-centered, personal cloud 

architecture which allows users to host their services, collect, 

store and analyse as well as interact with their data and 

services. We then propose a novel Mobile Wellbeing Personal 

cloud service hosted in our mobile personal cloud which 

combines 1) heterogeneous sensing technologies that allow 

users to understand their context and interact with their data 

and services in privacy preserving manner via a real time 

dashboard, 2) smart machine learning algorithms to analyse 

and predict context and 3) reliable intelligent underlying 

communication network protocols. Even though similar 

products (e.g. Fitbit Surge, Basis Peak) exist, they are not 

always affordable (typically costing over £100 and offering 

only 2 or 3 features), our MWCC reduces the cost by over half 

and provides more features. The paper begins by providing 

overview of the related work in section II, section III 

introduces low cost mobile personal cloud architecture, 

section IV describes Mobile Wellbeing Companion Cloud 

(MWCC) testbed design, deployment and testing; section V 

gives conclusions. Our testbed shows that we manage to 

achieve high accuracy of our real time machine learning 

algorithms, keep low resource costs and allow rich real time 

user interaction. 

II. RELATED WORK 

In this section, we describe  related work that has inspired 

ours. Databox [1] proposes a trusted platform which is 

designed to allow users to manage and use their own data, 

grant controlled access to others and offer different support 

incentive policies for external users.  RaspPiPCloud [2] builds 

on this to propose a novel low cost personal cloud approach 

hosted ion devices such as Raspberry Pi which allows users to 

collect, store, query and share their own data. [2] argues that 

there is a need for deploying personal clouds in both remote 

and urban areas where the network connectivity can be 

intermittent but where the users may still require and have the 

right to their privacy. Other related research efforts in human-

centered systems typically address challenges on how to 

improve their performance and usability. For example, 

Octopus[3], BodyCloud[4], CocaMAAL[5], BDCaM[6] and 

[7,8,9,10,11,12,14,15] describe various features recognition 

and detection techniques that may allow users to gather and 

process data from sensing devices with high accuracy. 

However, they do not address the cost and limited resources 

challenges (such CPU, storage, battery, network cost) in order 

to achieve that high performance. Research on context aware, 

intelligent agents such as[16,17] allows users to view and 

share their sensitive personal data using assumed-trusted 

service providers but disregard questions about how and where  

users’ data is stored, processed and any other cost related 

issues. Emerging work on anticipatory mobile computing [13] 

argues that context prediction and anticipatory decision-

making will be integral part of future mobile systems but 

identifies that processing costs can be high (suitable usually 

for the top of the range mobile devices) and that the challenge 

of real-world implementations of such systems which are 

almost non-existent (as most of the work is done via 

simulations). 

Delay tolerant and opportunistic networking approaches 

address the lack of continuous network connectivity [18, 

19,20,21,22,32,33,34] and were shown to have high efficiency 

and reliability as core data transfer protocols both mobile 

social and mobile ad hoc vehicular networks. Research in 

[32,33,34] has shown that both communication performance 

results and achieved levels of user privacy and anonymity of 



 

 

newly proposed adaptive opportunistic DTN protocols are 

high even in the presence of high numbers of malicious nodes. 

[35,36,38] combine mobility of sensor sources, data carrier 

and clouds to enhance routing/forwarding protocol in terms of 

energy efficiency, security, connectivity and throughput. We 

adopt such communication protocols for our inter-mobile 

personal cloud communication.  

III. LOW COST MOBILE PERSONAL CLOUD ARCHITECTURE 

We envisage a low cost mobile personal cloud architecture 

that enables rich interactivity with the user, is context aware 

and uses intelligent network communication for increased 

reliability as described in [37]. At the core of the mobile 

personal cloud is the idea of open source evolving platform 

where the user owns and hosts all the services and data they 

use and can add any new ones when they need. Specifically, 

the user stores their data and services locally and may analyze 

and share them in a fully controlled privacy conscious manner 

according to their own requirements. 

Examples of the services that the mobile personal cloud can 

host include: personal social networks, personal well-being, or 

personal financial services. Each of these stores and manages 

different types of data requiring different levels of privacy. As 

such each is hosted in a separate virtual container and has its 

real time user interface what allows rich interactions with the 

environment, data and services to the user. An early 

demonstration of the feasibility of this work deployed on off 

the shelf Raspberry PIs was shown in [2]. This paper extends 

our previous work to focus on integrating suitable machine 

learning algorithms into the cloud, allowing the user to have 

rich real time interaction, describing how the cloud can sense 

and interact with the environment and how the data can be 

shared across multi-hop communication with the remote 

destinations. In order to improve reliability of data 

communication, we use P2P DTN for to support 

communication between multiple personal clouds as proposed 

in [32,33,34]. This enables multiple personal clouds to 

cooperate and communicate together without the need of 

infrastructure and thus preserving higher levels of privacy. We 

consider privacy as our core motivation for the architecture 

and aim to support different kinds of data, in different 

situations, will have different privacy level requirements. For 

example, users would normally not publish their health 

information to public. However, in emergency cases, for 

example, a heart attack occurrence, the MWCC may be 

required to generate a notification/alert to its neighborhood in 

addition to the hospital. In addition to this, a smart routing 

protocol should be proposed to seek the best route for sending 

these alerts directly to third-party organizations like hospital, 

police, fire-station. 

IV. MOBILE WELLBEING COMPANION CLOUD TEST-BED  

We describe the design and deployment of Wellbeing 

Companion Personal Cloud which is one service our Personal 

Cloud offers to the users. Mobile Wellbeing Companion 

Personal Cloud (MWCC) integrates various heterogeneous 

wireless and wired sensor networks to capture and analyse real 

time information about the user (i.e. motion, heart rate, etc) 

and their environment (such as temperature, humidity or 

pressure) in order to predict . Our test-bed comprises a range 

of components such as body-worn sensors (heart rate 

monitoring), smart-phone that provides user interface and 

inertial sensors, separated (MEMS sensor board, or RF 

temperature sensors), Raspberry Pi device as a head node 

which gathers, stores and processes incoming signals in real 

time. 

The head node consists of 4 main hierarchical layers as 

described in Figure 1. User interacts with sensor's data via 

MWCC on the Application Layer which allows them to 

access, monitor (either query requests or subscribe 

periodically) and share their personal data. In order to increase 

reliability and scalability, the data may be synchronized with 

more powerful devices such as personal laptop or home 

computer. 

One of the challenges we aim to tackle is how to integrate 

smart knowledge-based decision making algorithms with 

different contextual sensed data into meaningful information 

when the resources are limited and sensed data is noisy. 

Consider a scenario where Wellbeing Companion Personal 

Cloud aims to provide the following user centric context 

driven interrelated services: real time human activity 

recognition correlated with heart rate monitoring and external 

sensors such as room temperature, allow the user to interact 

with all of these (e.g. viewing, querying, sharing) and receive 

notifications. Our main challenge is how to achieve optimal 

tradeoff between accuracy, resource utilization and user 

experience. Namely, more sophisticated algorithms may result 

in better accuracy of activity monitoring but lower resources 

and cause delays to the user. Poor algorithms may result in 

wrong detections, thus causing inaccurate feedback to the user 

and false notifications. We first investigate most commonly 

used human activity recognition algorithms in terms of 

accuracy achieved and time taken as measured in a real test-

bed scenario. We then explore the accuracy and CPU cost of 

real time user heart rate visualization and analysis (in the 

terms of normal or anomalous behavior) for different user 

activities 

 
Figure 1. Mobile Wellbeing Companion Cloud 

A. Human Activity Recognition 

We build on an openly available dataset [14] which includes 

raw accelerometer and gyroscope data collected from 30 

subjects who performed 6 basic activities (walking, walking 

upstairs, walking downstairs, standing, sitting and lying). We 

identify transitioning activities that occurred (stand-to-sit, lie-

to-stand, etc.). We separate 30-subject data randomly as a ratio 



 

 

70:30 into a training set and a new-user test set so that we can 

perform cross-validation after building classification models. 

We include a real world user who uses the Wellbeing 

Companion Cloud in the new user set. We apply low CPU 

filter to 3-D accelerometer and gyroscope sensor signals to 

remove noise. More specifically, we separate filtered 

accelerometer a(t) into body linear accelerometer la(t) and 

gravity force g(t) using low-pass filter [25,26] with cut-off 

constant α = 0.3 (in line with [14]) as below.   
���� = 	� ∗ 	��� +	�1 − 	�� ∗ ��� − 1� 
	��� = 
	��� + 	����																																0	 ≤ � ≤ 1:	������	�����	�� 
 

As signal frequency = 50Hz, we argue that if α is too large 

(e.g. 0.5), almost everything will get passed and nothing will 

be filtered out. If α is too small (e.g. 0.1), signal details will be 

lost. Thus, we choose α = 0.3 to balance the trade-off. To 

reduce chance of miss classification between walking, walking 

upstairs and downstairs that occur frequently [14,23,24], we 

propose to merge these 3 states of motion into one, walking 

which improves accuracy while minimizing overheads 

induced by miss classification data. A vector of 12 features (in 

which x, y-axis accelerometer, x-axis linear accelerometer and 

y-axis gravity are proved that significantly affect performance) 

is generated in time domain and labeled in 5 classes.  

We then carry out experiments in our test-bed using 

benchmarking classification algorithms such as traditional 

Naive Bayes classifier, Bayes Network, Random Tree, 

Random Forest, Support Vector Machine (SVM) and Lazy 

Learning (IBk). The comparison between these algorithm 

based on activity recognition accuracy and model building 

time is shown in Figure 2. We show that the shorter a model 

building an algorithm takes, the lower CPU cost it has and the 

faster its processing completes. 

 
 Figure 2. Comparison between different classification algorithms based on 

accuracy and building model time 

 

We observe that Random Tree and IBK have highest accuracy 

(above 97%) and require lowest time to build their models 

(less than 10s). Random Forest has high accuracy but its 

model building process consumes significantly longer time 

(roughly 74.8s). The model building time T: T(IBk) < 

T(RandomTree) < T(RandomForest) can be explained by the 

complexity of IBk, Random Tree and Random Forest 

algorithm which are O(m.n), O(m.n.log(n)), 

O(numTree.m.n.log(n)) respectively for m attributes and n 

instances. However, the model building time is not 

significantly important, thus long model building time of 

Random Forest is acceptable, due to the fact that the model 

would be built only once in the test-bed and users may only 

suffer this for the first time the Human Activity Recognition 

module being installed. 

To observer our training models' performance with unknown 

users, we perform the new user cross-validation on our top-3 

accurate models above and compare the result based on 

accuracy, load average and time required for each 

classification. 

 

Figure 3. Cross-Validation comparison between proposed classification 

algorithms based on accuracy and load average 
 

 
Figure 4. New user cross validation comparison based on time required for 

each classification in the test-bed. 

 

It is interesting to see that Figure 3 and 4 shows that Random 

Forest gives the best performance in cross-validation test in 

terms of achieving good trade-off between accuracy and 

processing cost: Its activity recognition accuracy is reasonably 

high (87.1%) while consumes low CPU, memory (Load 

Average < 3.5) and time cost (3.64 ms for each classification).   

If we analyze miss-classification percentage of Random Forest 

in our test-bed, we see that it never exceeds 12.9. 

We show the training test classification results obtained by 

using Random Forest on our preprocessing data in Table 1. 

 
Activity W SI S L T Recall 

Walking (W) 49100 9 54 0 107 99.7% 

Sitting (SI) 28 18033 264 0 199 97.3% 

Standing (S) 353 156 19013 0 108 96.9% 

Lying (L) 0 0 0 19912 210 99.0% 

Transition (T) 1097 204 273 366 7272 78.9% 

Precision 97.1% 98% 97% 98.2% 92.1% 97.1% 

Table 1. Confusion Matrix using Random Forest on test set. Rows are actual 

classes and Columns are predicted classes. 

 

The classification recall for Walking, Sitting, Standing And 

Lying is high (97% - 99%) with minor miss-classification 
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between walking and standing. This shows that our Human 

Activity Recognition module would achieve extremely high 

performance if users were calibrated.  

If users are completely unknown or not calibrated, our Human 

Activity Recognition module still gets reasonably high 

performance (87.1% accuracy) as shown in Table 2. 

 
Activity W SI S L T Recall 

Walking (W) 97232 46 195 0 3287 96.5% 

Sitting (SI) 252 23975 10288 0 1701 66.2% 

Standing (S) 1134 6820 30450 0 393 78.5% 

Lying (L) 0 0 0 36297 501 98.6% 

Transition (T) 3540 510 817 1082 14224 70.5% 

Precision 95.2% 76.5% 72.9% 97.1% 70.7% 87.1% 

Table 2. Confusion Matrix using Random Forest on new user cross-validation. 

 

The clusters of different activity classification are visualized 

in Figure 5. We show that the clusters of 2 static motions, 

sitting and standing, are partly overlapped. This is because of 

the similarity of postures in Sitting and Standing activity 

which can make it challenging to always accurately categorize 

them. On the other hand, the other static motion, lying, which 

has different posture, gives high activity recognition (98.6%). 

The cluster of lying only overlaps trivially with transitioning. 

We observe that there is also a minor miss-classification of 2 

dynamic activities, walking and transitioning which, however, 

does not affect the recognition accuracy of Walking (96.5%). 

In summary, by merging walking, walking upstairs, walking 

downstairs into walking as their nature, adding transitioning as 

one of user's state and applying Random Forest Model, our 

human activity recognition module of Wellbeing Companion 

Cloud balances the trade-off between accuracy and CPU cost. 

This allows Wellbeing Companion Cloud to operate in real-

time while not requiring a lot of pre processing data e.g. 1 raw 

reading generates 12 features to achieve 1 activity recognition. 

 
Figure 5. Activity Clustering Visualization 

 

B. Real time Fusing Heart Rate Monitoring and Human 

Activity Recognition in the MWCC 

We propose that there is a need for our Wellbeing Companion 

Cloud to provide automatic calibration of users resting heart 

rate (RHR) and max heart rate (MHR). This is important in 

order to calculate their threshold heart rate for each activity 

users take part in, as argued in [29]. For example, for people 

who work-out or play sports, Wellbeing Companion Cloud 

will help to keep track of their heart rate so that they could 

adjust their training intensity. In emergency situations, such as 

heart attack or unusually high/low high heart rates for current 

activity, Wellbeing Companion Cloud will issue notifications 

or alerts. 

Some existing applications allow users to manually set their 

RHR, MHR and Age in order to calculate HRZ However, our 

Wellbeing Companion Cloud assumes that the majority of 

users have no knowledge about their heart rate parameters and 

supports automatic calibration of users heart rate based on 

merging activity recognition with prediction of heart rate 

parameters in the following way.  

RHR is defined as how fast a heart beats when user is at 

complete state of rest [29,30]. Our Wellbeing Companion 

Cloud calibrates RHR by getting average user's current heart 

rate whenever it recognizes user's current motion as lying. 

Previous research proposed that the calibration should be 

performed over 3 days to get the highest accurate 

measurements [30] and this is the accuracy that we target in 

our Wellbeing Companion Cloud. 

 
Pseudocode to calibrate Resting Heart Rate (RHR): 

function calibrateRestingHeartRate (): 
 for t = 0 to N: 

  activity = getHumanActivityRecognition(); 
  if (activity == Lying AND isUserActivityStable()): 

   count++; 

   heartRate = getHeartRate(); 
   sum += heartRate 

   restingHeartRate = sum/count 

  end if; 

 end 

 

The MHR is another core heart rate parameter defined as the 

fastest users' heart beat rate per minute. As it would be unsafe 

to empirically measure, we have developed algorithm for 

formulas proposed in [27,28] to estimate  MHR based on age 

and weight which are easy for users to set up . In this paper, 

we apply common age predicted formula, to estimate MHR 

and allow the uses to review the results manually with doctor's 

advice if necessary. 

 

Formula: 

��� = � − ���											� = 	 � 220	��	���

	226	��	!����
 

 
Pseudocode to calibrate Max Heart Rate (MHR): 
function calibrateMaxHeartRate (): 

 age = getAgefromUI(); 

 gender = getGenderFromUI(); 
 if (gender == Male) maxHeartRate = 220 - getHeartRate(); 

 else maxHeartRate = 226 - getHeartRate(); 

 

Another core heart rate parameter we consider is heart rate 

zone (HRZ) which is defined as the heart rate limit which 

indicate the estimating lower bound and upper bound of users' 

heart rate depending on their current activity. Our Wellbeing 

Companion Cloud is able to separate HRZ into 5 Zones by 

implementing Karvonen formula proposed in [29] 

��" � 	� ∗ ��� 
 �1 � �� ∗ ��� 
As shown in Table 3, α varies from 50% to 100% for Zones 1 

to Zone 5. While Zone 1 refers to human activities like sitting, 

standing, walking slowly (lower limit) or walking quickly 

(upper limit), Zone 5 refers high impact user activities such as 

intensive training. 

 



 

 

Zone Lower Bound α Upper Bound α 

1 50% 60% 

2 60% 70% 

3 70% 80% 

4 80% 90% 

5 90% 100% 
Table 3. Constant α values on different activity zones. 
 

Based on the heart rate zones, Wellbeing Companion Cloud 

issues emergency notifications and alerts both locally (to the 

user) and remotely (to the hospital or friend). The warning 

level depends on a gap identified between the currently 

measured heart rate, estimated normal heart rate for the 

current user activity and the estimated user’s HRZ (shown in 

Figure 8). 

 
Pseudocode to detect abnormal users' health behaviours: 
function analyzeUserHealth(): 

while (true) 

 activity = getHumanActivityRecognition() 
 heartRate = getHeartRate() 

 switch (activity): 

  case Lying:     lowerAlpha = 0.5; upperAlpha = 0.55 
  case Sitting, Standing:  lowerAlpha = 0.55; upperAlpha = 0.6 

  case Walking:      lowerAlpha = 0.6; upperAlpha = 0.7 
  default:      lowerAlpha = 0.5; upperAlpha = 0.7 

 lowerHeartRateBound = lowerAlpha*MHR + (1- lowerAlpha)*RHR 

 upperHeartRateBound = upperAlpha*MHR + (1- upperAlpha)*RHR 
 if (heartRate < lowerHeartRateBound AND isSustained()): 

  notifyMessage("User's current heart rate is low"); 

  measureCriticalLevelBasedOnGap(heartRate, lowerHeartRateBound); 
 if (heartRate > upperHeartRateBound AND isSustained()): 

  notifyMessage("User's current heart rate is high"); 

  measureCriticalLevelBasedOnGap(heartRate, upperHeartRateBound); 
 visualizeInGraph(activity, heartRate); 

C. Context sensing and Interaction with the Environments 

In addition to user activity and bio sensor data sensing and 

analysis, Mobile Wellbeing Companion Cloud interacts with 

the environments. It senses a range of environmental sensors 

and fuses them with the rest of the user data. In our test-bed, 

we use wireless temperature sensors that provide room 

temperature data either on demand or regularly (e.g. where the 

sleep times are some fixed period e.g. 30 seconds). Using 

MWCC knowledge base that identified optimal temperature 

for different user activities and heart rate conditions, the 

MWCC combines the level of external temperature with 

current heart rate to give notification about potential 

significant change in temperature which may harm users' 

health [31].  

D. MWCC Communication Layer and Realtime Interactive 

Dashboard 

In our testbed, we have 7 MWCCs connected via adaptive 

smart opportunistic and DTN communication protocol that is 

resource aware, social and privacy aware - CafREP[32]. Each 

MWCC communicates via intermediary MWCC or the 

infrastructure to gather sensor measurements as well as to 

share different data driven by both data requirements and 

network in different ways.  

The Figure 6 and 7 below show real-time interactive 

dashboard with varying heart rate when user performs 

different activity. The data from source node are shared by 

source node and visualized on the destination node with 100% 

successful rate using CafREP protocol for increases reliability. 

 
Figure 6. Dashboard Heart Rate = 72 bmp when user is lying 

 

 
Figure 7. Dashboard Heart Rate = 74 bmp when user is walking slowly 

 

For emergency situation, the notifications are forwarded via 

CafeREP to other nodes as shown in Figure 8. 

 

 
Figure 8: MWCC dashboard notification to the user  

 

In order to estimate the cost for sensing, processing, 

visualizing and communicating data in real time in our test-

bed, MWCC tracks and visualizes load average (as combined 

value for CPU, memory, I/O, etc.) as given in Figure 9. We 

observe that the load average remains below 5 for different 

types personal cloud services for long period of time. 

  

 
Figure 9. Load average when running the Well-being Companion Cloud 

V. CONCLUSION 

We proposed a novel Mobile P2P Personal Cloud that can host 

different intelligent distributed services and described a novel 

“feel and communicate” mobile wellbeing companion service 

hosted on it. We explain a range of functionalities and multi-

layer smart algorithms that we designed, built and deployed to 



 

 

support users to sense the context, analyse, store, interact with 

and share their sensitive data with others. We argue that our 

approach will help improve users trust and compliance with 

the new technologies which maintain the reasonable 

performance while significantly improving reliability and 

privacy. In future work, an integration of smart knowledge-

based system with different contextual sensed data to generate 

meaningful information when the resources are limited and 

sensed data is noisy or conflicted, will be investigated further. 

Moreover, a promising future direction is to integrate our low-

cost mobile personal cloud with cognitive radio sensor 

networks to address resource limitations as argued in [39]. 
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