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Abstract:  

Cold bitumen emulsion mixture (CBEM) is not yet widely used as a surface courses around 

the world. In this study, 0/14 mm size dense graded surface course CBEMs have been 

investigated. The mechanical performance was evaluated in term s of stiffness modulus over 3 

months and resistance to permanent deformation under three different stress levels (100, 200, 

300kPa) while durability evaluation was carried out in terms of resistance to moisture and frost 

damage. The study has also investigated the incorporation of low cement content (1%) with 

relatively sustainable by-product fillers, namely ground granulated blast-furnace slag (GGBS) 

and fly ash (FA) type 450-S on both mechanical and durability performance. A comparison has 

been carried out between the low and high cement content CBEM, as well as with 

respect to corresponding hot mix asphalt (HMA). The results revealed that the incorporation of 

GGBS and FA in CBEMs leads to superior performance, similar to CBEMs treated with high 

cement content and comparable to an equivalent HMA. Furthermore, GGBS replacement 

exhibited better performance than that of FA replacement. The findings suggest that the new 

sustainable types of CBEM can be developed for using as a surface layer for medium to heavy 

trafficked roads.  

Keywords: Cold Bitumen Emulsion Mixtures; Active filler; Surface course; Stiffness 

modulus; Repeated load axial test; Durability  
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1. Introduction 

In recent years, the construction of roads using cold asphalt mixes (CAMs) has gained 

increasing interest around the world. For example, the annual production of CAMs is 1.5 

million tonnes in France and 2 million tonnes in Turkey (Gómez-Meijide and Pérez 2014). 

However, in the UK, the use of CAMs is limited to base and sub-base courses of structural 

layers (Needham 1996, Khalid and Monney 2009, Thanaya et al. 2009). There is a significant 

need to carry out an intensive scientific research in order to develop CAMs, more precisely 

cold bitumen emulsion mixtures (CBEMs), for use as a surface course (Eckmann et al. 2004). 

This demands novel and sustainable CBEM products. The properties of these novel mixtures 

should be similar to conventional hot mix asphalt (HMAs) in order to justify their use as a 

surface course. CBEMs are known and accepted products that save resources and energy 

consumption, giving environmental protection with low pollution (Nikolaides 1994). However, 

CBEMs have several drawbacks that make their performance inferior as compared to HMAs 

(Thanaya 2003, Liebenberg and Visser 2004). The relatively wet and cold weather in the 

United Kingdom does not favour the emulsion curing process, and thus, additionally limits the 

use of the CBEM.  

 

In the past, different attempts have been made to investigate and to enhance the performance 

of CAMs using hydraulic binder such as cement and lime. The most extensively used hydraulic 

binders are ordinary Portland cement (OPC) and hydrated lime (Niazi and Jalili 2009). The 

addition of OPC to CBEMs dates back to 1970. A series of three studies were carried out by 

Terrell and Wang (1971), Schmidt et al. (1973) and Head (1974) to improve the resilient 

modulus of emulsion treated mixes using cement. The results showed that the rate of 

development of this property was significantly accelerated by the addition of up to 3% cement 

in the early stages of curing and the increase in resilient modulus reached up to 200% depending 
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on emulsion type. Needham (1996) claimed that the incorporation of cement into CBEMs can 

increase: stiffness modulus, resistance to permanent deformation, resistance to fatigue cracking 

(at initial strains below 200 microstrain) and improve resistance to moisture damage. 

A laboratory study was conducted by Li et al. (1998) to evaluate the mechanical properties of 

cement-asphalt emulsion composite (CAEC). This study indicated that combining cement and 

emulsified asphalt improves material performances by gaining the beneficial properties of both 

cement concrete and asphalt concrete. The results showed longer fatigue life and lower 

temperature susceptibility of cement concrete, and higher toughness and flexibility of asphalt 

concrete. 

 

Another study was conducted by Oruc et al. (2007) to evaluate the mechanical properties of 

emulsified asphalt mixtures having 0% to 6% OPC. The results also showed a significant 

enhancement with high additions of OPC. Furthermore, the authors recommended that the 

cement-modified asphalt emulsion mixes could be used as a pavement surface layer. 

Thanaya et al. (2009) concluded that the addition of 1% to 2% rapid-setting cement increases 

the strength gain significantly and improves the other mechanical properties of the modified 

cold mixes such as resistance to rutting and fatigue distresses at early age. A study implemented 

by Wang and Sha (2010) also pointed out that the rise of cement and mineral filler fineness has 

a positive impact on the micro-hardness of the interface of aggregate and cement emulsion 

mortar. 

 

Therefore, the role of the cement is to control the breaking behaviour of the bitumen emulsion, 

and to increase the early mixture strength and stiffness by binding excessive water released by 

the emulsion. Additional cement reduces the negative influence of the released water and 

improves the adhesion of the binder to the aggregate, which might positively affect the water 
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sensitivity of the mixture in general (Needham 1996, Lu et al. 2009, Wang and Sha 2010, Wang 

et al. 2013, Miljković and Radenberg 2014).  The presence of cement also increases the pH 

value of the aqueous phase of the emulsion, and thus, accelerates its breaking. However, the 

use of relatively high cement content for CBEMs increases their cost and would contribute to 

increasing cement demand worldwide. The emission of CO2 to the atmosphere during the 

production of cement is about (5-7)% of the total CO2 emission from different sources 

(Humphreys and Mahasenan 2002, Benhelal et al. 2013). Therefore, it is worth reducing the 

amount of cement in CBEMs and for this reason a relatively low cement content was adopted 

in this research (1.0%). The most sensible way to achieve this is to use by-product filler 

(manufacturing wastes) as supplementary cementitious materials. A significant quantity of 

these materials produced in the UK. Thus, the annual production of granulated blast-furnace 

slag (GGBS) and fly ash (FA) are estimated to be 2.2 and 6 million tonnes, respectively. 

However, limited studies have been conducted to investigate the use of by-product materials 

to enhance CBEM properties. Ellis et al. (2004) have studied a range of mixtures of recycled 

aggregate composed of road base layer, concrete demolition waste and brick sand. These 

aggregates were stabilized using bitumen emulsion and GGBS. They stated that the addition 

of GGBS to bitumen emulsion mixtures can provide better mechanical performance than 

untreated mixtures, especially in the long term under high humidity curing conditions. 

 

Al-Busaltan et al. (2012) confirmed the enhancement of close graded CBEM to a stage where 

its mechanical properties are comparable to those of traditional asphalt concrete mixtures. The 

improvement was due to replacement of the conventional mineral filler with a domestic fly ash. 

Al-Hdabi et al. (2014) showed a significant improvement in cold rolled asphalt by 

incorporating a biomass fly ash with cement. A comparison study between coal ash and OPC 

in CBEM was carried out by (Modarres and Ayar 2016). The result revealed that the application 
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of coal waste powder improved the mechanical properties of cold recycled asphalt material, 

but it could not achieve a positive impact on moisture damage resistance. Based on these 

comparisons, coal waste powder and its ash were found to have comparable effects to OPC. 

 

Promotion of CBEMs and their performance has recently been a significant aim of many 

researchers using high OPC content (García et al. 2013, Fang et al. 2014). In contrast, the aim 

of this study is to improve the mechanical properties and the durability of CBEMs with low 

cement content and different by-product materials, namely FA and GGBS. To achieve this aim, 

the mechanical properties have been assessed by both the indirect tensile stiffness modulus test 

(ITSM) and the Repeated Load Axial Test (RLAT). The durability assessment was evaluated 

by moisture susceptibility and freeze-thaw tests.  

 

2. Material and Testing Program 

2.1.Material Characteristics 

The aggregate used in this study was crushed limestone. The gradation of aggregate was within 

the limits of 0/14 mm size dense graded surface course, according to BS 4787-1. The selection 

was in order to ensure an appropriate interlock between the aggregate particles in the mixtures 

(European Committee for Standarization 2006). The amount of mineral filler (passing sieve 

0.063 mm) was 5% of the total weight of aggregate. The gradation of the aggregate is shown 

in Figure 1, and its physical properties are listed in Table 1. 
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Figure 1  Limestone aggregate gradation of 0/14 mm size close graded surface 

course according to BS 4787-1. 

 

 

Table 1  Physical characteristics of limestone aggregate* 

Properties Value Standard 

Density- Oven Dried 2.68 g/cm3 EN 1097-6 

Density- Saturated Surface Dried 2.69 g/cm3 EN 1097-6 

Density- Apparent 2.70 g/cm3 EN 1097-6 

Water Absorption 0.4 % EN 1097-6 

Aggregate Abrasion Value (AAV) 11.0 EN 1097-8 

Polished Stone Value (PSV) 31 EN 1097-8 

Los Angeles Coefficient (LA) 28 EN 1097-2 

* This information was provided by aggregate supplier. 

 

A cationic slow setting bituminous emulsion, C60B5, was used to manufacture the CBEMs. 

The high stability and high adhesion of cationic emulsion was the reason this type of emulsion 

was selected, as recommended by Nikolaides (1994) and Thanaya (2003). 40/60 penetration 

grade bitumen was used in emulsion production. The other relevant properties of the selected 

bituminous emulsion are shown in Table 2. 
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Table 2  Bitumen emulsion properties 

Property  Value Standard 

Appearance Black to dark brown liquid  

Breaking Behaviour > 170 EN 13075-1 

Softening Point (°C) 52 EN 1427 

Viscosity - Efflux time 2mm - 40°C (s) 15-70 EN 12846 

Adhesiveness >90 EN13614 

Particle surface electric charge  Positive EN 1430 

Bitumen content (%)  60 EN 1428 

Penetration (dmm)  47 EN 1426 

Density (g/cm³)  1.016  

 

 

For comparison purposes, a hot mix asphalt (HMA) has been included in the study. This mix 

contained the same aggregate type, gradation and base binder (40/60) as used in the CBEM. 

The bitumen content in the HMA was 4.9% as recommended by European Committee for 

Standarization (2006). 

 

Four types of filler material were used in this study. Natural limestone filler (LF) was used as 

conventional filler and Ordinary Portland cement (OPC) CEM I 42.5N was utilized as a 

hydraulic binder. Besides, a combination of OPC, FA type 450-S, (class F) according to ASTM 

C-618, and GGBS obtained from Cemex and Hanson respectively, were used for 

manufacturing the sustainable type of CBEM specimens. 

 

FA is a fine ash precipitated from the exhaust gases during coal combustion at power stations. 

In the current research, Fly ash type 450-S produced by Cemex Company was used. This FA 

contains approximately 50% silica and 26% alumina. This mineral filler could be classified as 

Class F according to the American Society of Testing Material ASTM C-618. Furthermore, 

GBBS is a by-product resulting from the grinding of blast furnace slag. The GGBS used in this 
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study contains 40% lime, 35% silica and 11% alumina. Both FA and GGBS, in the presence of 

cement, can enhance formation of new cement hydration products due to their chemical 

reactivity with the Calcium Hydroxide Ca(OH)2 in the hydrated cement.   

 

Similar materials were used by Mohammed et al. (2013) to investigate the hydration, 

microstructure and the durability of a sustainable type of concrete.  

 

A detailed characterization was carried out to investigate the chemical and physical properties of 

the selected fillers. The chemical composition of fillers (major oxides) were analysed by energy 

dispersive X-ray spectroscopy (EDX). The analysis is conducted by applying X-ray to the sample 

and then analysing the re-emitted characteristic fluorescent X-ray. The results are presented in 

Table 3.  

 

Table 3  Chemical compositions of fillers 

Formula Alias 
Types of filler 

FA GGBS LF OPC 

Na2O Sodium oxide 1.27 0.28 -- 0.56 

MgO Magnesium oxide 1.76 6.89 -- 2.04 

Al2O3 Aluminium oxide 25.14 11.21 -- 4.11 

SiO2 Silicon dioxide 51.32 35.65 1.97 19.84 

SO3 Sulfur trioxide 1.90 2.43 -- 5.41 

K2O Potassium oxide 4.24 0.64 -- 1.06 

CaO Calcium oxide 2.57 41.42 98.03 64.35 

TiO2 Titanium dioxide 1.29 0.63 -- 0.25 

Fe2O3 Iron oxide 9.77 0.26 -- 2.39 

P2O5 Phosphorus hemi-pentoxide 0.74 -- -- -- 

MnO Manganous oxide -- 0.60 -- -- 
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The particle size distribution was carried out by Beckmen Coulter Laser diffraction particle size 

analyser (see Figure 2). Further, scanning electron microscopy (SEM) was used for determining 

the fillers’ morphology as shown in Figure 3. SEM analysis was implemented under a resolution 

of 3-4 nm and an accelerated voltage of 15 kV.  

 

 

Figure 2  Particle size distribution of fillers. 
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Figure 3  Morphology of fillers. 

 

2.2.Mix Proportions and Sample Preparation: 

The proportions of the control CBEM were statistically optimized using the response surface 

method (RSM). Generally, RSM is a mathematical and statistical model which can be used for 

detecting the factor settings to optimize the average response values. Particularly in mix 

designation of CBEM, RSM was used as an optimization technique to adjust the mixture 

parameters (bitumen emulsion and pre-wetting water contents) to achieve acceptable 

mechanical strength and suitable volumetric properties. Based on this technique, the optimum 

bitumen emulsion content was 6.75% and the optimum pre-wetting water content was 2.12% 

of the total weight of aggregate for the reference mix. The complete details regarding the mix 

proportions based on RSM are described in a previous research work (Nassar et al. 2016). 
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The same mixture proportions were used to prepare four alternative CBEMs with cement and 

other fillers see Table 4.  

 

Table 4  CBEM types and the designation of fillers combination 

Mixture type 
Filler content by mass (%) 

LF FA/GGBS OPC 

LF-CBEM (Control mix) 100 0 0 

Low OPC-CBEM 80 0 20 

High OPC-CBEM 0 0 100 

GGBS-CBEM 0 80 20 

FA-CBEM 0 80 20 

 

The total amount of fillers was fixed at 5% by total weight of the aggregate. Marshall specimens 

with thickness (55 to 60) mm were prepared for all CBEMs. Mixing was carried out using a 

Sun and Planet mixer. Thereafter, impact compaction (Marshall hammer) was utilized to 

compact the specimens; following a pilot study 75 blows were applied to each face. Whilst it 

is recognized that the compaction method may influence CBEM properties (Miljković and 

Radenberg 2016). The Marshall compaction was selected due to it is convince to produce a 

suitably dense mixture. After compaction, the curing protocol followed was such that the 

specimens were left in the moulds (in a sealed condition) after compaction for 24hrs after which 

they were extruded. Specimens were conditioned in a thermostatically controlled air chamber 

at 20oC. This curing temperature was selected as the most conservative approximation to 

simulate actual performance of CBEM on site as well as to avoid any early ageing of the binder 

(Serfass et al. 2004, Khalid and Monney 2009, Ojum et al. 2014). 
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3. Experimental Program: 

3.1.Indirect Tensile Stiffness Modulus (ITSM) 

The curing trends of CBEMs were developed by monitoring weight loss and stiffness gain over 

a period of time. The non-destructive stiffness test, ITSM, was selected for assessing the 

stiffness of these CBEMs over a period of 3 months. The ITSM, as shown in Figure 4, was 

performed in order to carry out the test on the same set of specimens to nullify variability in 

the mixtures and to derive reliable results for stiffness evolution.  

 

Figure 4  Configuration of ITSM test. 

Stiffness modulus is considered as an indicator for the structural behaviour of mixtures because 

it is related to the capacity of the material to distribute traffic loads. Following BS EN 12697-

26, an impulsive load was applied with a rise-time of 124 ms, to achieve a target horizontal 

deformation of 7 ± 2 μm. Ten conditioning pulses were applied to the specimens followed by 

five test pulses. The measurements were repeated along two diameters and the average stiffness 

values were calculated (European Committee for Standarization 2012). For HMA, the 

specimens were conditioned and tested at 20oC. The ITSM was performed at 3, 5, 7, 14, 28, 45 

and 84 days. Four specimens per mix were tested under the same conditions.  
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3.2.Repeated Load Axial Test (RLAT) 

The Repeated Load Axial Test is the most widely used standard mechanical test in the UK for 

assessing the permanent deformation characteristics of bituminous mixtures. The test applies a 

repeated pulse load to simulate the traffic and measures the permanent deformation after each 

repeated load. The protocol for the RLAT test was performed based on BS EN 12697-25. Table 

5 and Figure 5 show the test configuration of the RLAT (European Committee for 

Standarization 2005).  

Table 5  RLAT test configuration based on BS EN 12697-25 

Item Range 

Specimen diameter  100±2 mm 

Conditioning stress 10kPa 

Conditioning period 600 s 

Test stress 100kPa, 200kPa, 300kPa 

Test Duration 3600 cycles 

Test Cycle Square wave pulse 1s on, 1s off 

Specimen thickness  40-80 mm 

Test temperature  40°C 

  

 

Figure 5  Configuration of RLAT test. 

 

 



15 

 

 

After compaction, the specimens were cured at 20oC for 28 days; thereafter they were cured in 

a forced draft oven for a further of 7 days at 40°C. This curing protocol was selected to make 

sure that the fully curing condition was achieved as recommended by Needham (1996) and 

Oke (2011). The two faces of the specimen were coated with a thin layer of silicone grease 

with graphite powder before running the test. Graphite powder is applied in order to eliminate 

the influence of unevenness of the specimen face on the test results. 

3.3.Durability Evaluation 

Durability is a feature directly related to the effect of environmental condition on the 

performance of asphalt mixtures during the service life. The durability of CBEMs has been 

evaluated against both the moisture and frost damage. This is in order to present a wide 

overview regarding the performance of CBEMs in warm and cold climates. Both damage 

modes are potentially serious problems in a wet and cold weather. Moisture and frost damage 

were evaluated based on BS EN 12697-23 and ASHTOO T283, respectively. Although (Al-

Busaltan et al. 2012, Al-Hdabi et al. 2014) used different curing regimes before applying the 

water damage protocol (3day at 40°C), it was found to be very difficult to apply the damage 

protocol before 7days because the specimens of the control mix exhibited very low strength at 

early age. At this age, after 7days, it is considered that all the mixtures will have developed 

sufficient strength to allow testing for resistance to water and frost damage.  The tests were 

carried out using three sets of specimens:  

 The first set (unconditioned/dry) was tested after curing for 7 days at 20°C;  

 The second set (first conditioned group/wet) was cured at 20°C for 7 days, after which 

the specimens were subjected to vacuum saturation for 30min (6.75kPa) before being 

soaked in a water bath for 3 days at 40°C and finally soaked for 2hrs at 20°C;  
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 The third set (second conditioned group/Freeze-thaw) was also cured at 20°C for 7 

days, after which the specimens were subjected to a vacuum for 10 to 30min (13-67kPa) 

until they reached at saturation level between 55% and 80%.The specimens were then 

wrapped in plastic bags and exposed to freeze-thaw cycles. The cycle consisted of 

freezing at − 18°C for 16hrs followed by soaking in a water bath at 60°C for 24hrs and 

finally soaked for 2hrs at 20oC. 

Durability of mixtures can be defined as the loss of strength in a mixture due to the effects of 

the exposure condition. The evaluation of durability was measured as indirect tensile strength 

ratio (ITSR) as defined in equation (1). 

𝐼𝑇𝑆𝑅 =
𝐼𝑇𝑆𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑒𝑑

𝐼𝑇𝑆𝑢𝑛𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑒𝑑
× 100                                                                                                         (1) 

ITSconditioned is the average indirect tensile strength of conditioned specimens; ITSunconditioned is 

the average indirect tensile strength of unconditioned specimens. 

The ITS test involved applying diametric compression with a constant deformation rate of (50 

± 2) mm/min to the samples between two loading strips, which creates tensile stresses along 

the vertical diametral plane causing a splitting failure. The test was conducted at 20°C using 

Instron test equipment. 

 

4. Results and Discussion 

4.1.Indirect Stiffness Modulus: 

Figure 6 shows the stiffness gain over time for different CBEMs. It is known that the 

monitoring of CBEM properties over the curing period is essential in order to understand the 

performance properly. A considerable increase in modulus was found when all or part of the 

conventional filler in LF-CBEM was replaced by other active fillers. It has been already 

established that the stiffness of CBEM is highly reliant on the removal of moisture from the 
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mixture as well as the breaking of bitumen emulsion (Needham 1996). However, incorporating 

fillers such as GGBS and FA produced contradictory trends by retaining a relatively high 

amount of water maintained inside the mixture due to: (1) the water physically adsorbed on the 

surface of aggregate/filler, (2) the water trapped in the closed pores within the bitumen and (3) 

the water bounded by the cement paste or cement paste plus active filler. The main feature of 

this water is that it cannot easily evaporate. In the current research, these three types of water 

will be termed as the trapped water. From other side, the evaporated water has been quantified 

by (1) tracking the mass loss of CBEMs specimens over the curing period and (2) further drying 

of CBEMs specimens for 7days at 40 oC in order to measure any residual evaporated water 

inside the mixture. Finally, the trapped water was calculated by subtracting the evaporated 

water from the initial water content present in the CBEMs specimens. In Figure 7, the trapped 

water increases with the presence of FA and GGBS to about 38.5% and 53.4%, respectively, 

and the trapped water in OPC-CBEM reaches a maximum value of 56.7%, whereas LF-CBEM 

trapped only 25.0%. It is clearly deduced that the amount of trapped water in by-product treated 

mixes is quite high as high OPC-CBEM, indicating the role of the FA and GGBS in maintaining 

trapped water inside the mixture to be used for enhancing the hydration process with time and 

producing new hydration products due to filler reactivity. 
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Figure 6  The stiffness modulus of studied mixtures over the curing period. 

It is known that the use of GGBS and FA has a positive effect on reducing the amount of the 

Ca(OH)2 (undesirable cement hydration products) in the mix. At the end of the reaction of the 

GGBS and FA, and Ca(OH)2, new hydration products, such as C–S–H gel, is formed (Oner 

and Akyuz 2007).  

 

Table 6 presents model (2) parameters fitting, which has been used to describe the increase of 

stiffness in CAM (Bocci et al. 2011); test fit curves are shown in Figure 6.  

𝑆𝑡 = 𝑆𝑚𝑎𝑥 − (𝑆𝑚𝑎𝑥 − 𝑆𝑜). 𝑒−𝑏.(𝑡−𝑡𝑜)                                                                                                 (2) 

St: is the modulus at a specific curing temperature (MPa); t is the time (day); Smax: is the 

maximum (long-term) modulus (MPa); So: is the initial modulus (MPa); b is a parameter 

indicating the rate of increase in stiffness. 

Table 6  Curing model parameters 

Mixtures type Smax (MPa) So (MPa) b R2 

LF-CBEM (Control mix) 3925 850 0.0664 0.96 

Low OPC-CBEM 8575 2222 0.0860 0.97 

High OPC-CBEM 27178 14005 0.4184 0.96 

FA-CBEM 10046 1971 0.0833 0.96 

GGBS-CBEM 21836 11618 0.1137 0.94 
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From Table 6, the rate of the increase in CBEM stiffness modulus (b) increases as the OPC 

percentage increases. Also, the rate of increase in stiffness modulus of GGBS-CBEM is slightly 

higher than those for Low OPC-CBEM and FA-CBEM, which all have the same OPC content 

(1%), indicating the positive effect of GGBS. Although, it is found that FA replacement has 

showed better performance than GGBS replacement in improving the long term property of a 

high strength concrete (Megat Johari et al. 2011), using FA produced much lower stiffness as 

well as a lower rate of increase in comparison to GGBS. This may be attributed to the ability 

of GGBS mixtures to maintain a higher amount of trapped water relative to FA mixtures 

replacement (Figure 7). Moreover, GGBS and OPC exhibit very similar chemical oxides, 

particularly the main oxides CaO and SiO2. Therefore, this might increase the efficiency of 

GGBS in by enhancing the hydration process significantly. 

 

 

Figure 7  The water content evolution of CBEMs. 

 

4.2.Temperature Influence on Stiffness 

Figure 8 presents the CBEM stiffness modulus at 28 days under different testing temperatures, 

namely 5, 10, 20, 30 and 40oC. Generally, the stiffness modulus decreased with an increase of 

the temperature; the trend is very clear in both HMA 40/60 and LF-CBEM. However, the 
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variation of stiffness decreased with the presence of active filler, especially GGBS in GGBS-

CBEM and High OPC CBEM. This might be considered as an advantage in terms of 

performance, potentially making the material less prone to cracking at low temperatures and 

rutting at high temperatures.  

 

Figure 8  Stiffness modulus of CBEMs at 28 days under different testing 

temperatures. 

 

An analytical model has been used to describe the temperature sensitivity using the following 

formula (3) (Bocci et al. 2011): 

𝑙𝑜𝑔 𝑆 = −𝛼. 𝑇 + 𝛽                                                                                                                                 (3) 

S: is the stiffness modulus at testing temperature T; and α and β: are experimental parameters 

depending on the material. Temperature sensitivity is expressed by α, the slope of the 

regression line in a semi-logarithmic plot (Figure 8). Table 7 shows the resulting  α , β  and R2 

values. The higher the α value, the more temperature sensitive the material. 
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Table 7  Temperature sensitivity of analytical model results 

Mixture type 𝛂 β R2 

LF-CBEM (Control mix) 0.0435 4.3207 0.98 

Low OPC-CBEM 0.0138 4.1495 0.99 

High OPC-CBEM 0.0031 4.4962 0.98 

GGBS-CBEM 0.0040 4.4096 0.98 

FA-CBEM 0.0128 4.2474 0.99 

HMA 40/60 0.0405 4.4909 0.99 

 

The results are comparable with those published by other authors (Pasetto and Baldo 2010, 

Bocci et al. 2011, Grilli et al. 2012, Dondi et al. 2014, Pettinari et al. 2014).  

4.3.Repeated Load Axial Test: 

The results of RLAT on the different mixtures are plotted in Figure 9 as the average of three 

specimens in each mix. The incorporation of OPC and other active fillers resulted in a 

significant decrease in the permanent strains relative to the control mix (LF- CBEM), implying 

that CBEMs with OPC, FA and GGBS are much less susceptible to rutting distress. The 

improvement shown into FA-CBEM relative to low OPC-CBEM is probably rather larger than 

would be expected based on ITSM data; at this point the reason for this point remains unclear 

and further investigation is needed. 

 

 

Figure 9  The permanent strain in CBEMs under 100kPa stress. 
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Normally, the standard RLAT test uses a vertical stress of 100kPa and it is not common to test 

at higher pressures. However, tests at 200 and 300kPa have been included in the present 

investigation in order to give a broad picture of what would happen if the CBEMs were used 

as a surface layer under a high stress level due to direct tyre contact. Under these higher 

stresses, the sensitivity of result to mixture components became particularly apparent. Figure 

10 presents a comparison between the accumulated permanent strains under different stress 

levels, namely, 100, 200 and 300kPa. Untreated mixtures such as LF-CBEM showed a quite 

high permanent strain of 3.10% under 200kPa whilst the specimens completely damaged under 

300kPa. Also, it was found that incorporating GGBS had a pretty good resistance to permanent 

deformation particularly under 100kPa relative to High OPC-CBEM. 

 

Figure 10  Accumulated permanent strain of CBEMs under different stresses. 

 

In conclusion, the findings generally show that treated CBEMs have an excellent resistance to 

permanent deformation under high stresses since strain is less than 1% (Thom 2008). 

Therefore, treated CBEMs can potentially be successfully used in the construction of surface 

layers for medium to high traffic volume roads. 

From Figure 10, it can be found that both filler type and stress level have significant influence 

on the deformation behaviour of CBEM. A two-way ANOVA statistical analysis was 
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conducted to determine the impact of stress level and the type of fillers (as introduced for each 

mix in Table 4) for treated CBEMs. The analysis confirms that both the stress level and the 

type of fillers are statistically significant at 95% confidence level. (Pstress level= 0.010< 0.05 and 

Ptype of fillers = 0.012< 0.05). This is consistent with other works conducted on similar mixes with 

different types of fillers (Pasetto and Baldo 2012, Al-Hdabi et al. 2014, Modarres and Ayar 

2014) 

4.4.Durability Evaluation: 

4.4.1. Moisture Damage 

The results in Figure 11 illustrate the potential benefits gained from incorporating OPC and by-

product fillers into CBEMs. It is clearly shown that ITSR of treated CBEMs was higher than 

that for control mix (LF-CBEM) and the equivalent HMA (HMA 40/60). The higher values of 

ITSR may be related to additional activation of cement hydration, in addition to the high 

temperature which would accelerate the hydration process of active fillers. The results are 

consistent with trends noticed in concrete (Lothenbach et al. 2008) and lead to the conclusion 

that CBEMs with FA and GGBS are less susceptible to moisture damage, and this behaviour 

corresponds to the results obtained for temperature susceptibility (section 4.2).  

 

Figure 11  The results of moisture damage for CBEMs. 
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4.4.2. Frost Damage: 

Figure 12 plots the ITS values before and after exposure to freeze-thaw cycles. It can be seen 

that the ITSR values of GGBS-CBEM, FA-CBEM, High OPC-CBEM and HMA 40/60 are 

approximately in the range from 75% to 80%. However, the other mixtures, LF-CBEM and 

Low OPC-CBEM, show lower values of around 50 to 60%. Thus, it can be concluded that 

incorporating waste by-product fillers is very beneficial in making CBEM less susceptible to 

frost damage and stripping problems. However, a low cement content on its own is not 

sufficient to withstand the frost damage.  

 

Figure 12  The results of frost damage for CBEMs. 

 

It should be highlighted that there is no universally accepted minimum limit to define CBEMs 

as durable materials for structural purposes in a pavement. However, the authors would suggest 

that CBEMs should be considered sufficiently moisture and frost resistant for use in a surface 

layer if the values of ITSR for both types of damages are more than 70%. Under this criterion, 

all the CBEMs produced in the present study are durable except LF-CBEM and Low OPC-

CBEM. 
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Figure 13  Fracture surface after moisture conditioning (a) without active filler 

(LF-CBEM) (b) with active filler (High OPC-CBEM). 

 

Figure 13 (a) and (b) show the fracture surfaces of damaged specimens after ITS testing 

moisture and frost damages tests for CBEMs. Differences between the CBEMs are found by 

visual inspection of the fracture surface after testing. The fracture surfaces of LF-CBEM 

(without active filler) occurred either in the asphalt mastic, or at the interface between the 

asphalt mastic; no aggregate fractured (Figure 13 (a)). However, for treated CBEM (with active 

filler) such as High OPC-CBEM, visual observations indicate that a significant portion of the 

fracture passed through the aggregate particles in the mixture (Figure 13 (b)). This might be 

related to the improved adhesion between the aggregate and bitumen due to active fillers in 

treated CBEMs relative to untreated CBEM. 

 

The results also showed that the use of GGBS and FA improved the resistance to both types of 

damage (moisture and frost) by maintaining approximately the same values as for High OPC 

CBEM and HMA 40/60. Therefore, it is recommended to use these materials (especially 
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GGBS) to increase the opportunity to use CBEM as a pavement surface layer. This requires a 

relatively low OPC value (1%) but produces durable and sustainable CBEMs. 

5. Conclusions 

The research work aimed at studying the effect of incorporating by-product fillers with low 

cement content in CBEMs in order to produce a surface course. The investigation was carried 

out by evaluating both mechanical and durability performances of CBEMs. 

The conclusions of the study can be summarized as the following: 

 A considerable improvement was achieved in both mechanical properties and durability 

due to incorporation of low cement content with by-product fillers such as GGBS and 

FA.  

 The replacement of GGBS exhibited better performance than the replacement of FA in 

CBEMs. This may be seen in the fact that GGBS mixtures maintained a higher amount 

of trapped water inside the mixture relative to FA replacement which also may be due 

to similarity of chemical oxides in GGBS relative to OPC. Therefore, this might 

enhance the hydration process considerably.  

 The replacement of GGBS showed a good performance comparable to High OPC-

CBEM by means of ITSM, RLAT and resistance to both water and frost damages.  

 Treated CBEMs were also found to be less temperature susceptible as the slopes of 

stiffness modulus variation were less than the equivalent HMA and untreated CBEM 

(control mix).  

 FA and GGBS treated CBEMs showed less susceptibility to severe environmental 

conditions such as moisture and frost damage. At the same time a tensile strength ratio 

of more than 70% is recommended to consider the CBEMs as moisture and frost 

resistant materials. 
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 Although the new sustainable CBEMs have shown superior performance in terms of 

stiffness modulus, resistance to permanent deformation and durability properties, 

fatigue characteristics are needed to be carried out in order to get the full 

characterisation in structural design of pavement. 
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