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A B S T R A C T   

Neonatal care is becoming increasingly complex with large amounts of rich, routinely recorded physiological, 
diagnostic and outcome data. Artificial intelligence (AI) has the potential to harness this vast quantity and range 
of information and become a powerful tool to support clinical decision making, personalised care, precise 
prognostics, and enhance patient safety. Current AI approaches in neonatal medicine include tools for disease 
prediction and risk stratification, neurological diagnostic support and novel image recognition technologies. 

Key to the integration of AI in neonatal medicine is the understanding of its limitations and a standardised 
critical appraisal of AI tools. Barriers and challenges to this include the quality of datasets used, performance 
assessment, and appropriate external validation and clinical impact studies. Improving digital literacy amongst 
healthcare professionals and cross-disciplinary collaborations are needed to harness the full potential of AI to 
help take the next significant steps in improving neonatal outcomes for high-risk infants.   

1. Introduction 

Artificial intelligence (AI) is an integral part of our daily lives and has 
begun penetrating adult healthcare settings with the advent of deep 
learning techniques and the “big data” environment. A PubMed search 
of AI papers found 23,442 citations in adult healthcare as compared to 
just 848 citations for neonatal care, with a significant increase in pub
lications across both groups in the last 3–4 years (Fig. 1). Despite the 
tremendous potential, AI application in neonatology is still in its in
fancy. In this review, we explore examples of AI applications, the chal
lenges of AI integration and its potential expansion in neonatal 
medicine. 

2. Neonatal AI application 

The use of AI in neonatal care has huge potential, especially with the 
increasingly complex intensive care provided for high-risk infants. AI 
should be viewed as a tool within the healthcare professionals’ (HCPs’) 
armoury, alongside blood investigations and imaging, to support shared 

clinical decision making, provide efficient personalised neonatal care 
and reduce avoidable errors. 

2.1. AI application in large neonatal clinical datasets 

2.1.1. Prediction of neonatal mortality and morbidity 
The establishment of high quality, validated, multi-dimensional 

neonatal datasets have led to the development of prediction models 
for neonatal mortality or morbidity using deep learning approaches [1]. 
A good example is preterm survival without bronchopulmonary 
dysplasia (BPD) [2], an important preterm birth research priority with 
significant respiratory and neurological problems into adulthood [3]. 

There were 26 BPD prediction models identified in 2012 [4] with a 
further 27 identified since then (TCK/DS unpublished data). None are in 
routine clinical use despite the need for an objective measure to identify 
high-risk infants for timely targeted preventative treatments such as 
postnatal corticosteroids. Currently, subjective approaches are used to 
inform preventative strategies, often based on a few birth characteristics 
and previous experiences. Uncertainty around who and when to treat 

* Corresponding author. Neonatal Medicine and Technologies, Centre for Perinatal Research, School of Medicine, University of Nottingham, E floor, East Block, 
Queen’s Medical Centre, Nottingham, NG7 2UH, UK. 

E-mail address: don.sharkey@nottingham.ac.uk (D. Sharkey).  

Contents lists available at ScienceDirect 

Seminars in Fetal and Neonatal Medicine 

journal homepage: www.elsevier.com/locate/siny 

https://doi.org/10.1016/j.siny.2022.101346    

mailto:don.sharkey@nottingham.ac.uk
www.sciencedirect.com/science/journal/1744165X
https://www.elsevier.com/locate/siny
https://doi.org/10.1016/j.siny.2022.101346
https://doi.org/10.1016/j.siny.2022.101346
https://doi.org/10.1016/j.siny.2022.101346
http://crossmark.crossref.org/dialog/?doi=10.1016/j.siny.2022.101346&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Seminars in Fetal and Neonatal Medicine 27 (2022) 101346

2

may delay treatments and miss narrow therapeutic windows, leading to 
additional ventilator-induced lung injury (VILI). A dynamic approach, 
using deep learning to map each infant’s trajectory, to provide person
alised BPD risk would be invaluable in supporting clinical decision 
making. This approach has already been used in predicting respiratory 
failure in cystic fibrosis patients and could be adopted within neona
tology if proven to add value and validated [5]. 

2.1.2. Identifying hidden patterns within data 
Deep learning approaches have been deployed in large clinical 

datasets to identify hidden data patterns. An example of such application 
is exploring the variation of neonatal nutritional practices and their 
association with clinical outcomes [6]. This could identify “optimal” 
nutritional practices as well as improve the understanding of the un
derlying pathophysiology and impact of nutritional practices on 
neonatal outcomes. 

2.2. AI application in real-time routinely recorded neonatal intensive care 
vital signs 

Continuous monitoring of vital signs is an essential component of 
cardiorespiratory care of infants admitted to the neonatal intensive care 
unit (NICU) [7]. The abundance of data, generated by multiple sensors, 
can offer insight into the infant’s clinical status. Pre-set alarm thresholds 
in bedside monitors can alert HCPs about an acute change in the infant’s 
condition. However, in many cases, they are drawn to the bedside by 
false-positive alarms leading to ‘alarm-fatigue’, negatively influencing 
HCPs’ vigilance when immediate action is warranted [8]. The applica
tion of machine learning (ML) algorithms on monitoring data has been 
shown to improve the selection of alarms requiring immediate inter
vention, providing earlier recognition for pre-emptive clinical action, 
and directing care towards a more efficient, individualized approach 
[9]. 

Many NICU’s are still dependent on infrequent, usually hourly, 
snapshots of vital signs, often manually registered in the patient’s 

medical record, leaving the majority of abundantly available digital data 
unutilised [10]. Others have already implemented the continuous vis
ualisation of monitoring data into their electronic medical record, 
enabling HCPs to look for specific patterns in the combined data. This 
can lead to early recognition of disease states, sometimes hours before 
they would become clinically apparent [10]. ML algorithms can 
outperform HCPs in fulfilling this task, recognising the disease and 
supporting clinical decision making [7,10–12]. 

Late onset sepsis (LOS) results in a significant burden of morbidity 
and mortality in preterm infants. The timely recognition of disease 
onset, together with prompt initiation of antibiotic therapy, is crucial to 
prevent adverse outcomes in these infants. Since LOS is often accom
panied by changes in the infant’s vital signs [10], it serves as an ideal use 
case for ML model development. AI algorithms can help recognise LOS 
before sepsis is clinically apparent [11]. The efficiency of these models is 
often evaluated on a small snapshot of data preceding sepsis diagnosis to 
identify the disease at a certain timepoint before the clinical sepsis call 
was made. Although timely sepsis recognition is a key component of the 
ML model’s success, precision remains a major challenge in the model’s 
clinical usefulness. To evaluate how the model interacts with data 
throughout the infant’s entire NICU stay, it should be subjected to 
continuous performance analysis, evaluating its output at every single 
timepoint [7]. Moreover, ML algorithms should be compared with cur
rent clinical tools in diagnostic accuracy, be subjected to internal vali
dation and undergo generalisability testing with external validation 
[12]. 

Once proven AI models become available, integrating them into new 
wireless monitoring devices [13] could potentially lead to a disruptive 
change in the entire NICU ecosystem and better treatment for infants in 
terms of comfort, family-centred care and improved outcomes. Linking 
these data-rich measures from fetal monitoring, care in the delivery 
room, through to the NICU and early home monitoring, with 
longer-term outcomes could help advance the understanding of optimal 
early life care and improve the outcomes of high-risk infants. 

2.3. AI application in neuroimaging and neurophysiological investigations 

2.3.1. Magnetic resonance imaging 
The past five years have seen enormous strides in the use of AI for 

improving value and inference from brain MRI. AI methods have led to 
technical advances including strategies to mitigate effects of movement 
artefact and increase information yield [14], and improvements in tissue 
classification, which is an essential step in many processing pipelines 
[15]. These have enabled researchers to probe the developing brain with 
ever-increasing depth leading to new insights about the impact of 
perinatal adversities on structural and functional network architectures 
[16]. In the clinical realm, AI is enabling innovation in 3 key areas: 
defining neuroanatomic phenotypes, predicting outcome, and facili
tating scale-up of imaging studies. 

Preterm birth is closely associated with a phenotype that includes 
atypical brain development, and subsequent intellectual disability, ce
rebral palsy, autism spectrum disorder, attention deficit hyperactivity 
disorder, psychiatric disease and problems with language, behaviour 
and socioemotional functions [17]. Structural, diffusion and functional 
MRI have each provided fundamental insights about alterations to 
structural and functional networks that are common in infants born 
preterm [18]. However, structure-function relations are better captured 
by models that integrate data from two or more imaging modalities in a 
single framework: for instance, multimodal image analysis reveals pre
viously unrecognised patterns of neuroanatomic variants in preterm 
infants that correlate with clinical exposures and predict cognitive and 
motor outcomes [19]. ML has taken analytic capability to the next level 
by enabling “fingerprinting” of an individual’s brain in morphometric 
similarity networks (MSNs). MSNs are computed by integrating different 
types of MRI data in a single model including regional volumes, diffu
sion tensor metrics, neurite orientation dispersion and density imaging 

Fig. 1. Increase in the number of PubMed citations over the last 20 years 
comparing the use of artificial intelligence in neonates and adults using the 
combined Medical Subject Headings (MESH) terms of “Artificial Intelligence” 
OR “Machine Learning” AND either “Infant, Newborn” OR “Intensive Care, 
Neonatal” for neonates or “Adult” OR “Intensive Care” for adult. The search was 
performed on 15/03/2022. 
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measures (Fig. 2). This approach can classify robustly the preterm brain 
phenotype, and it provides an accurate estimate of chronological brain 
age to within 0.7 ± 0.56 weeks [20] (Fig. 2). It is anticipated this type of 
approach will be useful for investigating drivers of brain dysmaturation 
and resilience, understanding the networks that contribute most to 
atypical brain development, and determining neural bases of cognition 
and behaviour. 

Early prediction of neurodevelopmental disorders is one of the main 
goals of precision medicine because it would allow for early and more 
effective intervention, which is expected to lead to improved prognosis. 
To date, most studies report correlation between a perinatal exposure 
and a behavioural or cognitive phenotype, with many models unable to 
take account of other known determinants of brain development such as 
clinical co-morbidities, social gradients, the stress environment, genetic 
variants, and maternal health [21]. ML has begun to bridge the gap 
between biological, genetic and environmental variables [22], and it is 
proving useful for prediction frameworks. For example, a parsimonious 
ML model identified a robust set of eight out of 24 imaging and clinical 
features that predicted language impairment in preterm infants. The 
most important features were white matter microstructure, twin status, 
and incomplete or no exposure to antenatal corticosteroids. Female sex 
and breast milk exposure during NICU care reduced the risk of language 
delay [23]. Importantly, although these imaging and outcome predic
tion models have been developed in the context of preterm birth, they 
could be applied to many neurodevelopmental disorders. 

Finally, some experimental designs require substantial scale-up using 
multi-site MRI data. These include defining ‘normal’ population varia
tion in brain structure and function, investigating risk and resilience for 

brain development conferred by the (epi)genome, biomarker validation, 
and investigating early life origins of common neurologic and psychi
atric diseases. This is challenging because of scanner and scan protocol 
differences, but ML can be used to enhance data interoperability, for 
example, by training image processing methods that are more robust to 
variations in input data. 

2.3.2. Continuous electroencephalography 
Electroencephalography (EEG) has become an invaluable compo

nent of neurocritical care in the NICU. EEG can be challenging to 
implement largely due to the lack of available experts to review the EEG 
in real-time and hence efforts have been ongoing for many years to 
automate this process. 

EEG provides real-time information about brain activity and is now 
considered essential for the diagnosis and effective treatment of seizures 
in neonates [24]. A more simplified but less accurate form of EEG 
monitoring, the amplitude integrated EEG (aEEG), has been imple
mented in neonatal units for many years because of the difficulty in 
obtaining conventional EEG. Given that infants are born at any time, day 
or night, providing a 24-h neonatal EEG service is challenging for most 
centres. However, EEG is often needed very soon after birth particularly 
for infants with hypoxic-ischaemia encephalopathy (HIE) as seizures can 
emerge within the first 24 h [25]. 

As neonatal seizures are a neurological emergency, they require 
prompt treatment. Up to 85% of neonatal seizures may have no obvious 
clinical signs, particularly in infants with HIE, making recognition very 
difficult. The only way to recognise and promptly treat all seizures is to 
use continuous EEG monitoring [26]. An additional challenge for 

Fig. 2. a) Individual morphometric similarity networks (MSN) construction: Different metrics are extracted from structural and diffusion MRI data (sMRI, dMRI 
(such as diffusion kurtosis imaging (DKI) and Neurite Orientation Dispersion and Density Imaging (NODDI) models)). The same labelled atlas is applied to all image 
types and the average metric values are computed for 81 regions of interest. An MSN (represented here as a connectivity matrix) is built by computing the Pearson 
correlation between the vectors of metrics of each pair of ROIs. b) Training of a predictive model from individual MSNs: the inter-regional correlations are used as 
predictor variables in a machine learning model for chronological brain age. The performance of the model is evaluated on an independent test set. From Galdi P et al. 
Neuroimage Clin [20]. 
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healthcare providers in the NICU is the uncoupling of clinical and EEG 
seizures following treatment with antiseizure medication [27]. This 
means that any clinical expression of the neonatal seizure that may have 
been present before treatment becomes invisible after treatment, yet the 
electrical seizure discharge continues. EEG monitoring is therefore 
essential to assess the efficacy of treatments. 

While EEG is hugely beneficial for neonatal seizure monitoring and 
treatment, it is also very useful in helping support the diagnosis of 
neonatal encephalopathy, particularly HIE. The majority of AI research 
using neonatal EEG has emerged in the area of automated seizure 
detection and more recent algorithms have used deep learning. The 
seizure detection accuracy of these algorithms is impressive and com
parable to that of human experts [28]. The report of the first multicentre 
trial of a neonatal seizure detection algorithm [29] demonstrates that an 
AI algorithm can be implemented in the NICU, is acceptable to staff and 
most importantly, given algorithms are ‘always on’, more seizures were 
detected in real-time. Most of the seizure detection algorithms devel
oped to date have been for full terms neonates, but some for preterm 
infants are now emerging [30]. The bottleneck in the development of 
these algorithms is always the availability of sufficient data for testing, 
training and validation. In addition, all seizures in the datasets must be 
labelled by several experts before they can be used for testing and 
training. 

Studies are also underway to develop algorithms, many using deep 
learning methods, that can assess brain maturation, estimate sleep states 
[31] and grade the background EEG patterns in conditions such as HIE 
[32] (Fig. 3). Appropriate and sufficient data that has been expertly 
labelled is key to this effort. Physiological data like EEG is noisy and 
subject to both movement and biological artefact, which must also be 
considered during testing and training. As a result, a multidisciplinary 
approach is critical to its success. The recently funded European Coop
eration in Science and Technology (EU COST) AI4NICU Action (https 
://www.cost.eu/actions/CA20124/#tabs|Name:Working%20Groups) 
aims to speed up the development of AI technologies that detect brain 
injuries in neonates through such a multidisciplinary collaboration. 

2.4. AI application in image recognition 

Deep learning techniques such as convolutional neural networks 
(CNNs) and computer vision approaches can address the challenges of 
the potentially small and skewed datasets that often characterise 
neonatal image recognition tasks. These rely on a two-stage technique: 
automated segmentation of image or scene of interest followed by 
identification of the outcome of interest. Examples include the estima
tion of the gestational age of infants at birth using images of newborn 

infants [33]; analysing videos of clinical procedures, such as newborn 
resuscitation [34], and assessment of pain [35]. 

Gestational age at birth often guides treatment delivered by HCPs. 
Early dating prenatal ultrasound scan is the gold standard for assessing 
the gestational age of an infant [33]. However, this may not always be 
available particularly in low-resource settings. A novel automated 
postnatal gestational age estimation tool [36] used images of a newborn 
infants’ face, ear and foot. The images were initially passed through a 
segmentation stage using fully convolutional networks (FCNs) (Fig. 4). 
The system was taught how to identify the body part of interest from the 
image and disregard the background. FCNs create binary masks, label
ling the pixels of the body part of interest, and then comparing these to 
masks created when the images were manually annotated. Following 
segmentation to identify the region of interest, the images were passed 
through CNNs to learn features and classify the images into gestational 
classes for each body part. Following training, test images are passed 
through the CNNs and assigned a probability vector for each body part. 
The probability vectors are then combined with the newborn’s weight 
and regression performed, outputting an estimate of the gestational age 
in days rather than a broad gestational class. The tool estimated gesta
tional age to within approximately six days, surpassing that of postnatal 
clinical examination, including the Ballard score and last menstrual 
period [37]. Integration of the algorithms into smartphones could allow 
rapid estimation of gestational age, based on photos, in settings without 
other antenatal gestation dating resources. Similar approaches could be 
adapted to support the diagnosis of neonatal conditions including syn
dromes especially when linked with other data [38]. 

During newborn resuscitation, HCPs adhere to a defined protocol 
consisting of a sequence of actions by several people. Due to the high- 
pressure environment during resuscitation, errors can be made. Smith 
et al. [34] developed an automated scene segmentation and action 
recognition tool using deep learning to analyse videos of newborn 
resuscitation with good performance from as little as 20 training images. 
The tool would not only be useful in the training of HCPs by providing 
real-time feedback, but also has the potential to develop early warning 
systems used in resuscitation settings when HCPs deviate from standard 
protocols. 

2.5. AI application in predicting response to neonatal treatment 

Premature infants are commonly diagnosed with respiratory distress 
syndrome, requiring intubation and mechanical ventilation (MV). MV of 
preterm infants presents several challenges, including specific oxygen
ation targets and minimising ventilator-induced lung injury (VILI). 
Personalised treatment requires rapid and frequent interventions based 

Fig. 3. Overview of an AI system to grade the neonatal EEG. The system assigns a grade (1–4) based on 1 h of multi-channel EEG. Pre-processing: the EEG is filtered 
and downsampled to 64 Hz, then divided into 5-min segments. System model: each 5-min segment, per channel, is converted to a quadratic time-frequency dis
tribution (TFD). This 2-dimensional image is passed through a pre-trained convolutional neural network (CNN). The CNN has parallel layers to extract information 
across time, frequency, and in the joint time-frequency direction of the TFD. The CNN produces a separate probability for each of the 4 grades. Post-processing: the 
probabilities from the CNN are combined over all 5-min segments and across channels to give a final grade prediction. Adapted from Raurale et al. J Neural Eng [32]. 
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on changes in the patient’s state that are often not achievable within 
current NICU constraints. For example, oxygen saturation targets in 
mechanically ventilated neonates were achieved only 40% of the time 
[39], something AI techniques could potentially address. 

Minimising VILI is one of the key challenges in neonatal care to 
reduce the risk of associated adverse outcomes contributing to 
morbidity, mortality, and poor long term quality of life. Weaning from 
MV remains a complex clinical problem in the NICU, with 15%–40% of 
infants failing extubation [40]. AI techniques have been employed to 
help design decision support tools to predict extubation readiness and 
neonatal outcomes [41,42]. Precup et al. [41] suggested a predictor 
model, based on support vector machines, could reduce the extubation 
failure rate by more than 80% as compared to current clinical measures. 
The performance of predictive models of extubation outcome based on 
different ML algorithms have been studied [42]. Although some models 
showed satisfactory performance, HCPs’ predictions still outperformed 
all developed models, indicating the need for further refinement of 
detailed mechanistic models that can be fully validated against indi
vidual patient data. 

AI techniques can be exploited for optimising the administration of 
drug doses. Prediction models have used optimised support vector ma
chines, decision tree ensembles, and deep learning to predict the effec
tiveness of therapeutic caffeine regimens in preventing apnoeas and 
reducing the need for prolonged MV [43]. 

Artificial neural networks have been designed to suggest the most 
protective ventilator settings and minimise VILI, maintaining blood 
gases within acceptable ranges demonstrating advantages over rule- 
based systems [44]. Recurrent neural networks for predicting future 
ventilation parameters have demonstrated good accuracy when pre
dicting 1.5 s ahead [45], but performed poorly when attempting to 
predict further into the future, again indicating the need for more 
refined models with higher predictive capabilities [46]. 

3. Challenges of AI in neonatology 

Alongside recognising the far-reaching AI potential in neonatal 
medicine, it is also crucial to understand its limitations and pitfalls if we 
are to integrate it within routine care pathways. Currently, there is a lack 
of uniformity in critically appraising the development and performance 
assessment of AI healthcare tools in the following areas [47,48]. 

3.1. Dataset quality 

High-quality data is needed to train AI tools. The datasets used to 
develop AI tools should be reported fully by researchers and appraised 
carefully by reviewers [49]. Some of the common pitfalls are small 
sample sizes, inappropriate handling of missing values and heteroge
neity assessment in different population subsets or healthcare settings 
[47]. Caution is also needed to look for biases against underserved 
groups that may have been unintentionally embedded within the 
developed AI tool. 

3.2. Model performance assessment based on the dataset type 

Cross-validation and bootstrapping are commonly used in assessing 
model performance to utilise the full range of data collected. Depending 
on the aim of the AI tool, performance should also be continuously 
assessed on the full dataset throughout the neonatal admission, rather 
than on a snapshot of the data. 

The most reported performance measure of AI tools is the area under 
the receiver operating characteristics curve (AUROC), a discrimination 
measure. However, this can be misleading in certain settings. In some 
healthcare timeseries datasets with class imbalance, AUROC may pro
vide false assurance of the model performance as AUROC depends on the 
true negative rate which is high in imbalanced datasets. Hence, other 
performance measures must be assessed including precision-recall 
curve, specificity/sensitivity and calibration measures [48]. 

Fig. 4. a) Plantar surface photograph of preterm and post-term infant. Manually labelled region of interest (ROI) used to train system to identify foot and remove 
background with subsequent plantar crease pattern recognition. This uses fully Convolutional Neural Networks (CNNs) to segment images and provide per-pixel 
classification. b) Images undergo deep machine learning, with CNNs passing through different layers, to be classified into one of five classes (extremely preterm, 
very preterm, moderate preterm, term and post-term). This probability vector is then combined with the weight of the infant to improve the decision-making process 
during regression and the output is an estimate of gestational age in weeks. Adapted from Torres et al. Image and Vision Computing [36]. 
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3.3. External validation and clinical impact 

Overfitting is a common issue plaguing AI prediction tools. Complex 
ML algorithms may be very sensitive in detecting nuances within the 
dataset, producing excellent performance in the initial dataset used to 
develop the algorithm. However, because the tool models the training 
data too well, its performance may suffer when tested on a different 
dataset or in clinical practice, making external validation essential [47]. 

Clinical impact studies are also required to provide robust evidence 
to inform AI application in healthcare settings. These assess the per
formance of AI tools in terms of their discrimination and calibration 
characteristics, and their impact on the clinical workflow (e.g. changes 
in the behaviour of HCPs or parents/carers) and patient outcomes. How 
the AI tool integrates seamlessly within the current clinical workflow, 
providing the right information to HCPs and parents/carers, is crucial to 
bridge the development-implementation gap to clinical practice [49]. 

3.4. Interpretability 

Interpretability and transparency are crucial to achieving augmented 
intelligence. There have been increasing innovative efforts in exploring 
approaches to improve AI’s interpretability [50] and explaining how the 
prediction is derived. Interpretability should be inherently considered in 
model construction for bedside clinical use, guiding the choice of algo
rithm to train a model. 

3.5. Critical appraisal, regulatory and monitoring guidance 

There has been an enormous effort in updating current critical 
appraisal, regulatory and monitoring guidance for AI healthcare devices 
[48,49]. When developed, these will help address some of the method
ological, critical appraisal and medicolegal challenges as well as the 
monitoring needed to ensure its safe efficient use for the intended 
purpose. 

4. Future 

AI is likely to become an indispensable part of the neonatal care 
toolkit to support HCPs and parents/carers in providing improved, 
efficient and safer neonatal care. For this to become a reality, two crucial 
steps need to be taken. Firstly, the digital literacy among HCPs in un
derstanding AI’s principles and limitations needs to be improved. This 
enables HCPs to appraise newly developed AI tools and monitor their 
safety and appropriate use in clinical practice. Secondly, there is a need 
for cross-disciplinary, international collaborations that includes data 
and computer scientists, HCPs, lawyers and policymakers to design and 
apply AI tools that will overcome the challenges highlighted. 

5. Conclusion 

AI will be an integral part of the data-rich environment of neonatal 
care and this review highlights important areas of its application under 
investigation. These include mortality and disease prediction, image 
analysis and clinical decision support tools. However, current AI appli
cation is lagging behind adult specialities and a concerted effort is 
needed to accelerate neonatal AI research and translation into mean
ingful clinical application. 

6. Practice points  

• AI will be an integral part of future healthcare, especially in complex 
settings such as neonatal intensive care, to support shared clinical 
decision making, providing efficient personalised neonatal care 
while reducing avoidable errors.  

• Novel application of AI in neonatal medicine is already improving 
our understanding of neuroanatomic phenotypes, prediction and 

disease modelling, seizure analysis and optimal ventilatory 
strategies.  

• Addressing the challenges, improving digital literacy amongst HCPs 
and multi-disciplinary collaborations, are needed to harness the full 
AI potential in neonatal care. 
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