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We study in detail an open quantum generalization of a classical kinetically constrained model —
the East model — known to exhibit slow glassy dynamics stemming from a complex hierarchy of
metastable states with distinct lifetimes. Using the recently introduced theory of classical metasta-
bility for open quantum systems, we show that the driven dissipative quantum East model features
a hierarchy of classical metastabilities at low temperature and weak driving field. We find that the
effective long-time description of its dynamics is not only classical, but shares many properties with
the classical East model, such as obeying an effective detailed balance condition, and lacking static
interactions between excitations, but with this occurring within a modified set of metastable phases
which are coherent, and with an effective temperature that is dependent on the coherent drive.
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I. INTRODUCTION

With a strong focus of current research on non-
equilibrium physics, open quantum systems have come
to the fore as a natural platform for studying the asso-
ciated phenomena: both through the natural occurrence
of non-equilibrium behaviour, and through their use in
quantum simulation based on, e.g., Rydberg atoms and
optical lattices [1–7]. This experimental prominence has
been accompanied by the development of varied numeri-
cal approaches and analytical techniques, such as tensor
networks [8], Monte-Carlo methods [9–12], field theoreti-
cal studies [13–15], other variational approaches [16–18],
and machine learning [19–23].

Despite the change implicitly present in the back-
ground of all non-equilibrium phenomena, most prior
studies on open quantum systems have focused on their
non-equilibrium steady states, with phase diagrams see-
ing a particular focus [24–30]. Classical phase transi-
tions in the steady state, a distinctly time-independent
phenomenon, are nevertheless accompanied by a crit-
ical slowing of the systems dynamics, with diverging
timescales at the transition parameters. For parameters
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near the transition, or finite system sizes, this slowing re-
sults in distinct timescales in the system dynamics, lend-
ing a rich structure to the time-evolution in such prob-
lems: this is commonly referred to as metastability. With
a deep theory for classical Markovian processes [31–35],
recent work has been done to extend this to open quan-
tum systems [36–38].

While metastability always arises as a consequence of
proximity to phase transitions [36, 39, 40], it can occur
without any significant change in the stationary state at
all, through the presence of constraints in the dynam-
ics. In classical kinetically constrained models [41–46],
the evolution of system components is conditioned on
the state of other components, which results in glassy
dynamics with dynamical heterogeneity, i.e., excitations
localised both in space and time, and a hierarchy of re-
laxation timescales in observable averages and correla-
tions. This complex dynamics corresponds to the oc-
currence of metastability despite the potential absence
of phase transitions in the stationary state. Quantum
adaptions of these models have been developed through
the concept of Rokhsar-Kivelson points [47, 48], lead-
ing to quasi-many body localization behaviour in closed
quantum systems [49–51]. Recent open quantum gener-
alisations [52–54] are also known to display dynamical
heterogeneity. Here we uncover its origin in the open
quantum East model introduced in Ref. [52] by utilis-
ing the non-Hermitian perturbation theory [55] and the
recently formulated theory of classical metastability in
Markovian open quantum systems [36–38].

The complex relaxation is a consequence of an emerg-
ing hierarchy of metastabilities: multiple timescales when
average system states appear stationary, although differ-
ent from the true, usually unique, stationary state. This
is visible in the spectrum of the master operator govern-
ing the dynamics as large separations between real parts
of its eigenvalues; see Fig. 1(a). We find that metastabili-
ties are effectively classical, with any density matrix after
sufficiently long evolution being a probabilistic mixture
of distinct metastable phases; see Fig. 1(b). Analogously
to the classical East model, these metastable phases cor-
respond to localised excitations but in a coherent ba-
sis and their number increases with system size, which
is also corroborated by the non-Hermitian perturbation
theory analysis, which identifies the second-order dephas-
ing as the mechanism beyond the emergence of fourth-
order classical dynamics with respect to the driving field
amplitude. Importantly, these phases arise not only in
average dynamics but already in individual realisations
of an experimental run or its numerical simulation: when
coarse-grained in time over periods comparable to the
metastable timescales, emission records jump sharply be-
tween the rates of the corresponding metastable phases
leading to dynamical heterogeneity; see Fig. 1(d) [cf. a
trajectory without metastability in Fig. 1(c)]. Further-
more, dynamics of coarse-grained emission records is de-
termined by the effectively classical long-time dynamics
of the average system state, which shares further prop-
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Figure 1. Metastable dynamics in the open quantum
East model: (a) Spectrum of the open quantum East model
of N = 3 spins with a large separation −λR

4 � −λR
5 [val-

ues shown in the log scale, λ1 = 0 not visible; degeneracy
λR
2 = λR

3 due to the translation symmetry; cf. Fig. 3(a)]. (b)
Average site magnetisation for random initial states. Colour
represents time in the log scale, shown on left. After the ini-
tial relaxation on the metastable timescale τ ′ (yellow-green)
states approach a limited region of values captured by the
blue simplex of the magnetisation with vertices corresponding
to metastable phases (blue dots), before the final relaxation
until the relaxation time τ (blue-purple) towards the unique
stationary state (red dot); cf. Fig. 3. (c) and (d) Quantum
jump Monte Carlo (QJMC) trajectories for N = 6 spins, for
the non-interacting unconstrained case (c), and for fully con-
strained case (d) with pronounced dynamical heterogeneity
[colour indicates the number of jumps J−j , (6b), for jth spin,
grouped in 500κt time bins]. Parameters: in panels (a) and
(b) Ω/κ = 0.1 and γ/κ = 0.0001, and p = 0.999, in panels
(c) and (d) Ω/κ = 0.12 and γ/κ = 0.0096 with p = 0, p = 1,
respectively. See Appendixes A 1 and A2 for the numerical
methods.

erties with the classical East model: detailed balance at
an effective temperature dependent both on the temper-
ature and the driving field, and the lack of interactions
between excitation in metastable phases. Additionally,
we observe the emergence of an effective metastability
for the emission activity, which is not accompanied by a
separation in the master operator spectrum, as it appears
before metastable regimes for the system states.

This paper is organized as follows. We begin by in-
troducing open quantum East model [52] in Sec. II. We
verify the presence of a spectral gaps inducing a hierar-
chy of metastabilities in Sec. III A and discuss properties
of the corresponding metastable phases in Sec. III B. We
then investigate the structure of the classical long-time
dynamics with focus both on the dynamics of the av-
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erage system state in Secs. IVA and the dynamics of
quantum trajectories in Secs. IVB and IVB4, as well as
the emergence of effective metastability in Sec. IVC.

II. DISSIPATIVE QUANTUM EAST MODEL

We now discuss the model we will consider in this pa-
per, the open quantum East model [52, 53], a generaliza-
tion of the classical kinetically constrained East model
[41] studied in relation to glass physics [43, 45, 46, 56, 57].
Such classical systems often exhibit multiple stages of re-
laxation on different time scales, indicative of metasta-
bility, and we expect such behaviour to occur in their
quantum counterparts.

A. Model

We consider dynamics of N spins-1/2 governed by a
Lindblad master operator as (see Refs. [58–60])

d

dt
ρ(t) = L[ρ(t)], (1)

where ρ(t) is the density matrix describing the system
state at time t and the Lindblad operator L is given by

L(ρ) =
∑

j=1,...,N
α=−,+

(
−i[Hj , ρ] + Jαj ρJ

α†
j −

1

2

{
Jα†j Jαj , ρ

})
, (2)

with Hj being the Hamiltonian and J−j and J+
j the jump

operators that act locally on jth spin, constrained on the
state of the preceding spin (see below). These jump op-
erators describe interactions between the system and its
surrounding environment, which, if associated to emis-
sions of energy quanta, can be detected via continuous
measurements [59], e.g., by counting photons emitted by
atoms coupled to the electromagnetic vacuum [52–54, 61].

For N = 1 spin, there are no constraints, and the dy-
namics is due to the interplay of the coherent field Ω and
thermal fluctuations,

H = ΩSx, (3a)

J− =
√
κS−, (3b)

J+ =
√
γ S+, (3c)

where Sx and S∓ = Sx ∓ iSy are the spin operators
that can be associated with the photon emission and ab-
sorption, respectively. This dynamics features a unique
stationary state [52],

ρss,1 =

[
Ω2+κ(γ+κ)
(γ+κ)2+2Ω2 −i (γ−κ)Ω

(γ+κ)2+2Ω2

i (γ−κ)Ω
(γ+κ)2+2Ω2

Ω2+γ(γ+κ)
(γ+κ)2+2Ω2

]
, (4)

expressed in the basis |0〉, |1〉. The eigenstates |u〉 and
|e〉 of ρss,1 = λu |u〉〈u| + λe |e〉〈e|, approach |0〉 and |1〉,

as the coherent field tends to 0, and we refer to them
as the unexcited and the excited states, respectively (see
Appendix B).

The many-body model [52, 54] with N ≥ 2, in anal-
ogy to the classical East model, is constructed using a
constraint operator

F = (1− p)1+ p |e〉〈e| . (5)

The constraint, parametrised by p, is absent when p = 0,
for p = 1 is referred as hard, and for 0 ≤ p < 1 as soft.
The dynamics in Eq. (2) is then defined as [cf. Eq. (3)]

Hj = ΩF 2
j−1 S

x
j , (6a)

J−j =
√
κFj−1 S

−
j , (6b)

J+
j =

√
γ Fj−1 S

+
j , (6c)

where the subscript j denotes the operators acting on
jth spin and we assume periodic boundary conditions,
i.e., 0 7→ N in operator indices.

For p < 1, the stationary state of the dynamics is
unique and given by a product state of the single-spin
stationary state, ρ⊗Nss,1 [cf. Eq. (4)]. This follows directly
from the construction of the dynamics, as the constraint
commutes with the stationary state of a single spin, and
as such, the state of a neighbouring spin is acted on as if
the master operator were that of a non-interacting sys-
tem, but with κ, γ and Ω rescaled by 1 − pλu. For the
hard constraint, dynamics of the jth spin only occurs if
the state of (j−1)th spin features some probability of be-
ing in the excited state |e〉. Therefore, the so called dark
state (|u〉〈u|)⊗N is disconnected from the dynamics and
thus stationary, as no constraint is fulfilled [cf. Fig. 1(d)
and see Appendix B].

As a consequence of its non-interacting structure, the
stationary state features no static transitions, and cumu-
lants of all system observables remain analytic. Never-
theless, at low temperatures (γ/κ � 1) and small val-
ues of coherent field (|Ω|/κ � 1), the dynamics mani-
fests a significant change as p tends to 1, with jumps in
trajectories becoming localized both spatially and tem-
porally [53], thus leading to dynamical heterogeneity [see
Figs. 1(c) and 1(d)]. In this work, we unfold this dynami-
cal phenomenon using the approach for classical metasta-
bility in open quantum systems recently introduced in
Ref. [38]. In order to motivate the use of this new ap-
proach, we first discuss the approach via a mean-field
approximation and results from the non-Hermitian per-
turbation theory.

B. Mean-field theory

A common informative treatment of open many-body
quantum systems is mean-field theory and its exten-
sions [40, 62], often resulting in the prediction of multi-
ple stationary states [15, 61]. These stationary states can
often be identified with metastable phases in the finite-
size system, with the mean-field describing short time
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evolution into the metastable manifold [37, 39, 40], and
long-time dynamics neglected due to the lack of corre-
lations acting as noise on this set of states [40]. While
the stationary state of the quantum (and classical) East
model is homogeneous, the dynamical heterogeneity of
trajectories suggests the long time dynamics takes place
between states which are not translation-symmetric, and
thus cannot be reproduced in the homogeneous mean-
field ansatz (1/2 + xSx + ySy + zSz)⊗N . Indeed, it is
known that mean-field is ineffective in the classical case
(Ω = 0) as the removal of spatial dependence in the state
causes the constraint’s directionality to be lost. This will
also be the case in the quantum regime (Ω 6= 0), un-
less we allow for the spacial dependence by considering a
tensor product of different single-state density matrices,
⊗Nj=1(1/2 + xjS

x + yjS
y + zjS

z). In this case, however,
the number of parameters is reduced from 4N − 1 merely
to 3N , and at the price of solving non-linear (quadratic)
differential equations. As such, we forgo the mean-field
treatment.

C. Perturbation theory

The dynamical heterogeneity is present in the East
model dynamics at low temperatures (γ/κ � 1), small
values of coherent field (|Ω|/κ� 1), and constraint close
to hard (p = 1− ε ≈ 1, equivalent to |ε| � 1). Such sep-
aration of scale in the dynamical parameters, motivates
the use of non-Hermitian perturbation theory [55] for the
dynamics with jumps J−j featuring the hard constraint,
i.e.,

J
(0)
j =

√
κ|0〉〈0|j−1 |0〉〈1|j , (7)

perturbed with respect to the low temperature γ, the
weak coherent field, Ω, and the soft constraint, ε, to the
dynamics with the Hamiltonian and jumps operators in
Eq. (6) [cf. Eq. (5)]. In Appendix C, we derive the first-,
second-, and third-order corrections to the dynamics of
the system consisting of any number of spins, and also
discuss the finite-size effects. Here, we summarize those
results, with the further discussion in the context of find-
ings of the approach from Ref. [38] in the later sections.

The stationary states of jumps J (0)
j [Eq. (7)] corre-

spond to the states which feature no excitations, |0...0〉,
or only isolated excitations, |...010...〉, as such states are
dark to jump operators J (0)

j , i.e., the action of the jump
operators is 0 on these states. This further leads to all
coherences between such states being stationary, so that
they form a decoherence free subspace (DFS) [63–65] (see
Appendix C 1). Upon perturbing, this DFS becomes a
quantum metastable manifold [36] and undergoes slow
dynamics at the timescales we now discuss.
Low temperature. For γ/κ � 1, already in the first

order, the perturbative dynamics proportional to γ leads
to the decay of the dark DFS towards states with ex-
citations followed at least by two unexcited sites, i.e.,

|0...0〉, |...00100...〉, with no coherences being stationary
any longer. Therefore, the metastable manifold is classi-
cal in the perturbative regime of low temperatures. Fur-
thermore, in higher orders of γ, non-decaying excitations
are separated by a distance growing exponentially with
the order of the corrections. Ultimately, this leads to
only two states being stationary: the state with no ex-
citations, |0...0〉, and the uniform state with a single ex-
citation, N−1

∑N
j=1 |0...01j0...0〉, which approximate, in

the zero order of γ, the two stationary states of dynam-
ics with hard constraint. Higher-order corrections in the
structure are also recovered by the perturbation theory
(see Appendix C 2).
Soft constraint. Softening the constraint in the

regime |ε| = |1 − p| � 1 leads to dynamics featuring re-
moval of isolated excitations with the rate proportional
to κε2 (see Appendix C 3 a). This leads to decay of co-
herences and facilitates a unique stationary state, |0...0〉,
which approximates in the zero order the unique station-
ary state at p < 1. We note that even for finite values of
temperature and coherent field, a perturbative dynamics
between two disjoint stationary states takes place in the
limit |ε| � 1 (see Appendix C 3 b).
Weak coherent field. Here, the perturbation in Ω

introduces both the Hamiltonian and the change of con-
straints [cf. Eq. (6)]. In Appendix C 4, we show there
are no odd-order corrections in Ω to the dynamics. Fur-
thermore, the second-order corrections correspond to de-
phasing of all coherences in the DFS with rates propor-
tional to Ω2/κ, while probabilistic mixtures of the states
of none, |0...0〉, or only isolated excitations |...010...〉, re-
main stationary. Meanwhile, the first order-corrections
to the state structure introduce the rotation of |0〉 and
|1〉 towards coherent states |u〉 and |e〉, with coefficients
proportional to Ω/κ. Therefore, also in this case we con-
clude that the metastable manifold is classical, but with
respect to a now-coherent basis, which we expect to coin-
cide with |u〉 and |e〉. Although the classical metastable
manifold is analogous to the case of the perturbative dy-
namics due to γ, we have that the dynamics of excita-
tions, e.g., the removal of one of a pair of excitations
separated just by a single neighbour, can take place at
earliest in the fourth-order, with rates proportional to
Ω4/κ3. Indeed, the stationary state [Eq. (4)] with prob-
abilities λu = 1− λe = 1− γ/κ− 16Ω4/κ4 + ... (see Ap-
pendix B), suggests that the coherent field in the fourth
order may play an analogous role to the temperature in
the coherent basis |u〉, |e〉. Because of the complexity of
the fourth-order non-Hermitian perturbation theory, we
investigate those hypotheses using instead the approach
of Ref. [38].

Finally, we note that the perturbations in the temper-
ature, the coherent field, or softness of the constraint,
are local [cf. Eq. (6)]. Therefore, the timescales of the
resulting perturbative dynamics may be proportional to
the system size, in which case the validity of the per-
turbation theory is limited to γN � κ, |Ω|N � κ, and
|1 − p|N � κ (as κ/2 is the slowest eigenvalue of the
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dynamics with J− at the hard constraint); see, e.g., Ap-
pendix C 3 b. This size-dependent regime is not an issue
for the numerical methods of Ref. [38], which we exploit
in the rest of the paper.
Open boundary conditions. Interestingly, in the

case of hard constraint and open boundary conditions,
the dark state (|u〉〈u|)⊗N and N states with isolated ex-
citations (|u〉〈u|)⊗(j−1) ⊗ |e〉〈e| ⊗ ρ⊗(N−j)

ss,1 are stationary.
Furthermore, in the limit of small temperature and weak
coherent field, the soft constraint connects single exci-
tations mostly to the dark state, but not to one other,
and the dark state has a significantly longer lifetime (see
Appendix D), so that the facilitated dynamics features
excitations localised both in time and space, which is
characteristic of the dynamical heterogeneity.

III. CLASSICAL METASTABLE MANIFOLD

We now investigate the presence and character of
metastability in the dissipative quantum East model
using theory of metastability in open quantum systems
introduced in Refs. [36, 38]. For metastability in classical
stochastic dynamics, see Refs. [31–35].

A. Hierarchy of metastabilities

Since the operator in Eq. (2) defining the time evolu-
tion of the average state ρ(t) is linear, the timescales of
the dynamics are determined by its eigenvalues through
the expansion

ρ(t) = etL[ρ(0)] = ρss +
∑

k≥2

etλkckRk, (8)

where Rk is the eigenmode corresponding to the eigen-
value λk, and the coefficient ck = Tr[Lkρ(0)], with Lk
being the eigenmode of L† with the same eigenvalue,
normalized such that Tr(L†kRl) = δkl. The real parts
of eigenvalues must satisfy λRk ≤ 0, where zero eigenval-
ues correspond to stationary states [66, 67], and we order
the eigenvalues by decreasing real part, so that λ1 = 0.
For a unique stationary state (i.e., p < 1; see Sec. II A),
we have R1 = ρss and L1 = 1 (from trace preservation),
while τ = −1/λR2 is the time scale of the final relaxation.

In the rest of this work, we focus on the dynamics of
the open quantum East model with N = 6 spins and soft-
ness p = 0.99. Here, in the presence of small temperature
and weak coherent field, we observe a large separation
in the spectrum between λRm and λRm+1 for m = 7 [see
Fig. 2(a)]; and, at smaller values of the temperature and
the field, another separation form = 10 [see Fig. 2(b)]. A
large enough separation in the real part of the spectrum
is known to correspond to the occurrence of metastabil-
ity [36], since for time −1/λRm+1 � t � −1/λRm any
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Figure 2. Separation in master operator spectrum:
The ratios of the master operator eigenvalues (the real parts)
demonstrate two gaps in the spectrum at (a) m = 7 and (b)
m = 10 for N = 6 spins, which shows a hierarchy of metasta-
bilities in the open quantum East model (note the difference
in scale of vertical axes). Softness p = 0.99. Sampling: in
panel (a) (51x51) points and in panel (b) (51x26) points, lin-
early spaced for γ/κ and (Ω/κ)2.

system state can be approximated as stationary,

ρ(t) = ρss +

m∑

k=2

ckRk + ..., (9)

by neglecting the presence of the fast modes, k > m,
and the decay of slow modes, 2 ≤ k ≤ m [cf. Eq. (8)].
Such states are called metastable and the corresponding
time regime referred to as the metastable regime with the
relaxation time scale −1/λRm+1. In particular, at inter-
mediate values of the field and temperature, we have a
hierarchy of two metastable regimes in the open quantum
East model, and a hierarchy of the relaxation timescales
given by −1/λR11, −1/λR8 and −1/λR2 . A similar hierarchy
of metastabilities can be observed at other system sizes,
which, as we will see, is a consequence of the classical
and local structure of the manifold of metastable states
and of the dynamics within.

B. Hierarchy of metastable phases

The manifold of metastable states is fully characterized
by linear combinations of the stationary state ρss and the
low-lying modes R2, ..., Rm with coefficients (c2, ..., cm)
[cf. Eq. (9)]. However, the modes do not represent phys-
ical states of the system [as Tr(Rk) = 0 for k > 2 from
orthogonality of the modes]. Nevertheless, we will show
that the structure of the metastable manifolds in the
open quantum East model is classical, with metastable
states approximated as probabilistic mixtures of m dis-
tinct metastable phases with localized excitations.

1. Classicality

For the system with N = 3 spins, a single gap at
m = 4 is present in the spectrum, so that the metastable
manifold can be sampled by plotting the coefficients for
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Figure 3. Example of classical metastable manifold:
(a) The metastable manifold in the open quantum East model
of N = 3 spins with periodic boundary conditions, illustrated
by the coefficients (c2, c3, c4) [cf. Eq. (9)] of uniformly sampled
pure initial states (small green dots). The blue lines show the
simplex of m = N + 1 = 4 metastable phases (found at the
vertices). (b) The long-time evolution inside the metastable
manifold towards the stationary state [red circle correspond-
ing to (0,0,0) coefficients] for initial states shown in Fig. 1(b).
Softness p = 0.999 and other parameters as in Fig. 1(a).

random pure initial states as in Fig. 3(a). We observe
that the metastable manifold is classical, that is, approx-
imated by a simplex, with coefficients of any metastable
state approximated by a probabilistic mixture of the co-
efficients corresponding to the simplex vertices, which de-
scribe states with a single or no excitation [cf. Fig. 1(b)].
Since for m > 4, as relevant for larger system sizes, such
a visual verification of metastable manifold classicality
is not possible, we instead turn to the recently proposed
approach from Ref. [38], which we sketch now.

For a set of m candidate states ρ1, ...., ρm, the cor-
responding metastable states ρss +

∑m
k=2 c

(l)
k Rk = ρ̃l,

l = 1, ...,m, can be considered as the new physical basis
replacing the low-lying modes, so that [cf. Eq. (9)]

ρ(t) =

m∑

l=1

p̃l ρ̃l + .... (10)

Here, p̃l =
∑m
k=1(C−1)lkck with (C)kl = c

(l)
k , are the

barycentric coordinates with respect to the simplex of
ρ̃1, ..., ρ̃m in the coefficient space. When the distance of
barycentric coordinates from probability distributions is
negligible, the metastable state can be approximated as
a probabilistic mixture of ρ̃1, ..., ρ̃m. If this is true for
any metastable state, the metastable manifold is classical
and we refer to ρ̃1, ..., ρ̃m as metastable phases.

For the range of temperatures and field amplitudes cor-
responding to presence of gaps in the spectrum of the
master operators (cf. Fig. 2), using a version of the algo-
rithm from Ref. [38] (see Appendix A 3 for details), we
found sets ofm states for which both the average distance
and the maximal distance of barycentric coordinates to
probability distributions are negligible; see Fig. 4. In
particular, Figure 4(a) shows that the metastable man-
ifold with m = 7 is well approximated by 7 metastable
phases for broad regime of low temperatures and weak
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Figure 4. Accuracy of classical approximation: An upper
bound on the average distance (on the maximal distance when
multiplied by 2N−1) of barycentric coordinates to probability
distributions for: (a) m = 7, and (b) m = 10. We consider
L1 norm, in which probability distributions are normalized;
see Appendix A 3 for the definition of the bound. Softness
p = 0.99 and size N = 6. Data is greyed out for parameters
where the relevant gaps are not present in the spectrum of
master operator, while white dashed lines indicate that for
smaller parameters in panel (a) the gap at m = 10 is present,
while in panel (b) the gap at m = 7 is absent (cf. Fig. 2).

coherent field exactly corresponding to the large separa-
tion at m = 7 in the master operator spectrum - with
the parameter values above a certain threshold [shown
as black line with grey region below; cf. Fig. 2(a)]. Be-
low the threshold, the metastable manifold instead con-
sists of m = 10 metastable phases [see Fig. 4(b) with
the discussed threshold now shown as white dashed line],
except for negligibly small values where the separation
at m = 10 in the spectrum also disappears (cf. Fig. 2).
These phases remain metastable also above the threshold,
but for a smaller range of values of the field and temper-
ature than in the case of m = 7, which correspond to the
hierarchy of metastabilities, i.e., two gaps in the spectrum
of master operator at m = 7 and m = 10 [cf. Fig. 2(b)].
These results are in agreement with the perturbation the-
ory results derived in Appendix C, which predict emer-
gence of a classical manifold from a quantum metastable
manifold at small γ and Ω, but at zero temperature and
in the absence of the field indicate that softening the con-
straint leads to quantum decay of excitations within the
quantum metastable manifold (cf. Sec. II C).

We conclude that, at the chosen soft constrain, the
metastable manifolds are classical for low temperatures
and weak coherent fields (except for their negligibly small
values) and there exists an intermediate parameter re-
gion with a hierarchy of metastabilities corresponding to
two classical metastable manifolds. We will understand
the emergence of hierarchy by studying properties of the
metastable phases and their long-time dynamics.

2. Metastable phases

We now discuss the properties of the metastable phases
whose probabilistic mixtures approximate the classical
manifold of metastable states present in the open quan-
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Figure 5. Classical metastable manifold: (a) The average site-wise z-magnetisation for the metastable phases: dark state,
and examples of the single- and double-excitation states, respectively. The set of all metastable phases is formed by adding all
translations of these states with single (6 states) and double (3 states) excitations. The insets show the site-wise z-magnetisation
in the |u〉, |e〉 basis, S̃z = (|e〉〈e| − |u〉〈u|)/2. (b) The purities of the metastable phases, chosen as in panel (a). Data is greyed
out for parameters where the gap in the spectrum is not present at m = 10; cf. Fig. 2(b).

tum East model at low temperatures and weak field
[cf. Eq. (10)]. We focus on the parameter regime where
there exists a gap in the master operators at m = 10
[below white dashed line in Fig. 4(a)], which captures all
values for which a hierarchy of metastabilities is present,
but also a region where a gap at m = 7 is absent [below
white dashed line in Fig. 4(b)].

In Fig. 5(a), we show the spin magnetisation along z-
axis for the metastable phases. For m = 7 (first two
rows, above the white dashed line), the metastable man-
ifold consist of the state with all spins down (no excita-
tion), and six states with a single spin up (a single exci-
tation). For m = 10, the manifold additionally contains
three states with two excitations at maximally separated
sites, i.e., followed by two empty sites [see third row in
Fig. 5(a)].

As the probability of a spin up or down seems to de-
crease with the stronger coherent field, we also confirm
(see the insets), that the spins in metastable phases are
actually aligned with the rotated eigenbasis, |u〉 and |e〉,
of the stationary state [see Eq. (4) and Appendix B].
Therefore, the metastable phases with no excitations, sin-
gle excitation and two excitations can be approximately
viewed as |uuuuuu〉, |euuuuu〉, |euueuu〉, respectively,
and their translations. We obtained such a structure in
the first-order perturbation theory with respect to tem-
perature (|000000〉, |100000〉, |100100〉 with translations;
see Appendix C 2), and now we confirm it is the case in
the presence of the coherent field.

These pure states, however, are not stable since the
presence of an excited spin facilitates dynamics on the
spin to its right, in turn facilitating dynamics further
along the chain: the metastable states thus feature exci-
tations as much separated as possible, so that the relax-
ation is as slow as possible. Furthermore, the dynamics

facilitated by these excitations cause photon emissions
from their right neighbour, resulting in a mixed rather
than pure metastable state, i.e., |e〉〈e| ⊗ |u〉〈u| replaced
by |e〉〈e| ⊗ ρss,1 (cf. Appendix D and Sec. IVB). This
is confirmed by the purity of the metastable phases in
Fig. 5(b), where the phases with a single or double ex-
citation feature a purity slightly below 1, with a lower
purity for the state with more excitations. Furthermore,
in the first-order corrections due to temperature, purity
is lowered proportionally to γ/κ, and Figure 5(b) sug-
gests it is also the case for the coherent field, with the
lowest order contribution scaling with Ω4/κ4.

Finally, we note that the pure states are exactly or-
thogonal, and thus the metastable phases are approxi-
mately disjoint, as expected from the general theory [38].
Furthermore, the set metastable phases is invariant un-
der the translation symmetry, which is a consequence
of the metastable manifold inheriting the symmetry of
the dynamics in Eq. (2) with periodic boundary condi-
tions [38, 39].

IV. CLASSICAL LONG-TIME DYNAMICS

After a metastable regime, t & −1/λRm, the decay of
low-lying modes can no longer be neglected [cf. Eqs. (8)
and (9)],

ρ(t) = ρss +

m∑

k=2

cke
tλkRk + .... (11)

Nevertheless, since the contribution from the fast modes
can be neglected, the long-time dynamics takes place es-
sentially inside the metastable manifold [see Figs. 1(b)
and 3(b)].
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Figure 6. Effective classical generator: (a) Absolute
values of the effective master operator entries in the basis
of metastable phases for Ω/κ = 0.024, γ/κ = 0.0016, and
m = 10. The horizontal labels indicate the number of excita-
tions in a metastable phase, delineated by the black lines. (b)
The normalised distance ∆+ to the closest classical stochastic
generator over (top) the metastable region of the parameter
space and (bottom) the classical Ω/κ = 0 cross section. We
consider the operator norm induced by L1 norm; see Ap-
pendix E 2. Data is greyed out in panel (b) for parameters
where the gap at m = 10 in the spectrum is not present;
cf. Fig. 2(b).

In the basis of metastable phases, the long-time dy-
namics corresponds to the dynamics of barycentric coor-
dinates [cf. Eq. (10)]

ρ(t) =

m∑

l=1

p̃l(t) ρ̃l + ..., (12)

where p̃l(t) =
∑m
k=1(C−1)lke

tλkck. The dynamics is lin-
ear,

d

dt
p̃l(t) =

m∑

k=1

(W̃)lk p̃k(t), (13)

with (W̃)lk =
∑m
n=1(C−1)lnλn(C)nk. This generator

corresponds to the master operator in Eq. (2) expressed
in the metastable phase basis (when it is restricted to
low-lying modes) and we will use it to understand the
physical properties of the long-time dynamics in the open
quantum East model from a classical perspective.

A. Properties of long-time dynamics

We now verify that the dynamics within the metastable
manifold is classical. This enables us to investigate classi-
cal features in the dynamics characteristic of the classical
East model: the presence of the detailed balance and the
absence of interactions in the stationary state.

1. Classicality

The effective generator W̃, pictured in Fig. 6(a) en-
codes all information needed to predict the evolution of
the average system state at long times. It conserves the

Figure 7. Detailed balance: (a) Absolute values of en-
tries in the similarity-transformed effective master operator
in Fig 6(a) [cf. Eq. (14)] display the transposition symme-
try associated with the detailed balance. Furthermore, the
diagonal elements are negative while all the off-diagonal are
positive. (b) The ratio of the total current and total activ-
ity in the stationary state [Eqs. (15) and (16)] over (top) the
metastable region of the parameter space and (bottom) the
classical Ω/κ = 0 cross section confirms the approximate de-
tailed balance. Data is greyed out in panel (b) for parameters
where the gap at m = 10 in the spectrum is not present;
cf. Fig. 2(b).

sum of barycentric coordinates, i.e.,
∑m
l=1(W̃)lk = 0,

which is a consequence of the master operator in Eq. (2)
being trace-preserving [38]. Although it does not gener-
ate positive dynamics (cf. Appendix E 1), its diagonal ele-
ments are negative, while its off-diagonal approximately
positive, so that it can be approximated by a classical
stochastic generator (cf. Appendix E 2). Importantly,
Figure 6(b) confirms that the effective dynamics can be
approximated by classical stochastic dynamics across the
entire metastable region of the parameter space, with the
normalised distance of W̃ to the set of classical stochastic
generators much smaller than 1. In fact, this is a conse-
quence of the classicality of the metastable manifold [38]
we discussed in Sec. III B.

We also note that in Fig. 6(a), the dynamics features
the translation symmetry, i.e., (W̃)π(l)π(k) = (W̃)lk,
where π is the permutation that the metastable phases
undergo under the translation of spins [cf. Fig. 5(a)]. This
symmetry is inherited from the translation symmetry of
the open quantum East model with periodic boundary
conditions [38]. While it reduces the free parameters of
the effective dynamics [to 10 for N = 6 and m = 10], it
does not guarantee the presence of detailed balance we
demonstrate next.

2. Detailed balance

In the effective dynamics, the stationary probability
current between the kth and lth metastable phase is given
by (W̃)kl(p̃ss)l−(W̃)lk(p̃ss)k, where p̃ss is the stationary
distribution of W̃ (or equivalently the barycentric coor-
dinates for ρss). Detailed balance is then defined to be
when a systems stationary state exhibits no currents (see
Appendix E 3).

As a first check of detailed balance in the effective dy-
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namics, we consider the similarity transformation which
renders classical detailed-balance generators symmetric,

(W̃′)lk = (p̃ss)
− 1

2

l (W̃)lk(p̃ss)
1
2

k . (14)

For the effective generator in Fig. 6(a), we indeed obtain
an approximately symmetric matrix in Fig. 7(a).

To verify detailed balance across the range of pa-
rameters for which metastability occurs, we consider in
Fig. 9(b) the ratio of the total stationary current

J̃ =
1

2

m∑

k,l=1

∣∣∣(W̃)kl(p̃ss)l − (W̃)lk(p̃ss)k

∣∣∣ (15)

to the total activity

K̃ = −
m∑

l=1

(W̃)ll(p̃ss)l, (16)

which ratio bounds the normalized distance to the clos-
est detailed balance dynamics (see Appendix E 3). We
observe that the current across all metastable parame-
ters is small compared to the system’s activity, and thus
the long-time dynamics can be well approximated by dy-
namics with detailed balance. This is also the case for the
classical East model (Ω = 0), which features only approx-
imate detailed balance when restricted to the metastable
manifold [see the bottom panel in Fig. 7(b)], although
there are no stationary currents between the 2N config-
urations of up and down spins in the classical system.

For the classical model, these results can be traced
back to the perturbative dynamics between configura-
tions. The perturbation effect of the soft constraint re-
moves one excitation at a time with rates proportional
to (1 − p)2κ, or reintroduces, removes or shifts a sin-
gle excitation, at rates proportional to (1−p)2γ. For the
small temperature, phases with double excitations are re-
duced to a single excitation at rates proportional to γ2/κ,
while at rates proportional to γ3/κ2 a second excitation
can be introduced or removed, or a single excitation can
be shifted. The result is a ladder structure of the dy-
namics with respect to the number of excitations which
necessarily implies detailed balance, though the approxi-
mation worsens for larger γ or (1−p) due to higher order
corrections; see Appendices C 2 and C3 for details.

Approximate detailed balance observed also in the
presence of a weak coherent field in Fig. 7(b), suggests
that a similar mechanism may be responsible for the long-
time dynamics in the open quantum East model. This is
indeed confirmed for the parameters chosen in Fig. 6(a):
the most probable transitions (yellow-light green) are as-
sociated with the removal of the second excitation, or re-
moval of a single excitation towards the unexcited state;
the less likely transitions (green) correspond to a shift of
a single excitation, the introduction of one excitation, or
removal of two excitations; while the least likely transi-
tions (blue) correspond to the introduction of two excita-
tions simultaneously, or shift of two excitations [see also
Figs. 9(b) and 9(c)].
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Figure 8. Stationary state properties: (a) The free en-
ergy of the metastable phases does not depend on the number
of interactions, as the ratio of the stationary probabilities be-
tween the state with a single excitation and the unexcited
state, p̃1/p̃0 approximately equals the ratio of the probabili-
ties for a double excitation and a single excitation p̃2/p̃1. (b)
The ratio p̃1/p̃0 actually corresponds to the ratio of the sta-
tionary probabilities in as single state dynamics, Eq. (4), of
the excited state, λe, and unexcited state, λu. Both plots
are shown over (top) the metastable region of the parameter
space and (bottom) the classical Ω/κ = 0 cross section. Data
is greyed out for parameters where the gap at m = 10 in the
spectrum is not present; cf. Fig. 2(b).

3. Non-interacting stationary state

Since the long-time dynamics possesses approximate
detailed balance, the stationary state of the effective mas-
ter operator is effectively thermal. We discuss now its
effective free energy function.

In the full classical East model, whose stationary state
is a product state, the free energy is simply a function of
the number of excitations, but not their relative distance
(i.e., it is not dependent on any type of interactions).
Thanks to the exponential form of a thermal distribution,
this can be tested by considering ratios of state probabili-
ties: the exponents only state dependence will be a linear
function of the number of excitations. We test this prop-
erty in Fig. 8(a) for the distribution over the metastable
phases of the stationary state of the the open quantum
East model, by comparing the ratio of probabilities of
finding the stationary state in one of the single or double
excited states, p̃2/p̃1, to the ratio of finding it in the un-
excited state or one of the single excitation states, p̃1/p̃0.
We would expect these ratios to differ when interactions
contribute to the effective energy of the phase, due to
the presence of multiple excitations in the phase with
probability p̃2. However, we find that the ratio of these
ratios is close to 1 at all metastable parameters, suggest-
ing that in the quantum model interactions do not play
a role in the free energy of the metastable phases, as in
the classical East model.

Furthermore, the free energy per excitation is directly
determined by the ratio of probabilities for excited and
unexcited states in the single-site dynamics; see Fig. 8(b).
This is again the consequence of the product structure of
the stationary state, and the metastable states being ap-
proximated simply as pure states with a single or double
excitations [cf. Fig. 5(a)], which appear as the leading
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order corrections to the stationary state above the no-
excitation contribution [68]. Therefore, the error of this
non-interacting approximation of the free energy will in-
crease as temperatures and coherent field values grow
[cf. Fig. 8(b)].

B. Dynamical heterogeneity

The long-time dynamics between metastable phases is
directly related to dynamics of quantum trajectories: pe-
riods of higher or lower activity in trajectories are identi-
fiable with metastable phases featuring different numbers
of excitations, with transition rates between these dis-
tinct periods described by the effective generator [37, 38].
We now discuss this correspondence in terms of the dy-
namical heterogeneity observed in the dissipative quan-
tum East model [52, 53]. We also demonstrate the re-
sulting proximity to dynamical phase transitions [69].

1. Lifetimes of metastable phases

The effective lifetimes of the metastable phases, i.e.,
the distinct periods in quantum trajectories, are given by
the inverse magnitude of the diagonal elements of the ef-
fective generator. From the translation symmetry of the
metastable manifold, the lifetimes of metastable phases
connected under the symmetry must be the same, i.e.,
we have: the lifetime τ0 of the homogeneous unexcited
phase, the lifetime τ1 of six phases with a single exci-
tation, and the lifetime τ2 of three phases with double
excitations [see Fig. 9(a)].

The unexcited state is the longest lived metastable
phase, as it can only be excited via to the softness of
constraint in Hj or J+

j (for any j = 1, ..., N) [cf. Eq. (6)],
which takes place at the rate proportional to N(1 −
p)2(Ω2/κ+γ) + ... in the perturbative regime |1−p| � 1
(see Appendix C 3 b). The simple dependence of the rate
on the system size N is due to the translation symmetry:
the excitation can be introduced at any of the N spins.
In contrast, the removal of a single excitation of jth spin,
again requires the softness of constraint in J−j (or in Hj ,
which however is of lower order), and thus takes place at
the faster rate κ(1−p)2 + ..., leading to the separation of
timescales τ1/τ0 ≈ N(Ω2/κ2 + γ/κ). Furthermore, when
two gaps are present in the master operator spectrum
[above the white dashed line in Fig. 9(a)], the hierarchy
of metastabilities (m = 7, 10; cf. Sec. III B) is manifested
in the distinct values of the lifetimes τ1 and τ2, while
for a single gap (m = 10; below the white dashed line),
these lifetimes are necessarily comparable, which we now
explain.

The softness of constraint causes the removal rate of
an excitation from metastable phases with a single exci-
tation and double excitation to be the same (except from
the fact that two possible sites to decay in the double ex-
cited state), while for hard constraint only the second ex-

citation can be removed due to the temperature of the co-
herent field (by flipping the unexcited spins between two
excitations which allows for the hard constraint to be ful-
filled). When the constraint is soft, the absence or pres-
ence of separation between τ1 and τ2 is determined by the
softness-induced and temperature-induced dynamics be-
ing faster, respectively. In Fig. 9(a), the regime of smaller
(greater) γ and Ω below (above) the threshold corre-
sponds to the former (latter) process being the funda-
mental mechanism in relaxation of the metastable phase
with double excitation towards the stationary state.

2. Structure of effective dynamics

In Figs. 9(b) and 9(c), we show examples of the ef-
fective master operator for two sets of parameters, in-
dicated by the crosses in Fig. 9(a), corresponding to
the cases with a single metastability and a hierarchy of
two metastabilities. In both cases, a double-excitation
phase is most likely transformed into one of two single-
excitation phases (equally likely due to the translation
symmetry by 3 sites of the double-excitation phase), with
one excitation inducing relaxation of the other. A sin-
gle excitation phase is most likely transformed into no-
excitation phase, which in turn gets excited most likely
with only a single excitation (into one of six single-
excitation phases). This ladder structure of the effec-
tive classical dynamics supports detailed balance in the
dynamics discussed in Sec. IVA.

Beyond those leading order transformations, however,
shifts of a single excitations are possible due to two dif-
ferent mechanisms. In Fig. 9(b), we observe that the
shift of a single excitation is possible to all sites except
that corresponding to the possible position of a second
excitation, in which case the second excitation is intro-
duced instead. This indicates that the shift is actually
facilitated by the introduction of excitations and their
subsequent decay, which can be facilitated either by sev-
eral excitations by the temperature/coherent field, or the
softness of constraint allowing for introduction of excita-
tions directly in unexcited sites. The uniform probability
of shifts to different sites in Fig. 9(c), suggest that the two
processes contribute equally, while, in the case of hierar-
chy in Fig. 9(b), the larger values of the coherent field
and temperature dominate the latter process and only
some shifts are possible. This is directly supported by
the perturbation results in the classical model; see Ap-
pendix C. We note however, that for considered system
size of N = 6 and the chosen constraint with p = 0.99,
we do not yet capture the hallmark behaviour of the
classical East model, where required order of tempera-
ture contributing to the dynamics of excitations scales
logarithmically with their distance (cf. Appendix C 2 b).
In particular, we cannot verify whether the necessarily
(quadratically) higher orders in which the local coherent
field contributes to the dynamics of in the open quantum
East model (cf. Appendix C 4 b) alter this characteristic.
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Figure 9. Effective stochastic dynamics and quantum trajectories: (a) Effective lifetimes of the metastable phases as
a function of the parameters, plotted relative to the next longest lifetime. Data is greyed out for parameters where the gaps at
m = 10 in the spectrum is not present; cf. Fig. 2(b). (b) and (c) The component magnitudes of the effective master operators
for (b) Ω/κ = 0.024, γ/κ = 0.0016 and (c) Ω/κ = 0.12, γ/κ = 0.0096. (d) and (e) Sample QJMC trajectories corresponding
to panels (b) and (c), respectively. Trajectories are split into 500 time-bins for which the total activity of jumps J−j (photon
emissions from jth spin) within each bin is plotted [see Eq. (6b)]. Note the presence of simultaneous excitations from two sites.

Although there is no apparent directionality in the dy-
namics for both cases, which can be due to the chosen
softness of constrain (cf. Appendix C 3 a), we would in
general expect this to follow from the presence of the
constraint to the left [cf. Eq. (6)], as such directionality
is present in perturbation theory with respect to tem-
perature (cf. Appendix C 2 d). Nevertheless, we observe
in both cases that the unexcited metastable lifetime is
much longer than the metastable phases with a single or
double excitations; in trajectories of the classical effec-
tive dynamics most time is spent in the unexcited state,
and excitations are present at isolated moments in time.
These periods are also isolated in space, due to the sym-
metry structure of the metastable manifold (see also Ap-
pendix D).

3. Dynamical heterogeneity

We now discuss how metastability and the structure of
long-time dynamics manifests itself in the emission pat-
terns in individual experimental realisations of the sys-
tem dynamics [52, 53].

Consider first dynamics in the case of the state being
(on average) in one of the metastable phases featuring a
single or double excitations. An excitation of site (j− 1)
fulfils the hard constraint of the single spin dynamics of
the jth spin [cf. Eqs. (3) and (6)], enabling dynamics on
this site and thus its relaxation towards the single-spin
stationary state in Eq. (4). Thus, for times shorter than
relaxation of the considered metastable phase, t . τ1, τ2,
in an individual realisation of an experiment (or quan-
tum trajectories obtained in QJMC simulations) photon
emissions occur from jth spin corresponding to the jump

J−j [Eq. (6b)], so that the metastable phase with an ex-
citations appears locally bright. These emissions occur at
the rate κTr(S+S−ρss,1) ≈ Ω2/κ+γ+ ..., so that the site
next to the excitation appears brighter for higher temper-
ature or coherent field values [see Figs. 9(d) and 9(e)]. In
contrast, for the unexcited metastable phase, the hard
constraint in the dynamics is not fulfilled, and therefore,
this phase appears dark in quantum trajectories, before
it relaxes due to the soft constraint introducing of a single
excitation at t & τ0.

At longer times, higher order processes introducing
several excitations or exploiting softness of constraint
become non-negligible on average, contributing to the
long-time dynamics of the metastable phases by connect-
ing disjoint parts of state space. In individual quantum
trajectories these processes take place separately and at
fluctuating times, but are typically followed by the fast
decay of excitations due to satisfied hard constraints (on
timescales t . −1/λRm+1; m = 10) towards another
metastable phase. Therefore, a time coarse-graining of
quantum trajectories leads to the system transitioning
only between metastable phases. As averaging over tra-
jectories returns the evolution with the master operator
[Eq. (1)], transitions in coarse-grained quantum trajecto-
ries must be governed by the effective long-time genera-
tor [Eq. (13)]. This is corroborated in Fig. 9(d) where,
correspondingly with the transition rates of the effective
stochastic generator, in the case of a single metastable
regime, mostly transitions between the excited states and
dark states are observed. Meanwhile, in Fig. 9(e), for the
hierarchy of two metastabilities, there is also a significant
presence of transitions between states with a single exci-
tation, shifting the location of emissions.

We conclude that the dynamical heterogeneity in the
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quantum trajectories is the microscopic counterpart to
the classical stochastic jumps between phases with differ-
ent numbers of excitations at different sites, which arise
as a result of temporal coarse-graining of quantum trajec-
tories. This is a general phenomenon, detailed theoret-
ically in Ref. [38]. In particular, this relation could be
used to explore possible differences in the contributions
to the dynamics from the temperature and the coherent
field at larger system sizes accessible in QJMC simula-
tions.

4. Proximity to dynamical phase transitions

Systems with intermittent dynamics are commonly
found to exist near a dynamical phase transition in
the statistics of the activity, i.e., the number of jumps
per unit time [53, 61, 69, 70]. Here, we demonstrate
this for the global activity for jumps related to loss
of excitations. Since our system exhibits dynamical
heterogeneity, we also find the system in proximity to
transitions in the statistics of the local activity.

Dynamical phase transitions in global jump ac-
tivity. The intermittent emissions in trajectories have
a direct effect on the time integrated statistics of their
corresponding jumps. The statistics of a trajectory-
observable chosen as the number K−(t) of J−j jumps up
to time t summed across all sites, is encoded by the cu-
mulant generating function

Θ(s, t) = ln[Z(s, t)], (17)

where

Z(s, t) =
∑

K−

p(K−, t)e−sK
−

= Tr(etLsρ), (18)

can be obtained using the biased master operator

Ls(ρ) = L(ρ) + (e−s − 1)
N∑

j=1

J−j ρ J
−†
j (19)

[cf. Eq. (2)]. Furthermore, the statistics of the activity
k−(t) = K−(t)/t is encoded in the long time limit by the
scaled cumulant generating function (SCGF)

θ(s) = lim
t→∞

Θ(s, t)

t
, (20)

given by the leading eigenvalue of Ls [cf. Eqs. (17)
and (18)]. The corresponding eigenmode ρss(s) of Ls
is the average asymptotic state in the biased trajec-
tory ensemble, where each trajectory is weighted by
e−sK

−(t), before the overall ensemble is then renor-
malised [cf. Eq. (18)]. The SCGF plays the role of free
energy in non-equilibrium statistical mechanics [71], with
its non-analyticities corresponding to dynamical phase
transitions [53, 61, 69, 70].
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Figure 10. Global jump statistics: (a) The leading eigen-
value θ(s) (light) of the biased master operator, Eq. (19),
and the corresponding activity k(s) (dark), plotted on a log
/ linear scale respectively for negative values of s. The inset
shows a larger range of parameters on a linear scale with an
additional transition corresponding to the effective metasta-
bility (see Sec. IVC). (b) The barycentric coordinates of ρss(s)
with respect to: the dark state (dark), a single excited phase
(light) and a two-excitation phase (intermediate). The in-
set shows a larger range of parameters, along with the dis-
tance between ρss(s) and the corresponding metastable state
(dashed) [cf. Eq. (9)]. Parameters are chosen as Ω/κ = 0.15,
γ/κ = 0.0004, and p = 0.999, while θ(s) and ρss(s) are ob-
tained by numerical diagonalisation of Ls.

In Fig. 10(a), two sharp changes are found in the
first derivative of θ(s), i.e., the average activity k(s) =
−dθ(s)/ds, at negative bias s close to 0, between the
values equal zero, one or twice the average single spin
activity proportional to Ω2/κ + 2γ + ... [see Eq. (4)].
This indicates that the proximity of the physical dy-
namics s = 0 to two first-order dynamical phase tran-
sitions. Furthermore, these changes occur as the per-
turbation due to the bias becomes larger than λm for
m = 7 and m = 10, which indicates their relation to
the presence of the hierarchy of metastabilities. This is
also supported by Fig. 10(b), where in a decomposition
of ρss(s) between metastable phases (in its barycentric
coordinates), at s = 0 it corresponds mostly to the dark
metastable phase, while for a large enough negative bias
s (towards more active trajectories) can be characterised
as the equal mixture of six single-excitation metastable
phases (1/6th probability each) or the equal mixture of
three double-excitation metastable phases (1/3rd proba-
bility each). This homogeneity follows from the transla-
tion symmetry of Ls.

These results actually follow from the correspon-
dence of θ(s) to an SCGF for integrated metastable
phase activity in classical trajectories of the long-times
dynamics [38] (cf. Ref. [72]), which holds for small to
moderate values of s [when contributions from fast
modes are negligible; cf. the inset in Fig. 10(b)] and
metastable phases distinguished by the average jump
activities dominating rates of the long-time dynamics.
This is exactly the situation in the open quantum
East model due to the constraint in J−j fulfilled by
excitations present in metastable phases [cf. Fig. 5(a)].
Indeed, biasing trajectories with negative s effectuates
post-selection towards more active trajectories, which in
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Figure 11. Local jump statistics: (a,c) The leading eigen-
value of the biased master operator in Eq. (21) (left axis)
and the corresponding activity (right axis) as a function of
the local bias, (a) on a single site s1 = s, (c) on two sites
s1 = s4 = s. (b,d) The barycentric coordinates of ρss(s) with
respect to: the dark phase (dark), the phase with a single ex-
citation on the third or sixth site (light) and the phase with
two excitations on the third and sixth site (intermediate).
Parameters are chosen as Ω/κ = 0.15, γ/κ = 0.0004, and
p = 0.999, while θ(s) and ρss(s) are obtained by numerical
diagonalisation of Ls1,...,s6 .

this case correspond to metastable phases with a single
or double activity for smaller or larger |s| (respectively,
in order to make up for the shorter lifetime τ2 � τ1 due
to the hierarchy of metastabilities present for the chosen
parameters; probability of trajectories with even higher
activity remains negligible). In contrast, for positive s
inactive trajectories are preferred, corresponding to the
dark metastable phase with no excitations.

Dynamical phase transitions in local jump ac-
tivity. Rather than the global activity of jumps across
the system, we can consider local jump activity, with the
locally biased master operator [cf. Eq. (19)]

Ls1,...,sN (ρ) = L(ρ) +

N∑

j=1

(e−sj − 1)J−j ρ J
−†
j (21)

encoding the joint statistics of number K−j of jumps J−j
at sites j = 1, ..., N observed up to time t. Similarly to
Fig. 10 for the full jump statistics, in Fig. 11, we observe
sharp changes in the first derivative of the corresponding
maximal eigenvalue of Ls1,...,sN .

In Figs. 11(a) and 11(b), we look at a cross-section
with s1 = s and sj = 0 for j 6= 1. This biases towards
trajectories containing significant periods of the single
excitation metastable phases, and ignores the double ex-
citation phases: indeed, in Fig. 11(a) there is only a single
jump in the activity to a value corresponding to the ac-
tivity of single excitation phases, while the overlap with

the phase featuring an excitation at site 6 that induces
emissions on site 1, turns out to be dominant at negative
values of s in Fig. 11(b).

To target a double excitation state, we look in
Figs. 11(c) and 11(d) at a cross-section with s1 = s4 = s
and sj = 0 for j 6= 1, 4, targeting the phase with
excitations on sites 3 and 6. As expected, there is a
pair of jumps in the activity in Fig. 11(c), corresponding
to the activity of single excitation phases and double
excitation phases respectively. For smaller negative
values of s, the overlap with the metastable phases in
Fig. 11(b) is split evenly across the single excitation
phases on sites 3 and 6, as expected in comparison
with Fig. 10; for large values the only relevant overlap
becomes the double excitation phase that was targeted
with this choice of bias.

Metastable phases from biased trajectories. Be-
yond clarifying the relation of first-order dynamical phase
transitions to metastability, Figs. 10 and 11 demonstrate
that metastable phases differing in activity can be ob-
tained as the asymptotic average states in the biased en-
semble of trajectories. This result indicates an alterna-
tive method to uncover the structure of metastable man-
ifold, which does not require the diagonalisation of the
master operator (cf. Appendix A 3). While methods for
efficient sampling of biased classical trajectory ensembles
are common [73–78], with some work in this direction for
quantum systems [79, 80], more development is needed
to achieve the speed needed for many-body quantum sys-
tems. A possible direction could be the use of tensor
network techniques, as done in recent classical large de-
viation studies [81, 82].

C. Effective metastability of observables

Metastability can be observed experimentally in the
behaviour of statistical quantities such as expectation
values or autocorrelations of system observables [36–
38, 83], with each metastable regime manifesting as a
plateau in the observable dynamics. In particular, for
the average of an observable M we have [cf. Eq. (8)]

〈M(t)〉 = Tr[Mρ(t)] = 〈M〉ss +
∑

k≥2

etλk ckdk, (22)

where 〈M〉ss is the average in the stationary state ρss and
dk = Tr(MRk) are coefficients of the decomposition ofM
into the eigenmodes Lk. After the relaxation towards a
metastable regime, t� −1/λRm+1, evolution of the aver-
age is determined only by the slow modes [cf. Eq. (11)]

〈M(t)〉 = 〈M〉ss +

m∑

k=2

etλk ckdk + ..., (23)

so that during the metastable regime, −1/λRm+1 � t �
−1/λRm, the average is approximately stationary mani-
festing as a visible plateau on a log-timescale.
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In Fig. 12, for N = 6 spins of the open quantum
East model initialized from the all up state, the ob-
servable is chosen as z-magnetisation per spin, mz(t) =∑N
j=1〈Szj (t)〉/N , which corresponds to the number of ex-

citations in the system [cf. Fig. 5 and see also Fig. 1(b)].
We indeed observe plateaus due to the presence of
metastable regimes, as indicated by the agreement with
the long-time dynamics [Eq. (23)]. These are preceded by
the necessary decay of excitations, as metastable phases
feature at most two excitations, while final relaxation re-
moves all excitations to reach the unexcited stationary
state.

Interestingly, the exact dynamics features an addi-
tional (anomalous) plateau at earlier times, which is not
due to any further gap present in the spectrum of the
master operator, but results instead from the zero over-
lap of either the initial state (ck = 0) or the observable
(dk = 0) with many eigenmodes in Eq. (22), creating an
effective gap in the eigenvalues of the master operator
that do contribute to the dynamics, and thus an effective
metastability. We have verified that this gap does not
simply arise due to the choice of a symmetric observable,
i.e., is not present in the eigenvalues of the symmetric
modes.

Furthermore, the average magnetisation is related
to instant activity of jumps J−j [Eq. (6b)] per spin∑N
j=1〈J

−†
j J−j 〉/N = mz + 1/2. This links the exis-

tence of metastable phases differing in magnetisation
to sharp changes in the activity of quantum trajecto-
ries (cf. Fig. 10). When the effective metastability is
present, also another jump in the activity occurs corre-
sponding to a higher number of excitations than in the
metastable phases and at a more negative bias [see the
inset in Fig. 10(a) and the inset in Fig. 10(b) where the
dashed line represents the distance between the average
state in trajectories with a given activity and its projec-
tion onto the metastable manifold]. This suggests the ef-
fective metastability results from the magnetisation over-
laps with the modes, rather than the specific choice of the
initial state.

V. CONCLUSIONS

In this work, we have investigated a quantum gen-
eralization of the classical East model, uncovering a
hierarchy of classical metastable manifolds characterized
by the number of excited sites, similar to the case of the
classical East model. The long time effective dynamics
of the model was shown not only to be classical and
featuring a hierarchy of timescales, but also to possess

detailed balance, with an effective free energy depending
only on the number of excitations and not their dis-
tance: both properties also found in the classical East
model, but here persisting even in the presence of a
coherent driving that is comparable in strength to the
temperature. The dynamics thus mimics the classical

10−3 107κt
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Exact

Eff

10−3 107κt
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m
z
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Figure 12. Effective metastability of magnetisation:
(a) and (b) Exact (solid) and effective (dashed, dash-dotted)
evolution of the total z magnetisation from an initial all up
state, corresponding to master operators with one and two
metastable timescales shown in Figs. 9(b) and 9(c), respec-
tively. The two effective curves in panel (b) correspond to
restricting the effective master operator to only the m = 7
(slower) modes (Eff 1) or all m = 10 low-lying modes (Eff 2).
Parameters are chosen as Ω/κ = 0.15, γ/κ = 0.0004, and
p = 0.999.

model, with an effective temperature taking into account
both the coherent driving field and temperature, and
effective classical configurations given by a modified
basis of quantum states. This demonstrates for the first
time the usefulness the methods for metastability in
open quantum systems introduced in Ref. [36, 38] for
uncovering complex relaxation dynamics in many-body
quantum systems without static phase transitions.
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APPENDIX

Appendix A: Numerics

Here, we summarise key points of numerical methods
used in this work.

1. Diagonalisation of master operator

To diagonalise the master operator in Eq. (2), with the
spectrum shown in Figs. 1(a), 1(b), and 2, we use the
Liouville representation for a chosen basis {|ψk〉}2

N

i=1 of
the system space. The density matrix is represented as a
vector,

ρ =

2N∑

k,l=1

〈ψk|ρ|ψl〉 |ψk〉 ⊗ |ψl〉, (A1)

and the master operator as matrix,

L =− i
(
H ⊗ I − I ⊗HT

)
(A2)

+
∑

j

[
Jj ⊗ J∗j −

1

2

(
J†j Jj ⊗ I + I ⊗ JTj J∗j

)]
,

where the transposition and complex conjugation take
place in the chosen basis. L shares the same spec-
trum with L, and the eigenmodes of L can be recovered
from eigenvectors of L by the inverse transformation to
Eq. (A1). This approach can also be used for diagonali-
sation of the biased operators in Eqs. (19) and (21).

The translation symmetry of the master operator with
periodic boundary conditions(and of the biased operator
for the total activity) is exploited by considering a basis
of states invariant under the translation of spins (up to a
phase); cf. Refs. [84–86]. The construction of the matrix
in Eq. (A2) is further simplified by considering plane-
wave jump operators instead of local jump operators [87].

2. QJMC simulations

The QJMC algorithm, which is used to obtain trajec-
tories shown in Figs. 1(c), 1(d), 9(d), and 9(e), is im-
plemented largely following the standard procedure (see
e.g., Ref. [12]) with one key difference: the time of a jump
is found utilizing a binary search as proposed in Chapter
2 of Ref. [88] (see also the implementation in Ref. [89]).
We sketch it below.

While it is standard to discretise the time evolution for
efficiency, this leads to a competition between accuracy of
jump times, requiring a fine-grained discretization, and
efficiency of time evolution, desiring larger time steps.
To meet both these aims, rather than restricting to a
single time step for evolution we use a set of NU non-
unitary evolution operators Uk for k = 1, ..., NU , related
by Uk = U2

k+1. With UNU
inducing a time evolution of

∆t, Uk thus induces a time evolution of 2NU−k∆t. Evolu-
tion between jumps is then initially done using U1, allow-
ing for large steps in time of 2NU−1∆t. Once the norm
of the state drops below the random number drawn to
determine when a jump occurs, the sequence of unitaries
is then used to perform a binary search, identifying the
time of the jump with the chosen accuracy at much higher
speed.

3. Generation of metastable phases

We now sketch a version of the computational ap-
proach in Ref. [38], which we use in this work to verify the
classicality of the metastable manifold in the open quan-
tum East model (cf. Fig. 4) and to find its metastable
phases (cf. Fig. 5).
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a. Upper bound on distance to probability distributions

We first explain how to estimate from above the dis-
tance of barycentric coordinates in Eq. (10) from proba-
bility distribution for any metastable state. This allows
us verify how well the metastable manifold is approxi-
mated by probabilistic mixtures of the chosen metastable
states.

For a set of candidate states ρ1, ..., ρm, the correspond-
ing metastable states

ρ̃l ≡ ρss +

m∑

k=2

c
(l)
k Rk, l = 1, ...,m, (A3)

can be used as a new basis replacing the stationary
state ρss an the low-lying modes R2, ..., Rk, provided that
they are linearly independent. The decomposition of a
metastable state in terms of barycentric coordinates for
Eq. (A3) is given in Eq. (10). The barycentric coordi-
nates can be obtained as p̃l = Tr(P̃lρ), where

P̃l =

m∑

k=1

(C−1)kl Lk, l = 1, ...,m, (A4)

is the dual basis to Eq. (A3), analogously to the coeffi-
cients defined as ck = Tr(Lkρ). Note that Eq. (A4) is
well defined only when the coefficient matrix for candi-
date states, (C)kl = c

(l)
k , is invertible, i.e., for linearly

independent ρ̃1, ..., ρ̃m. We use the dual basis to test the
accuracy of the approximation of the metastable man-
ifold in terms of probabilistic mixtures of Eq. (A3), as
follows.

While
∑m
k=1 p̃k = 1 is guaranteed to hold for all states

by definition of barycentric coordinates, individual co-
ordinates are not restricted to be positive in contrast
to probability distributions. In particular, whenever a
coordinate takes a value below 0 or above 1, the corre-
sponding metastable state is found beyond the simplex of
states in Eq. (A3). Since the barycentric coordinates cor-
respond to the expected values of the dual basis elements
in Eq. (A4), their average distance in L1 norm from
probability distributions can be bounded from above by
(cf. Appendix C 1 in Ref. [38])

C =
1

2N−1

m∑

l=1

2N∑

k=1

{
max

[
−λ(l)

k , 0
]
+max

[
λ

(l)
k −1, 0

]}
,(A5)

where λ(l)
k is kth eigenvalue of P̃l and we consider uni-

formly sampled pure initial states. Note that C is simply
proportional the sum over l of distances of P̃l spectrum
to [0, 1] interval. Furthermore, 2N−1C is an upper bound
on the distance of barycentric coordinates for any initial
state to probability distribution. This bound is shown in
Fig. 4 for the metastable candidate states in Fig. 5.

We conclude that when C of Eq. (A5) is small in com-
parison to 1 (which is the L1 norm of probability distribu-
tions), the metastable manifold is well approximated by

probabilistic mixtures of the candidate metastable states
in Eq. (A3). Therefore, by checking the spectrum of the
dual basis in Eq. (A4), we can investigate the classicality
of the metastable manifold, as long as candidate states
can be generated efficiently, which we discuss next.

b. Generation of candidate states

We now explain how sets of candidate states can be
generated efficiently. We work with the assumption
that the metastable manifold is classical, i.e., has an
approximate simplex structure in the coefficient space
[cf. Fig. 3(a)] and, thus, we attempt to find a set of
m metastable states which define the largest volume
simplex contained within the subset of the coefficient
space corresponding to the MM. We also make use of the
translation symmetry of the open quantum East model
with periodic boundary conditions. The approach used
here is a simplified version of the algorithm introduced
in Ref. [38].

Algorithm. Below we outline the steps to efficiently
generate sets of candidate states.

1. Diagonalise L to find the left low-lying eigenmodes,
Lk with k = 2, ...,m.

2. Construct candidate metastable states:

i. Diagonalise the (randomly rotated) eigenma-
trices Lk.

ii. Add the eigenstates associated to their ex-
treme eigenvalues as initial states for candi-
date metastable states.

iii. Repeat Steps 2 i and 2 ii for r random rota-
tions.

iv. Apply spin translations to the candidate
metastable states to construct their cycles.

v. Cluster cycles according to their relative dis-
tance in the space of coefficients.

3. Find best candidate metastable states:

i. Choose sets of cycles providing the simplex
with the largest volume, i.e., the largest
|detC|.

ii. Calculate the corresponding corrections C.

Discussion. In the above approach, we assume that
the eigenmodes Lk found in Step 1 are Hermitian. Such
a choice is always possible due to the system dynamics
being Hermiticity preserving, L(ρ†) = L(ρ)†, as follows.
First, for a real eigenvalue λk, both Lk and Rk can be
chosen Hermitian. Second, for a complex λk, there ex-
ists another eigenvalue equal λ∗k with the corresponding
left and right eigenmodes L†k and R†k. In this case, in-
stead of Lk and L†k, we consider their Hermitian and
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anti-Hermitian part, (Lk + L†k)/2 and (Lk − L†k)/2i, re-
spectively [while the right eigenmodes are replaced with
(Rk +R†k) and i(Rk −R†k)]. Furthermore, to consider all
coefficients on equal footing, we normalise Lk so that the
difference between its extreme eigenvalues equals 1.

In Step 2, we construct metastable states which achieve
extreme values of coefficients in order to find vertices
of the maximal simplex within the metastable manifold.
For (m − 1) left eigenmodes, we obtain 2(m − 1) can-
didate states in Steps 2 i and 2 ii. A metastable state
corresponding to an extreme value of a coefficient neces-
sary corresponds to a metastable phase (or their mixture,
in the degenerate case of many vertices of the maximal
simplex featuring the same value of the coefficient). Al-
though it is not guaranteed that all vertices achieve an
extreme value in at least one coefficients, this is remedied
by additionally considering random rotations of L2, ....,
Lm in Step 2 iii (which also removes degeneracy of coef-
ficients for the maximal simplex vertices). Furthermore,
as the set of metastable phases is known to be invariant
under any symmetry of the dynamics [38, 39], candidate
metastable states should form cycles under the symme-
try, which motivates Step 2 iv. Actually, for N = 6 spins
in our model, we find that this step removes the need for
considering random rotations (this is due to the presence
of both the hierarchy and translation symmetry). Fi-
nally, any repetitions in candidate metastable states are
removed in Step 2 v.

In general, there are more than m candidate
metastable states obtained in Step 2, because beyond
metastable phases, we also obtain their mixtures as a
result of degeneracies of extreme values of coefficients.
Therefore, we next consider the volumes of sets of m can-
didate metastable states, and choose those corresponding
to the simplex with the largest volume in the coefficient
space [where the volume equals |detC|/(m−1)!]. Impor-
tantly, thanks to the translation symmetry of the model,
in Step 3. i, it is enough to consider only sets of cycles
with lengths summing up to m, i.e., the required num-
ber of phases. Finally, in Step 3. ii, the quality of the
corresponding approximation of the metastable manifold
is assessed using Eq. (A5), and, if required, can be fur-
ther improved by increasing the number r of rotations in
Step 2 iii.

We note that the presence of symmetry can be ex-
ploited even further in the algorithm; see Ref. [38].
Nevertheless, in this work, we successfully identify the
metastable states corresponding to the hierarchy of two
classical metastable manifolds (cf. Figs. 4 and 5).

Appendix B: Stationary states of the open quantum
East model

1. Stationary state of a single spin

The unique stationary state of a single spin dynam-
ics, with the Hamiltonian H1 and jumps J−1 and J+

1 in

Eq. (3), is given by Eq. (4), which diagonalises [52],

ρss,1 = λu |u〉〈u|+ λe |e〉〈e|, (B1)

with the probabilities

λu,e =
1

2
± (κ− γ)∆

(γ + κ)2 + ∆2
, (B2)

and the eigenstates

|u〉〈u| = 1

2

[
(1 +

γ + κ

∆
)|0〉〈0|+ 2iΩ

∆
|0〉〈1| (B3)

+(1− γ + κ

∆
)|1〉〈1| − 2iΩ

∆
|1〉〈0|

]
,

|e〉〈e| = 1

2

[
(1 +

γ + κ

∆
)|1〉〈1|+ 2iΩ

∆
|1〉〈0|

+(1− γ + κ

∆
)|0〉〈0| − 2iΩ

∆
|0〉〈1|

]
,

where ∆ =
√

(γ + κ)2 + 4Ω2.

2. Stationary states of constrained dynamics

In the presence of hard constraint (ε = 1−p = 0), there
are two stationary states of the open quantum East model
with periodic boundary conditions (for open boundary
conditions, see Appendix D),

ρ(0)
ss = ‖u⟫⊗N , (B4)

ρ(1)
ss = [(λu‖u⟫+ λe‖e⟫)⊗N − λNu ‖u⟫⊗N ]/(1− λNu ),

where j = 1, ..., N , and we introduced ‖...⟫ = |...〉〈...| to
denote a density matrix. Note that ρ(0)

ss is disconnected
from the dynamics, as it is orthogonal to the constrain
|e〉〈e|, and in the second stationary state ρ(1)

ss , we have
subtracted the contribution without excitations to make
the two stationary states disjoint (orthogonal).

In the presence of soft constrain (ε 6= 0), the stationary
state is unique,

ρss = λNu ρ
(0)
ss + ρ(1)

ss (1− λNu ) = (λu‖u⟫+ λe‖e⟫)⊗N
= ρ⊗Nss,1 , (B5)

which features no correlations as a product state of single-
spin stationary states [Eq. (4)]. For the dynamics leading
from Eq. (B4) to Eq. (B5), see Appendix C 3 b.

Appendix C: Perturbative dynamics in the open
quantum East model with periodic boundary

conditions

We consider non-Hermitian perturbation theory [55,
72, 90–92] in the following parameters: the coherent field
Ω, temperature, γ, and constrain softness, ε = 1− p. We
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first consider independent contributions from the tem-
perature and the fields, and discuss influence of the soft
constrain on the dynamics. We discuss the mixed con-
tributions at the end. Periodic boundary conditions are
assumed throughout. The case of open boundary con-
ditions and its relation to dynamical heterogeneity are
discussed in Appendix D.

1. Dark stationary states at zero temperature and
without coherent field

We consider stationary states of dissipative dynamics
with the jump operators

J− =
√
κ|1〉〈1| ⊗ |0〉〈1|, (C1)

which remove an excitation provided that the neighbour-
ing spin to the left is in the excited state. The stationary
states are formed by dark states with, if present, isolated
excitations, i.e., composed of empty sites, |0〉, and single
excitations followed by an empty site, |12〉 = |10〉,

|...0...0...〉, |...12...0...〉, ... |...12...12...〉. (C2)

As these stationary states are dark, i.e., J−|12〉 = 0 =
J−|00〉, also coherences between them are stationary,
forming a a decoherence free subspace [63–65].

2. Classical dynamics due to temperature

We first consider influence of classical dynamics due to
non-zero temperature, i.e., jumps

J+ =
√
γ|1〉〈1| ⊗ |1〉〈0|, (C3)

in order to see how a classical metastable manifold arises
from the quantum DFS in Eq. (C2).

a. Stationary states

The stationary states for κ, γ 6= 0 (Ω = 0 and hard
constraint ε = 0) are known to be [cf. Eq. (B3)],

ρ(0)
ss = ‖0⟫⊗N , (C4)

ρ(1)
ss =

[
(λ0‖0⟫+ λ1‖1⟫)⊗N − λN0 ‖0⟫⊗N

]
/(1− λN0 ),

where

λ0 =
κ

κ+ γ
, λ1 =

γ

κ+ γ
(C5)

[cf. Eq. (B2)]. In particular, due to a hard constrain
(ε = 0), ρ(1)

ss is disconnected from the dynamics, and the
final contribution to it in the asymptotic state equals
the initial contribution, limt→∞ ρt = λρ

(0)
ss + (1− λ)ρ

(1)
ss ,

where λ = 〈0|⊗Nρ0 |0〉⊗N .

In particular, considering γ/κ as a small parameter
(the low-temperature limit), we recover from Eq. (C4)

ρ(0)
ss = ‖0⟫⊗N , (C6)

ρ(1)
ss =

(
1− γ

κ

N − 1

2N

) N∑

j=1

‖...1j ...⟫

+
γ

κ

1

N

N∑

j>k

‖...1j ...1k...⟫+ ..., (C7)

where we introduced the notation ‖...1j ...⟫ = ‖0⟫⊗(j−1)⊗
‖1⟫ ⊗ ‖0⟫⊗(N−j) and ‖...1j ...1k...⟫ = ‖0⟫⊗(j−1) ⊗ ‖1⟫ ⊗
‖0⟫⊗(k−j−1) ⊗ ‖1⟫⊗ ‖0⟫⊗(N−k).

b. Perturbative dynamics

Before the discussion of the perturbative dynamics,
let us note that the state ‖0⟫⊗N = ρ

(0)
ss , in agreement

with Eq. (C4), is decoupled from the dynamics to all
orders, as the hard constraint in the no-zero temperature
dynamics [Eq. (C3)] cannot be satisfied.

First order. In the first order, we obtain following
transformation, which corresponds to the decay of closest
isolated excitations,

|...1212...〉〈...1212...| 7−→
γ

2

(
|...1202...〉〈...1202...|
−|...1212...〉〈...1212...|

)
,

|...1202...〉〈...1202...| 7−→ 0,

|...121̄2...〉〈...121̄2...| 7−→ 0,

|...1̄2...〉〈...1̄2...| 7−→ 0,

|...02...〉〈...02...| 7−→ 0,

where we have introduced |1̄2〉 = |01〉 and |02〉 = |00〉,
and ... in |...1212...〉〈...1212...| denote any configuration
allowed by Eq. (C2), also configurations corresponding
to coherences, i.e., different in the ket and bra [this is
in direct analogy to the tensor product structure in J+

which acts on the state of a pair of spins, independently
from the state of the rest of spins]. The notation used
hereafter describes the dynamics due to the (first) per-
turbation acting on the leftmost spin. In order to recover
full dynamics of a given state, it is necessary to consider
the above dynamics with respect to each of the spins in
the system (i.e., all translations).

The coherences are affected by non-zero temperature
as follows,

|...1202...〉〈...1212...| 7−→ −
γ

3
|...1202...〉〈...1212...|,

|...121̄2...〉〈...1212...| 7−→ −
γ

3
|...121̄2...〉〈...1212...|,

|...12...〉〈...1̄2...| 7−→ −
γ

2
|...12...〉〈...1̄2...|,

|...12...〉〈...02...| 7−→ −
γ

2
|...12...〉〈...02...|,

|...1̄2...〉〈...02...| 7−→ 0,
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and dynamics of the Hermitian conjugates follows from
the Hermiticity-preservation of the dynamics (i.e., Her-
mitian conjugation of equations above). Here we as-
sumed the system of N ≥ 3 spins (see below for the
discussion of finite size effects). The above dynamics can
be interpreted as quantum dynamics with three types of
jumps,

J0 =

√
γ

2
|1202〉〈1212|, (C8)

J1 =

√
γ

3
(|1202〉〈1202|+ |121̄2〉〈1̄212|+ |1212〉〈1212|) ,

J2 =

√
2γ

3

(
|1202〉〈1202|+ |121̄2〉〈1̄212|+

1

2
|1212〉〈1212|

)
.

The jump operator J0, corresponds to the decay of neigh-
bouring excitations, while the jump operators J1 and J2,
cause dephasing of states with different locations of ex-
citations. In particular, the dephasing jumps J1 and J2

lead to decay of all coherences in the DFS. Therefore, the
manifold of states stationary with respect to the first-
order dynamics is classical. Furthermore, due to the de-
cay represented by J0, the stationary states consist of
isolated excitations followed by at least two empty sites,
|13〉 = |100〉,

‖...0...0...〉〉, ‖...13...0...〉〉, ... ‖...13...13...〉〉. (C9)

Second order. In the second order, the dynamics due
to jumps J+ is classical and features decay of the neigh-
bouring excitations,

‖...1313...〉〉 7−→
2

3

γ2

κ

(
‖...1303...〉〉 − ‖...1313...〉〉

)
, (C10)

‖...1413...〉〉 7−→
1

4

γ2

κ

(
‖...1403...〉〉 − ‖...1413...〉〉

)
,

‖...15...〉〉 7−→ 0,

where |14〉 = |1000〉 = |1202〉 and |15〉 = |10000〉. Here
we assumed N ≥ 5 spins (see below for the discussion
of finite size effects). Therefore, the remaining station-
ary states are composed of empty sites and excitations
followed by at least 4 empty sites, |15〉,

‖...0...0...〉〉, ‖...15...0...〉〉, ... ‖...15...15...〉〉.
(C11)

Third order. In the third order, we have two contribu-
tions to the dynamics of the states in Eq. (C11): from
the (third-order) perturbation by the temperature out-
side the dark space [Eq. (C2)], and the (second-order)
perturbation with the effective dynamics [Eq. (C10)] in-
side the classical space [Eq. (C9)]. We thus obtain the

decay of the neighbouring excitations,

‖...1515...〉〉 7−→
4

3

γ3

κ2

(
‖...1505...〉〉 − ‖...1515...〉〉

)
, (C12)

‖...1615...〉〉 7−→
2

3

γ3

κ2

(
‖...1605...〉〉 − ‖...1615...〉〉

)
,

‖...1715...〉〉 7−→
4

11

γ3

κ2

(
‖...1705...〉〉 − ‖...1715...〉〉

)
,

‖...1815...〉〉 7−→
1

8

γ3

κ2

(
‖...1805...〉〉 − ‖...1815...〉〉

)
,

‖...19...〉〉 7−→ 0,

which leads to remaining stationary states composed of
empty sites and excitations followed by at least 8 empty
sites,

‖...0...0...〉〉, ‖...19...0...〉〉, ... ‖...19...19...〉〉.
(C13)

We have assumed N ≥ 9 spins (see below for the dis-
cussion of finite size effects). We note that the order or
perturbation necessary for the decay of neighbouring ex-
citation is not linear in the distance between excitations,
but follows the logarithmic scaling instead.

Alternatively, we can consider the third-order dynam-
ics in the set of states of Eq. (C9), which will reintroduce
neighbouring excitations as,

‖...1515...⟫ 7−→ γ3

κ2

(
2

3
‖...1317...⟫+

1

4
‖...1416...⟫ (C14)

+
5

12
‖...1505...⟫− 4

3
‖...1515...⟫

)
,

‖...1615...⟫ 7−→ γ3

κ2

(
2

3
‖...131315...⟫+

1

4
‖...1417...⟫

+
1

12
‖...1605...⟫− ‖...1515...⟫

)
,

‖...17...⟫ 7−→ γ3

κ2

(
1

2
‖...1314...⟫+

1

4
‖...1413...⟫

)
.

Here we omitted the modes decaying in the second
order, as they will lead to higher order corrections, e.g.,
in the stationary state, and we assumed N ≥ 7 spins
(see below for the discussion of finite size effects).

Hierarchy of timescales and metastable manifolds. In
the discussion above, we have obtained a hierarchy of
timescales corresponding to the dynamics with different
orders of perturbation in the temperature parameter γ.
In particular, the structure of the modes invariant to the
dynamics of a particular order [see Eqs. (C9), (C11),
and (C13)] determines the metastable manifold in the
timescales until the contribution from the following-order
becomes significant. Finally, we note that for the pertur-
bation theory to hold, the parameter γ must be small
enough when multiplied by the system size n, due to the
locality of the perturbative dynamics. We discuss the
examples of finite system sizes in the Appendix C 2 d.
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c. Corrections to state structure

Introduction of non-zero dynamics, not only changes
the timescale of the dynamics, introducing decaying
modes, but also changes their structure.

First-order corrections. We now consider first-order
corrections to Eq. (C9). Only the states with an excita-
tion are corrected with
(

1− 4
γ

κ

)
‖10000...〉〉 (C15)

+
γ

κ
(‖11000...⟫+ ‖10100...⟫+ ‖10010...⟫+ ‖10001...⟫) ,

where the first-order corrections are due to the first-
order perturbation outside the dark DFS [Eq. (C2)], the
second-order corrections inside the DFS, but beyond the
invariant states in Eq. (C9), and the third-order correc-
tions inside this set, but beyond the states in Eq. (C11)
(the last two terms), respectively; see [72]. We therefore
recover the structure of the stationary states in Eq. (C4).

Corrections acquired during dynamics. Although all
the corrections in Eq. (C15) are of the first order, their
origin is due to different-orders of perturbative dynam-
ics. Therefore, for an initial state ‖10000...〉〉, the term
‖11000...⟫ will be acquired after the first-order dynamics
takes place, i.e., for times t � γ−1, the term ‖10100...⟫
will be acquired for times t � κγ−2, while the terms
‖10010...⟫ + ‖10001⟫ for t � κ2γ−3, etc. This directly
corresponds to the fact that the state ‖10000...⟫ fulfils
the constraint for the dynamics of the second spin, which
takes place at the rate γ leading to each stationary state
(cf. the first-order dynamics in Appendix C 2 b). The
presence of the excited state in the stationary state of sec-
ond spin can further facilitate the dynamics of the third
spin (see the second-order dynamics in Appendix C 2 b),
etc.

d. Finite size

We now consider how the perturbative dynamics
in the first, second, and third order is changed for
N = 3, 4, 5, 6, which are system sizes relevant for the
discussion in the main text.

N = 3 spins. There are 4 dark states of N = 3 spins
[cf. Eq. (C2)]

|000〉, |100〉, |010〉, |001〉. (C16)

As there is only at most a single excitation present, the
first-order dynamics in Eq. (C8) leads to dephasing of
coherences between different states, which gives the clas-
sical manifold,

‖000⟫, ‖100⟫, ‖010⟫, ‖001⟫. (C17)

In the second order, the single excitation couples to itself
via the periodic boundary [cf. Eq. (C10)],

‖100⟫ 7−→ γ2

κ

[
1

3
(‖100⟫+ ‖010⟫+ ‖001⟫)− ‖100⟫

]
,(C18)

yielding the uniform stationary state ρ(1)
ss in Eq. (C4).

N = 4 spins. There are 6 dark states of N = 4 spins
[cf. Eq. (C2)]

|04〉, |14〉, ..., |1212〉, ..., (C19)

with dots between the states denoting the two states ob-
tained under the translation. The first-order dynamics
in Eq. (C8) leads to the classical stationary states with
at most a single excitation present, without coherences
[cf. Eq. (C9)]

‖04⟫, ‖14⟫, .... (C20)

In the second order, similarly as in the case N = 3,
the single excitation, can couple to itself via the periodic
boundary [cf. Eq. (C10)]

‖14⟫ 7−→ γ2

2κ

[
1

2
(‖1202⟫+ ‖0212⟫)− ‖14⟫

]
. (C21)

Finally, in the third order, the two modes left invariant
by the second-order dynamics, couple as

1

2
(‖1202⟫+ ‖0212⟫) 7−→ γ3

2κ2

[
1

2
(‖1̄202⟫+ ‖021̄2⟫)

−1

2
(‖1202⟫+ ‖0212⟫)

]
,

leading to the uniform stationary state ρ(1)
ss [cf. Eq. (C4)].

N = 5 spins. There are 11 dark states of N = 5 spins
[cf. Eq. (C2)]

|05〉, |15〉, ..., |1213〉, .... (C22)

The first-order dynamics in Eq. (C8) leads to the classical
stationary states with at most a single excitation present,
without coherences [cf. Eq. (C9)]

‖05⟫, ‖15⟫, .... (C23)

These states are also invariant to the second-order dy-
namics in Eq. (C10). In the third order, the remaining
degeneracy is lifted, by coupling of the single excitation
to itself, as follows

‖15⟫ 7−→ 8

3

γ3

κ2

[
1

2
(‖1302⟫+ ‖0213⟫)− ‖15⟫

]
, (C24)

with other transformations following by the translation
symmetry of the dynamics. Therefore, we recover two
stationary states as [cf. Eq. (C4)]

‖05⟫, 1

5
(‖15⟫+ ...). (C25)
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N = 6 spins. There are 18 dark states at 0-
temperature are [cf. Eq. (C2)]

|06〉, |16〉, ..., |1214〉, ..., |1313〉, ..., |121212〉, ....
(C26)

The first-order dynamics [Eq. (C8)] leads to only the fol-
lowing classical states being stable [cf. Eq. (C9)]

‖06〉〉, ‖16〉〉, ..., ‖1313〉〉, ..., (C27)

while in the second order [Eq. (C10)] the decay

‖1313⟫ 7−→ 4

3

γ2

κ

(‖1303⟫+ ‖0313⟫
2

− ‖1313⟫
)

(C28)

leads only two types of states being stationary
[cf. Eq. (C11)]

‖06〉〉, ‖16〉〉, ... (C29)

In the third order, due to coupling of a single excitation
to itself via the boundary, we obtain

‖16⟫ 7−→ 7

6

γ3

κ2

(
4

7

‖1303⟫+ ‖0313⟫
2

(C30)

+
3

7

‖1402⟫+ ‖0214⟫+ ‖0412⟫
3

− ‖16⟫
)
,

which again recovers the two uniform stationary states
of Eq. (C4). Alternatively, we can consider their-order
dynamics including double excitations (C27),

‖16⟫ 7−→ γ3

κ2

(
2

3
‖1313⟫ (C31)

+
1

2

‖1402⟫+ ‖0214⟫+ ‖0412⟫
3

− 7

6
‖16⟫

)
,

which dynamics together with the second-order dynam-
ics, Eq. (C28), obeys detailed balance (as a consequence
of translation symmetry and at most a single excitation
removed or injected at a time). Note that we neglected
the third-order dynamics of ‖1313⟫, which already
undergoes the second-order dynamics, as it will lead to
second-order corrections in the stationary state.

Directionality in the perturbative dynamics. Above we
discuss the perturbative dynamics with constraint from
the spin to the left; see Eqs. (C1) and (C3). This di-
rectionality is apparent in the notation used for the de-
scription of the dynamics in Appendix C 2 b. For the
system of a finite size, it can directly be observed for
sizes N = 5, 6, ... as follows. In the first order, the decay
of the states |1213〉, |1214〉, ... to |15〉, |16〉, ..., respec-
tively, manifests interactions to the left. Similarly, in the
third order, |15〉, |16〉 are mapped to states which are
symmetric only under N translations of the system.

3. Decay dynamics due to soft constraint

a. Dynamics due to soft constraint at small temperature
and no coherent field

We now consider changing the hard constraint |1〉〈1| to
|1〉〈1| + ε|0〉〈0| with 0 < ε � 1, i.e., changing the jump
operator (C1) to

J− + ε δJ− =
√
κ(|1〉〈1|+ ε|0〉〈0|)⊗ |0〉〈1|. (C32)

The stationary state of this dynamics is unique and equal
to the non-interacting (tensor-product) state ‖0⟫⊗N
[cf. Eq. (B5)].

At low temperature, γ � κ, the perturbation from
δJ−, will compete with the temperature itself, J+ in
Eq. (C3), leading to the interplay of dynamics with
different timescales, as we explain below. The change
in the constrain of J+ will contribute in a higher order
with δJ+ =

√
γ(|1〉〈1| + ε|0〉〈0|) ⊗ |1〉〈0| [cf. Eq. (C32)],

and since, as we explain below, two former contributions
lead to a unique stationary state, it can be neglected in
the dynamics.

First order. There are no first-order corrections in ε,
as we now explain. First, since the DFS in Eq. (C2)
is dark to J−, the action of the jump is 0 on any
dark state, while the anti-commutator terms contain
(δJ−)†J− = 0 = (J−)†δJ− (due to orthogonality of
the constraints |0〉 and |1〉). Therefore, there are no
first-order corrections in dynamics of the structure
of states due to δJ−, nor there are any-higher orders
corrections. Similarly, δJ+ will not contribute in the first
order proportional to γε, (δJ+)†J+ = 0 = (J+)†δJ+,
and thus only coherence |...01...〉〈...11...| can be created
from |...00...〉〈...10...| at the rate γε (and the same for
the Hermitian conjugates), which decays to 0. As we
will see below, however, in the higher order, J+ will
crucially contribute to the corrections to the structure
of the stationary state.

Second order. Depending on the ratio between ε2 and
γ, we need to consider the second-order dynamics in-
duced by the soft constraint in different metastable man-
ifolds; see Eqs. (C9), (C11), and (C13).
Regime of γ = O(ε2). We consider the dissipative dy-

namics with δJ− in the DFS of dark states [Eq. (C2)].
In this case, we obtain decay of isolated excitations,

|...1̄2...〉〈...1̄2...| 7−→ ε2 κ
(
|...02...〉〈...02...| − |...1̄2...〉〈...1̄2...|

)
,

which associated decay of coherences as

|...1̄2...〉〈...02...| 7−→ −
ε2

2
κ |...1̄2...〉〈...02...|,

|...1̄2...〉〈...12...| 7−→ −
ε2

2
κ |...1̄2...〉〈...12...|,

which dynamics exactly corresponds to the jump opera-
tor δJ−. Therefore, even in the presence of the compet-
ing first-order dynamics due to temperature [Eq. (C8)],
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all the modes decay at timescales proportional to ε2 (plus
γ), with the unique stationary state without any excita-
tions,

ρss =
(

1−N γ

κ

)
‖0⟫⊗N +

γ

κ
(‖1N⟫+ ...) , (C33)

where ... denotes the translations. At 0-temperature,
γ = 0, this is the stationary state to all orders in ε
[cf. Eq. (C4)], while for γ > 0 the corrections are due
to the second-order perturbation from δJ+, which can
be equivalently understood as the result of the second-
order dynamics with δJ+.
Regime of γ2 = O(ε2). Here the perturbations act

on the classical manifold in Eq. (C11) invariant to the
first-order temperature dynamics. The second-order dy-
namics with δJ− leads again to decay of excitations

‖...1313...⟫ 7−→ ε2 κ (‖...1303...⟫− ‖...1313...⟫) ,
‖...0313...⟫ 7−→ ε2 κ (‖...0303...⟫− ‖...0313...⟫) .

This will again lead to the stationary state without exci-
tations in Eq. (C33). We note that the dynamics induced
by the soft constrain, δJ−, preserves the structure of the
classical manifold, and thus there are no higher order
corrections to the dynamics. In contrast, the second-
order dynamics introducing excitations due to δJ+ when
projected on the classical manifold in Eq. (C11), would
introduce excitations

‖...05...⟫ 7−→ ε2 γ (‖...0213...⟫− ‖...05...⟫) , (C34)

but also leads to decay of neighbouring excitations and
movement of excitations,

‖...1313...⟫ 7−→ ε2 γ (‖...1303...⟫− ‖...1313...⟫) ,(C35)
‖...1413...⟫ 7−→ ε2

2
γ (‖...1403...⟫− ‖...1413...⟫) ,

‖...0313...⟫ 7−→ ε2 γ (‖...0214...⟫− ‖...0313...⟫) ,
‖...0413...⟫ 7−→ ε2 γ (‖...0215...⟫− ‖...0413...⟫) .

The dynamics described above is induced by the pertur-
bation acting on the second most left spin indicated in
the state and takes place in the higher order ε2 γ = O(ε4).
Regime of γ(n+1) = O(ε2). In general, the soft

constraint will lead to decay of neighbouring excitations
with rates proportional to κ in the metastable states
invariant to n-th order dynamics with J+. In particular,
when degeneracy is lifted by the temperature to only
two states, the soft constraint will lead further to the
unique stationary state. We discuss such dynamics for
arbitrary values of the temperature and the coherent
field in Appendix C 3 b.

Finite size example. We consider regime γ2 = O(ε2)
and the system of N = 6 spins with the stationary states
of the first-order dynamics in γ given by Eq. (C27). The
soft constraint in jump operators yields the following dy-

namics,

‖1313⟫ 7−→ 2 ε2 (κ+ γ)

(‖1303⟫+ ‖0313⟫
2

− ‖1313⟫
)
,

‖16⟫ 7−→ ε2
[
κ (‖06⟫− ‖16⟫)

+3γ

(‖1313⟫+ ‖0412⟫+ ‖1̄6⟫
3

− ‖16⟫
)]

,

‖06⟫ 7−→ 6 ε2 γ

(‖16⟫+ ...

6
− ‖06⟫

)
, (C36)

where ... denotes possible translations and ‖1̄6⟫ =
‖000001⟫. This dynamics obeys detailed balance as a
consequence of translation symmetry and at most a single
excitation removed or injected at a time (a ladder struc-
ture), which structure will also be left unchanged by the
second-order perturbation theory with γ; see Eq. (C31).
In particular, the soft constraint leads to the unique sta-
tionary state

ρss =

(
1− 6

γ

κ
+ 33

γ2

κ2

)
‖0⟫⊗6 (C37)

+

(
γ

κ
− 6

γ2

κ2

)
(‖16⟫+ ...) +

γ2

κ2
(‖1313⟫+ ...) ,

where we expanded in the two-lowest order of γ, but ne-
glected the first-order corrections outside the metastable
manifold in Eq. (C11) [cf. Eq. (C15)].

b. Dynamics due to soft constraint at finite temperature
and coherent field

For dynamics with a hard constraint at finite temper-
ature, γ > 0, and finite coherent field, Ω 6= 0, there
exist two stationary states given in Eq. (B4). The soft
constraint in the limit |ε| � 1 induces perturbative dy-
namics between those states, which in the second order
is given by

ρ(0)
ss 7−→ ε2N

[
κ p2 + γ (1− p)2

] (
ρ(1)
ss − ρ(0)

ss

)
,

ρ(1)
ss 7−→ ε2N

λN−1
u

1− λNu
λe
[
κ (1− p)2 + γ p2

] (
ρ(0)
ss − ρ(1)

ss

)
.

This leads to a single non-interacting stationary state
in Eq. (B5) as we have λe

[
κ (1− p)2 + γ p2

]
=

λu
[
κ p2 + γ (1− p)2

]
. In particular for a small field

Ω and low temperature γ, we obtain a separation of
timescales in the lifetime of two phases

τ1
τ0

=
1− λNu
λNu

= N

(
γ

κ
+

Ω4

κ4

)
+ ..., (C38)

so that the dark state should be prevalent in quantum
trajectories.
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4. Dephasing dynamics due to coherent field

We now consider influence of coherent dynamics due
to non-zero coherent field Ω, i.e., the Hamiltonian

H(Ω) = Ω |e〉〈e| ⊗ 1

2
(|1〉〈0|+ |0〉〈1|) =: ΩH + Ω2δH + ....

(C39)
The new constraint also appears in jump operators,

J−(Ω) =
√
κ |e〉〈e| ⊗ |1〉〈0| =: J− + ΩδJ− + Ω2δ2J−,

(C40)
and is determined by the eigenbasis of a single-spin sta-
tionary state, which is rotated due to the presence of the
coherent field Ω,

|e〉〈e| = 1

2

[(
1 +

κ

∆

)
|1〉〈1|+ 2iΩ

∆
|1〉〈0| (C41)

+
(

1− κ

∆

)
|0〉〈0| − 2iΩ

∆
|0〉〈1|

]
,

where ∆ =
√
κ2 + 4Ω2 [cf. Eq. (B3)].

a. Stationary states

The stationary states of dynamics with (C39)
and (C40), while at the hard constraint (ε = 0) and zero
temperature (γ = 0), are given by [cf. Eq. (B4)]

ρ(0)
ss = ‖u⟫⊗N , (C42)

ρ(1)
ss =

[
(λu‖u⟫+ λe‖e⟫)⊗N − λNu ‖u⟫⊗N

]
/(1− λNu ), (C43)

where ‖e⟫ = |e〉〈e| is defined in Eq. (C41) and

‖u⟫ =
1

2

[(
1 +

κ

∆

)
|0〉〈0|+ 2iΩ

∆
|0〉〈1| (C44)

+
(

1− κ

∆

)
|1〉〈1| − 2iΩ

∆
|1〉〈0|

]

[cf. Eq. (B3)], with the corresponding probabilities

λu,e =
1

2
± κ∆

κ2 + ∆2
(C45)

[cf. Eq. (B2)]. Therefore, in the limit of small field Ω, we
obtain

ρ(0)
ss = ‖u⟫⊗N , (C46)

ρ(1)
ss =

(
1− Ω4

κ4

N − 1

2N

) N∑

j=1

‖...ej ...⟫

+
Ω4

κ4

1

N

N∑

j>k

‖...ej ...ek...⟫+ ..., (C47)

where ‖...ej ...⟫ = ‖u⟫⊗(j−1) ⊗ ‖e⟫ ⊗ ‖u⟫⊗(N−j) and
‖...ej ...ek...⟫ = ‖u⟫⊗(j−1) ⊗ ‖e⟫ ⊗ ‖u⟫⊗(k−j−1) ⊗ ‖e⟫ ⊗

‖u⟫⊗(N−k). Comparing Eqs. (C6) and (C46), suggests
that the field Ω could act in the fourth order as the tem-
perature parameter γ, in the rotated basis formed by ‖u⟫
and ‖e⟫. Below we prove that in the second-order per-
turbation theory we recover metastable states as classi-
cal state with isolated excitations, while in the main text
we confirm numerically that the fourth-order and higher
perturbations indeed correspond to the temperature.

b. Perturbative dynamics

First order. There are no first-order corrections in
Ω. In the first order, we have perturbation from the
Hamiltonian H = Ω |1〉〈1| ⊗ (|1〉〈0| + |0〉〈1|)/2, and
anti-commutator with [(J−)†δJ− + (δJ−)†J−]/2 =
iΩ(|1〉〈0| − |0〉〈1|)/2 ⊗ |1〉〈1|, which introduce coherences
of the dark states [Eq. (C2)] to the states with double
excitations, and thus such contributions decay to 0.

Second order. We have the following contributions to
the second-order dynamics in Ω.

The dynamics due to the second-order perturbation
in the Hamiltonian, δH = i(|1〉〈0| − |0〉〈1|) ⊗ (|1〉〈0| +
|0〉〈1|)/2, leads to the unitary dynamics in the dark DFS
corresponding to movement of excitations,

|...0100...〉〈...| 7−→ −Ω2

2κ
|...0010...〉〈...|, (C48)

|...0010...〉〈...| 7−→ Ω2

2κ
|...0100...〉〈...|,

where in the above expressions we considered the pertur-
bation δH acting on the second and third spin, from the
left.

The dynamics due to the second-order perturbation
in the jump operator, δ2J− = Ω2

κ3/2 (|0〉〈0| − |1〉〈1|)/2 ⊗
|0〉〈1|, is analogous to the first-order dynamics with the
soft constraint discussed in Sec. C 3 a, and thus gives no
contribution.

The dissipative dynamics with the first-order pertur-
bation to the jump operators, δJ− = i Ω√

κ
(|1〉〈0|−|0〉〈1|)⊗

|0〉〈1|, which similarly to δH facilitate movement of inter-
actions, in the DFS causes both movement of excitations
and decay of neighbouring excitations,

|...0010...〉〈...0010...| 7−→ Ω2

κ

(
|...0100...〉〈...0100...| (C49)
−|...0010...〉〈...0010...|

)
,

|...1010...〉〈...1010...| 7−→ Ω2

κ

(
|...1000...〉〈...1000...|
−|...1010...〉〈...1010...|

)
,

with the corresponding decay of coherences

|... · 010...〉〈...| 7−→ −Ω2

2κ
|... · 010...〉〈...|, (C50)
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where in the above expressions (·) stands for either 0 or
1 and we considered the perturbation δJ− acting on the
second and third spin.

The second-order correction due to H taking the states
outside the dark DFS, also leads to completely posi-
tive trace-preserving (CPTP) dynamics, similar to the
first-order corrections from the non-zero temperature in
Eq. (C8),

|...1010...〉〈...1010...| 7−→ Ω2

4κ

(
|...1000...〉〈...1000...| (C51)
−|...1010...〉〈...1010...|

)
,

|...100...〉〈...100...| 7−→ 0,

with coherences decaying as

|...1010...〉〈...100 · ...| 7−→ −Ω2

4κ
|...1010...〉〈...100 · ...|,(C52)

|...1010...〉〈...01 · ·...| 7−→ −Ω2

4κ
|...1010...〉〈...01 · ·...|,

|...1010...〉〈...00 · ·...| 7−→ −Ω2

4κ
|...1010...〉〈...00 · ·...|,

|...100...〉〈...01 · ...| 7−→ −Ω2

2κ
|...100...〉〈...00 · ...|,

|...100...〉〈...00 · ...| 7−→ −Ω2

2κ
|...100...〉〈...00 · ...|,

where we considered the perturbation H acting on the
first and second spin.

The second-order dynamics due to the first-order per-
turbation in dissipation taking the states outside the dark
DFS, is trace-preserving and given by [note that this dy-
namics is not positive, but when added to Eqs. (C49)
and (C50), it is completely positive],

|...0010...〉〈...0010...| 7−→ −Ω2

κ

(
|...0100...〉〈...0100...| (C53)
−|...0010...〉〈...0010...|

)
,

|...1010...〉〈...1010...| 7−→ −3

4

Ω2

κ

(
|...1000...〉〈...1000...|

−|...1010...〉〈...1010...|
)
,

where the both the first and second perturbations act on
the second and third spin, while the coherences obey

|...0010...〉〈...| 7−→ Ω2

2κ
|...0010...〉〈...|, (C54)

|...1010...〉〈...| 7−→ Ω2

4κ
|...1010...〉〈...|,

where the perturbation acts twice form the left on the
second and third spin.

Finally, the mixed second-order contribution from the
perturbation in dissipation and the Hamiltonian gives

|...1010...〉〈...1010...| 7−→ −Ω2

2κ

(
|...1000...〉〈...1000...| (C55)
−|...1010...〉〈...1010...|

)
,

where the first Hamiltonian perturbation acts on the first
and second spin, while the first dissipative perturbation
on the second and third spin. The coherences obey

|...100 · ...〉〈...1010...| 7−→ Ω2

4κ
|...100 · ...〉〈...1010...|, (C56)

where we averaged the contribution form the perturba-
tion acting on the second and third spin or third and
fourth spin, and also undergo unitary dynamics [with
−δH; cf. Eq. (C48)] as follows,

|...100 · ...〉〈...| 7−→ Ω2

2κ
|...010 · ...〉〈...|, (C57)

|...0010...〉〈...| 7−→ −Ω2

2κ
|...0100...〉〈...|.

The contribution to the above dynamics corresponds to
the second and third spin being perturbed.

Total second-order dynamics. Summing all the second-
order contributions above we obtain no dynamics of oc-
cupations,

|...1010...〉〈...1010...| 7−→ 0, (C58)
|...0010...〉〈...0010...| 7−→ 0,

while the coherences undergo dephasing,

|...100 · ...〉〈...1010...| 7−→ −Ω2

4κ
|...100 · ...〉〈...1010...|,(C59)

and for other coherences as

|...1010...〉〈...| 7−→ −Ω2

2κ
|...1010...〉〈...|, (C60)

|...100 · ...〉〈...| 7−→ −Ω2

4κ
|...100 · ...〉〈...|.

Therefore the manifold of states invariant to the second-
order dynamics is classical with isolated excitations fol-
lowed at least by one empty site [cf. Eq. (C9)]

‖...0...0...〉〉, ‖...010...0...〉〉, ... ‖...010...010...〉〉, ....
(C61)

It thus follows that there are no third-order corrections
in Ω to the perturbative dynamics (the eigenvalues of the
induced stochastic dynamics must be negative, while Ω3

can be both positive and negative).

c. Corrections to state structure

First-order corrections. We now consider first-order
corrections to (C9) for states with isolated excitation,
which are stationary under the second-order dynamics in
Ω. We have that the perturbation by the field outside
the dark DFS yields [cf. Eq. (C2)],

|...010...〉〈...010...|

−iΩ
κ

(|...011...〉〈...010...| − |...010...〉〈...011...|) + ...

−iΩ
κ

(|...110...〉〈...010...| − |...010...〉〈...110...|) + ...,
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where the corrections in the first line are due to
the Hamiltonian H, while in the second line due to
the anti-commutator with [(J−)†δJ− + (δJ−)†J−]/2
[cf. Eqs. (C39) and (C40)]. These corrections correspond
to the transformation of |0〉 and |1〉 into the rotated basis,
|u〉 and |e〉 [cf. Eqs. (C41) and (C44)].

Appendix D: Perturbative dynamics in the open
quantum East model with open boundary conditions

Here we show that the dynamics at a very low soft-
ness (ε � 1), in the case of open boundary conditions,
leads to dynamical heterogeneity. For the case of periodic
boundary conditions, see Appendix C 3 b.

1. Stationary states for hard constraint

We first consider dynamics at any temperature and
with arbitrary coherent field, but with a hard constraint,
i.e., the Hamiltonian and jump operators,

H = Ω |e〉〈e| ⊗ (|0〉〈1|+ |1〉〈0|)/2, (D1)
J− =

√
κ |e〉〈e| ⊗ |0〉〈1|,

J+ =
√
γ |e〉〈e| ⊗ |1〉〈0|,

for a neighbouring pair of spins.

a. Stationary states

There are N + 1 orthogonal stationary states in the
model with open boundary conditions and the hard con-
straint (ε = 0) [cf. Eq. (B4)]

ρ(0)
ss = ‖u⟫⊗N , (D2)

ρ(j)
ss = ‖u⟫⊗(j−1) ⊗ ‖e⟫⊗ (λu‖u⟫+ λe‖e⟫)⊗(N−j)

,

where j = 1, ..., N . The states ‖u⟫ = |u〉〈u| and ‖e⟫ =
|e〉〈e| defined in Eq. (B3), and the probabilities λu, λe
defined in Eq. (B2), correspond to the stationary state of
single-spin dynamics. Moreover, the coherences between
the pure ρ(0)

ss and ρ(N)
ss (i.e., the coherences of N -th spin)

are also stationary,

C+ = ‖u⟫⊗(N−1) ⊗ |e〉〈u|, (D3)

C− = ‖u⟫⊗(N−1) ⊗ |u〉〈e|,

which corresponds to the existence of a qubit DFS.
This structure of stationary states is a consequence of
the first spin undergoing no dynamics due to the ab-
sence of its neighbour to the left, but acting as a con-
straint, while the last spin undergoing dynamics only
in the presence of the penultimate spin in the excited
state. We note, however, that the coherence in the first
spin, |e〉〈u| ⊗ (λu‖u⟫+ λe‖e⟫)⊗(N−1) (and similarly in
other spins ‖u⟫⊗(j−1)⊗|e〉〈u|⊗ (λu‖u⟫+ λe‖e⟫)⊗(N−j)),

is not conserved, but instead, due to the first spin act-
ing as constraint, decays with the effective Hamiltonian
−iHeff = −iΩ(|0〉〈1| + |1〉〈0|) − κ

2 |1〉〈1| −
γ
2 |0〉〈0|, acting

on the second spin (j + 1-th spin) with the eigenvalues

−κ+γ
4 ±

√
(κ−γ4 )2 − Ω2 featuring negative real parts.

Finally, we note that for small values of the tempera-
ture and the coherent field γ, |Ω| � κ, we have λe ≈ 1, so
that the stationary states ρ(0)

ss and ρ(j)
ss in Eq. (D2) can

be viewed as states with none and a single excitation of
jth spin, respectively. This is analogous to the structure
of the metastable manifold in the model with periodic
boundary conditions.

b. Conserved quantities

The corresponding projections on the stationary states
in Eq. (D2) are determined by their support,

Π0 = ⟪u‖⊗N , (D4)

Πj = ⟪u‖⊗(j−1) ⊗ ⟪e‖ ⊗ 1⊗(N−j)
2 ,

(C+)† and (C−)†,

and conserved by the dynamics. We have introduced
⟪·‖ = ‖·⟫†. The asymptotic state is determined as,
limt→∞ ρt = p0 ρ

(0)
ss +

∑N
j=1 pj ρ

(j)
ss + cC+ + c∗ C−,

with probabilities pj = Tr(Πjρ0) and coefficients c =

Tr{[C+]†ρ0}. In particular, we have that Π0+
∑N
j=1 Πj =

1, which corresponds to the trace-preservation of the dy-
namics.

2. Dynamics due to soft constraint

We now consider dynamics due to soft constraint 0 <
ε � 1. The change of softness in the constraint leads
to the following shifts in the original Hamiltonian H and
jump operators J− and J+ in Eq. (D1) [cf. Eq. (6)],

δH = ε2 Ω |u〉〈u| ⊗ (|0〉〈1|+ |1〉〈0|)/2, (D5)
δJ− = ε

√
κ |u〉〈u| ⊗ |0〉〈1|,

δJ+ = ε
√
γ |u〉〈u| ⊗ |1〉〈0|.

There are no first-order perturbations to the dynamics.
This is due to orthogonality of the constraint in J± and
δJ±, which gives (J±)†δJ± = 0 = (δJ±)†J±.

We have two independent second-order contributions
from the dissipative dynamics with the jumps operators
δJ+, and δJ−, and from the unitary dynamics in the DFS
induced by the Hamiltonian δH. There are no mixed con-
tributions from J± and δJ±, again due to orthogonality
of their constraints.
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a. Classical dynamics

Effective dynamics. In the absence of the field, Ω = 0,
we obtain

ρ(0)
ss 7−→ ε2 κ



N∑

j=2

ρ(j)
ss − (N − 1)ρ(0)

ss


 ,

ρ(1)
ss 7−→ 0,

ρ(j)
ss 7−→ ε2 γ

[
j−1∑

k=2

ρ(k)
ss − (j − 2)ρ(j)

ss

]

+ε2κ


λN−j0 ρ(0)

ss + λ1

N∑

k=j+1

λk−j−1
0 ρ(k)

ss − ρ(j)
ss


 ,

ρ(N)
ss 7−→ ε2 γ

[
N−1∑

k=2

ρ(k)
ss − (N − 2)ρ(N)

ss

]

+ε2 κ
[
ρ(0)
ss − ρ(N)

ss

]
,

C+ 7−→ −ε
2

2
(κ+ γ)C+,

where j = 2, ..., N − 1. Therefore, in the classical model
at small temperature, γ � κ, from Eq. (B2) we recover
that due to softening of the constraint, the coherences
simply decay at the rate ε2(κ+γ)/2, while the lifetime of
the states ρ(0)

ss and ρ(j)
ss , j = 2, ..., N , is given, respectively,

by

τ−1
0 = ε2 γ (N − 1) + ...,

τ−1
j = ε2 [κ+ γ (j − 2)] + ...,

while τ−1
1 = 0, as ρ(1)

ss is decoupled from the perturbative
dynamics.

Stationary states of classical dynamics. Indeed, there
are two stationary states of the perturbative dynamics,
given by two possible states of the unconstrained first
spin with the rest of the system in a local stationary
state,

‖e⟫⊗ (λ0‖0⟫+ λ1‖1⟫)⊗(N−1)
= ρ(1)

ss , (D6)

‖u⟫⊗ (λ0‖0⟫+ λ1‖1⟫)⊗(N−1)
=

λN−1
0 ρ(0)

ss +

N−1∑

j=1

λ1 λ
N−1−j
0 ρ(N+1−j)

ss .

The stationary states in Eq. (D6) are actually the solu-
tions of the dynamics with open boundary conditions to
all orders in ε.

Dynamical heterogeneity in classical dynamics. Fur-
thermore, we observe from Eq. (D6), that there exists a
separation of timescales, τj/τ0 = (N − 1)γ/κ+ .... More-
over, the excited state ρ(j)

ss is transformed into ρ(0)
ss with

the overwhelming probability 1− (N −2)γ/κ+ ..., rather

than into ρ(k)
ss , k 6= j. This together with the separation

of timescales leads to dynamical heterogeneity for small
enough ε and γ/κ.

b. Quantum dynamics

Effective dynamics. In the presence of the field, Ω 6= 0,
from the perturbation of jump operators we obtain the
dissipative dynamics

ρ(1)
ss 7−→ 0,

ρ(j)
ss 7−→ ε2

[
κ p2 + γ (1− p)2

]
[
j−1∑

k=2

ρ(k)
ss − (j − 2)ρ(j)

ss

]

+ε2
[
κ (1− p)2 + γ p2

]

λN−ju ρ(0)

ss + λe

N∑

k=j+1

λk−j−1
u ρ(k)

ss − ρ(j)
ss


 ,

ρ(N)
ss 7−→ ε2

[
κ p2 + γ (1− p)2

]
[
N−1∑

k=2

ρ(k)
ss − (N − 2)ρ(N)

ss

]

+ε2
[
κ (1− p)2 + γ p2

] [
ρ(0)
ss − ρ(N)

ss

]
,

−ε
2

2

{
cec
∗
u [(3− 2p)κ− (1 + 2p)γ] C+ + h.c.

}

ρ(0)
ss 7−→ ε2

[
κ p2 + γ (1− p)2

]


N∑

j=2

ρ(j)
ss − (N − 1)ρ(0)

ss


 ,

−ε
2

2

{
cec
∗
u [(1 + 2p)κ− (3− 2p) γ] C+ + h.c.

}

C+ 7−→ −ε
2

2
cec
∗
u (1− 2p)(κ + γ)

[
ρ(0)
ss − ρ(N)

ss

]

+ε2 (κ+ γ)

{
p(1− p)C− −

[
p(1− p) +

1

2

]
C+

}
,

where j = 2, ..., N − 1, and we defined cu = 〈0|u〉,
ce = 〈0|e〉, p = |〈1|u〉|2 = |〈0|e〉|2 = |ce|2 = 1 − |cu|2.
The perturbation of constraint in the coherent field, δH,
yields the unitary dynamics in the DFS,

ρ(j)
ss 7−→ 0,

ρ(N)
ss 7−→ −i

ε2

2
Ω
(
C− − C+

)
,

ρ(0)
ss 7−→ −i

ε2

2
Ω
(
C+ − C−

)
,

C+ 7−→ −i ε
2

2
Ω
[
ρ(0)
ss − ρ(N)

ss

]
,

where j = 1, ..., N − 1.

Stationary states of quantum dynamics. Although the
dynamics of coherences is more complex than the sim-
ple decay present in the classical dynamics, we note that
the perturbation theory in the second order fully recov-
ers the dissipative dynamics of N-th spin in the DFS
(i.e., in the coupling between ρ

(N)
ss , ρ(0)

ss , C+ and C−).
Therefore, the stationary state of such dynamics is given
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by ‖e⟫⊗(N−1)⊗(λu‖u⟫+ λe‖e⟫), without any stationary
coherences. Therefore, the dynamics involving the rest
of spins leads ultimately to two stationary states of the
system,

‖e⟫⊗ (λu‖u⟫+ λe‖e⟫)⊗(N−1)
= ρ(1)

ss , (D7)

‖u⟫⊗ (λu‖u⟫+ λe‖e⟫)⊗(N−1)
=

λN−1
u ρ(0)

ss +

N−1∑

j=1

λe λ
N−1−j
u ρ(N+1−j)

ss ,

which directly correspond to two possible states of the
unconstrained first spin, with the rest of the system
equilibrated. Note that ρ(1)

ss is again disconnected from
the perturbative dynamics. Moreover, the stationary
states in Eq. (D7) are actually the solutions of the
dynamics with open boundary conditions to all orders
in ε.

Dynamical heterogeneity in quantum dynamics. In the
presence of the small field Ω 6= 0, and at the small tem-
perature, the lifetimes are given by

τ−1
j = ε2

[
κ− 2

Ω2

κ
+ γ (j − 2)

]
+ ...,

τ−1
N = ε2

[
κ− Ω2

κ
+ γ (N − 2)

]
+ ...,

τ−1
0 = ε2

[
γ (N − 1) +

Ω2

κ

]
+ ...,

where j = 2, ..., N − 1 and we approximated the inverse
of the lifetimes of ρ(N)

ss , ρ(0)
ss due to quantum dynamics

in the DFS by the average decay rate from the effective
Hamiltonian, i.e., Tr{[(δJ+)†δJ+ + (δJ−)†δJ−)]|u〉〈u| ⊗
|e〉〈e|} and Tr{[(δJ+)†δJ+ + (δJ−)†δJ−]|u〉〈u| ⊗ |u〉〈u|}.
Therefore, we again obtain separation of timescales,

τj
τ0

=
γ

κ
(N − 1) +

Ω2

κ2
+ ..., (D8)

where j = 2, ..., N . Furthermore, the excited state ρ(j)
ss ,

j = 2, .., N − 1 is transformed into ρ(0)
ss again with the

overwhelming probability equal 1−(N−2)γ/κ+... [while
ρ

(N)
ss analogously undergoes a jump into ‖u⟫⊗(N−1)⊗‖0⟫

with the probability 1− (N − 2)γ/κ+ ...]. This together
with the separation of timescales leads to dynamical het-
erogeneity for small enough ε, γ/κ and Ω2/κ2.

Finally, we note that the timescale of the quantum per-
turbative dynamics feature the coherent field already in
the second order, in contrast to the fourth-order contri-
bution in the case of periodic boundary conditions (see
Sec. C 4). Here, however, that contribution is local, un-
like the contribution from γ representing the tempera-
ture. Thus, the higher order, i.e., forth-order dynam-
ics may feature non-local contribution from the coherent
field, which for higher system size could compete with
only local second-order terms.

Appendix E: Aspects of classical dynamics

1. Classical stochastic dynamics

For a classical system with configurations labelled by
l = 1, ...,m, the stochastic dynamics of corresponding
probabilities pl (with 0 ≤ pl ≤ 1 and

∑m
l=1 pl = 1),

d

dt
pl(t) =

m∑

k=1

(W)lkpk(t), (E1)

is governed by the generator which fulfils
m∑

k=1

(W)kl = 0, (E2)

so that total probability is conserved, and

(W)ll ≤ 0, (W)kl ≥ 0 for k 6= l, (E3)

so that probabilities remain positive.

2. Distance to classical dynamics

For a probability-conserving operator W̃, the distance
to the set of classical generators measured in the opera-
tor norm induced by L1 vector norm [that is, ‖W̃‖1 =

max1≤l≤m
∑m
k=1 |(W̃)kl|] is given by

min
W
‖W̃ −W‖1 = 2 max

1≤l≤m

∑

k 6=l

∣∣min[(W̃)kl, 0]
∣∣. (E4)

The normalised distance [that is, ‖W̃ −W‖1/(‖W̃‖1 +
‖W‖1) for W being the closest classical generator] is

∆+ =

max
1≤l≤m

∑
k 6=l
∣∣min[(W̃)kl, 0]

∣∣

max
1≤l≤m

∣∣∣W̃ll +
∑
k 6=l min[(W̃)kl, 0]

∣∣∣
. (E5)

This normalised distance is shown in Fig. 6(b). For
derivations of Eqs. (E4) and (E5), see Ref. [38].

3. Distance to detailed balance

a. Detailed balance

The stationary current of probability from kth to lth
configuration is given by

jkl = (W)kl(pss)l − (W)lk(pss)k, (E6)

where k, l = 1, ...,m and pss denotes the stationary prob-
ability distribution for W. Detailed balance takes place
when there are no stationary currents, i.e.,

(W)kl(pss)l = (W)lk(pss)k. (E7)

In this case, the generator W becomes symmetric under
a similarity transformation

(W′)kl = (pss)
− 1

2

k (W)kl(pss)
1
2

l . (E8)
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b. Breaking of detailed balance

For a classical generator W, breaking of detailed bal-
ance can be quantified with respect to its stationary dis-
tribution pss as

min
Wdb

m∑

k,l=1

|(W)kl − (Wdb)kl|(pss)l, (E9)

where Wdb features detailed balance and the stationary
distribution identical to pss [cf. Eq. (E7)]. Note that in
Eq. (E9) we consider an entry-wise matrix norm weighted
with respect to pss, which is in general smaller than ‖W−
Wdb‖1 = max1≤l≤m

∑m
k=1 |(W)kl− (Wdb)kl|. Below we

show that it is bounded by twice the total stationary
current [cf. Eq. (E6)]

J =
1

2

m∑

k,l=1

|jkl|. (E10)

Furthermore, the normalised distance ∆db corresponds to
Eq. (E9) divided by twice the sum of the total activity
K in W,

K =
1

2

m∑

k,l=1

|(W)kl|(pss)l =

m∑

l=1

|(W)ll|(pss)l, (E11)

and in the optimal Wdb (which equals 1
2

∑m
k,l=1 qkl ≥ 0),

so that

∆db ≤
J

K
. (E12)

Derivation. We now prove that Eq. (E9) is bounded
by 2J in Eq. (E10). The sum on the left-hand side of
Eq. (E9) corresponds to

1

2

m∑

l=1

{
m∑

k=1
k 6=l

[
|(W)kl(pss)l − qkl|+ |(W)lk(pss)k − qkl|

]

+

∣∣∣∣∣
m∑

k=1
k 6=l

[(W)kl(pss)l − qkl]
∣∣∣∣∣+

∣∣∣∣∣
m∑

k=1
k 6=l

[(W)lk(pss)k − qkl]
∣∣∣∣∣

}
,

where in the first line we introduced qkl =
(Wdb)kl(pss)l = qlk and the second line corresponds
to |(W)ll(pss)l − (Wdb)ll(pss)l| from the probability-
conservation of W and Wdb. The minimum of the
first line equals total current [cf. Eq. (E10)] and is
achieved for min[(W)kl(pss)l, (W)lk(pss)k] ≤ qlk ≤
max[(W)kl(pss)l, (W)lk(pss)k] [as the minimisation can
be considered separately for each qkl (where k > l)]. By
the triangle inequality the second line is bounded by the
first line and thus the minimum is not larger than 2J .
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