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Abstract
We investigate a novel way to encourage separation between firms, causing local pollution, 
and their victims (households): payments from households to distant polluting firms. These 
payments do not require monitoring of firms’ emissions or their abatement costs. In our 
model, households and firms can choose from two locations (A and B, with A larger than 
B). Households incur environmental damage from firms in the same location. Under laissez 
faire, payments from households in one location (say A) to firms in the other location 
(say B) will prompt firms to move from A to B and to stay there, thus reducing damage 
to households in A. The maximum that households are willing to pay temporarily is the 
amount that currently makes them indifferent between A and B. The payments make A 
less attractive to firms as well as to households. The unique positive-payment equilibrium 
implements the global welfare optimum where laissez faire does not. We examine from 
which starting points this payment equilibrium can be reached.

Keywords  Location dynamics · Pollution victims · Coasean transfers

1  Introduction

Many environmental problems concern local pollution which can be alleviated or 
even resolved by moving polluters and victims away from each other. In a world where 
environmental regulation is difficult to accept politically, can payments between polluters 
and victims give the right incentives for location choice? This could be an option not 
just for pollution in the form of substances, but also in other forms, such as visual (e.g. 
wind turbines [Gibbons 2015; Dröes and Koster 2016], notwithstanding their supply of 
renewable energy), noise (Klaiber and Morawetz 2021) and light pollution.

Environmental buyouts, where polluters pay victims to move away (or vice versa), have 
emerged in the US as a way of separating polluters and victims (Guttel and Leshem 2013a, 
b). In the most spectacular case, in 2002 the electricity company AEP effectively paid for 
everyone in the small town of Cheshire, Ohio, to move and not to sue the company for any 
pollution damage from its nearby power plant (Buckley et al. 2005; Martin 2014).
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The buying out of polluters by victims happens relatively rarely,1 due to the free rider 
problem among victims and the transaction costs of coordinating a large number of victims. 
However, there are ways in which the victims can organize themselves. As more and more 
houses were being built around the Williams feedlot in Santa Maria (CA), complaints 
grew about its odour, dust and flies (Kolstad 2011, p. 259). At a public meeting in June 
1996, local residents supported a proposal to pay Mr Williams $600,000 over ten years to 
close the feedlot (Bedell 1996a). A Benefit Assessment District would be drawn up of all 
properties affected by the feedlot. They would pay an extra $1.82 per month in property tax 
for 10 years. The city council sent all property owners an information leaflet with a cutout 
coupon they could return to register their response (Bedell 1996b). If more than half of the 
property owners disagreed in this way, the plan would not go ahead. In the event, only 14% 
of the approximately 2,086 property owners registered their disagreement (Bedell 1996c). 
Thus the city council approved the plan and bought out the feedlot. Although this kind 
of buyout by pollution victims is rare, it may become more prevalent in a world where 
right-wing governments are looking to soften environmental regulation and enforcement 
(Popovich et al. 2021; Schaeffer and Pelton 2019; Kaiser 2019).

To our knowledge, this paper is the first to analyze a particular variation to 
environmental buyouts where victims, possibly with the aid of their local government, pay 
polluters to stay away from them. Does this kind of payment lead to a better outcome for 
society or perhaps even the welfare optimum? We analyze this question in Dijkstra and de 
Vries’ (2006) model with two locations, A and B, where A is larger than B. Households 
suffer from the pollution of firms in the same location.2 There is nothing that firms or 
households can do to reduce pollution, except for move away from each other. There is no 
environmental policy. There may be two stable equilibria and two local welfare optima, 
one with households mostly in A and one with firms mostly in A. The former is the global 
welfare optimum, because it has the largest population in the largest area.

In this world, households in A (for instance) might come up with the idea of paying firms 
to move to B and to stay in B. We shall examine these payments in an evolutionary setting. 
This means that a payoff difference between A and B does not cause an immediate rush to 
the higher-payoff region, instantly restoring payoff equality. Rather, there will be a stream 
of migration over time to the higher-payoff location. This evolutionary setting, which we 
share with Dijkstra and de Vries (2006), allows us to determine whether payments help an 
economy to move to the good equilibrium rather than the bad equilibrium.

In an evolutionary setting, we also have to examine how payments from households 
to firms came about. We shall assume that households in A will only pay firms in B if 
households prefer A to B, given the current locations of households and firms. Then 
households feel attached to A and they would like to make it a better place to live. The 
evolutionary setting implies that households may not be able to predict exactly how 
payments will affect future migration streams. There may thus be some experimenting with 
payments, and payments might be set at a level that was wrong in hindsight.

We shall see that in the positive-payment equilibrium, all households are in A, setting 
the payment level that maximizes their payoff, given that firms are indifferent between A 
and B. Since the households own all the land and the firms, they take all effects of their 
payments into account such as to maximize welfare. They do not impose an externality 

1  Fields (2004) provides some examples and a discussion.
2  The model can also be applied to other settings, for instance where manufacturing harms agriculture 
(Copeland and Taylor 1999), or conventional farming harms organic farming (Parker 2007).
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on households in B, because there are no households there. The Coase theorem (Coase 
1960; Medema 2020) holds in this sense, under the assumptions of perfect information, no 
free riding and no transaction costs.3 However, even under these assumptions, the welfare 
optimum cannot be reached from everywhere.

As discussed above, households may not have perfect knowledge of the effect of their 
payments all the time. However, we can expect that households learn the effect over time, 
so that eventually they can determine the payment that maximizes their payoff. Imperfect 
information is thus not an impediment to reaching the social optimum.

With a large number of households in A, free riding is a serious problem (Dixit and 
Olson 2000). Why should a household in A pay firms in B when the effect on its own 
payoff is minimal (and long-term), instead of free riding on other households’ payments? 
We shall assume that households have an effective way of dealing with free riding. As with 
the Santa Maria feedlot, there might be a local authority that can put the decision to pay 
firms in B to a referendum among all households in A. If the vote is in favour, the authority 
can collect the payments from all households.4

A key question we shall analyze is whether payments from households to firms can 
set the economy on a path to a different (hopefully better) equilibrium. Consider the 
case where households as well as firms are moving from B to A. Households in A might 
then pay firms in B. This will slow down firms’ movement from B to A. If the payment 
is high enough, it might even induce firms to revert from A to B. However, the payment 
reduces the payoff advantage of A for households as well and will thus also slow down 
households’ movement from B to A. In order to determine how payments affect the path of 
the economy, we have to analyze their effect on the relative migration speeds of firms and 
households. We also need to consider different scenarios of how the imperfectly informed 
households set the payment level.

The rest of this paper is organized as follows. We review the literature in Sect.  2. 
The model is set out in Sect. 3. Sect. 4 presents the welfare optima and the laissez-faire 
equilibria. In Sect.  5 we introduce payments from households to firms and derive the 
equilibrium. In Sect. 6 we analyze how the payments affect the relative relocation speeds of 
households and firms. Sect. 7 combines the dynamics of payments and location choice to 
examine an economy’s path to equilibrium. In Sect. 8 we consider extensions to our model. 
Finally, Sect. 9 concludes.

2 � Literature Review

In this literature review we shall focus on welfare maximization, laissez faire and payments 
between polluters and victims in a spatial context with externalities.

Migrating to a cleaner or quieter location (Klaiber and Morawetz 2021) is a defensive 
activity (also called avoidance or averting behaviour) by pollution victims. Other examples 
include spending more time indoors using air conditioning (Sheldon and Sankara 2019) 
and wearing facemasks outdoors in response to air pollution alerts (Ward and Beatty 2016; 
Kim 2021), and drinking bottled water (Zivin et  al. 2011). Baumol (1972) and Starrett 

3  We discuss information and free riding in the Introduction. We return to transaction costs in Sect. 8.2 and 
to information in Sect. 8.5.
4  The local authority may also be better able to deal with household heterogeneity, as we shall explore in 
Sect. 8.5.
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(1972) were the first to note that these defensive activities introduce nonconvexities into the 
production set and/or consumer preferences, which may result in multiple welfare optima.5 
Shibata and Winrich (1983) show that when it is (locally) optimal to have only victim 
defence measures and no abatement by firms, laissez faire implements the optimum.6

Parker (2007) examines the occupation of a line by three users: conventional and organic 
agriculture, and an alternative use. Proximity to conventional agriculture is damaging for 
organic agriculture. Under laissez faire, the conventional and organic farms will be on 
opposite ends of the line, but too close to each other: the buffer zone with the alternative 
use is too small. Parker (2007) presents three mechanisms for reaching the social optimum: 
a Pigouvian tax on land, making the conventional farmer liable for the damage to the 
organic farmer, and Coasean bargaining between the three parties where the conventional 
farmer holds the right to pollute. Unlike Parker (2007), our model is dynamic and spatially 
discrete, featuring two land uses instead of three and a continuum of agents rather than one 
agent for each land use.

Copeland and Taylor (1999) consider a two-country two-industry world with free trade 
and without environmental policy. The "Smokestack" industry adds to the national stock of 
pollution and the "Farming" industry suffers from pollution.7 Analogous to Miyao (1978), 
Copeland and Taylor (1999) find that the diversified autarky equilibrium is unstable and 
there may be two stable equilibria with at least partial specialization. When one country 
needs to be diversified, this should be the country with the lowest labour endowment or the 
largest regenerative capacity. However, Copeland and Taylor (1999) show that the world 
does not necessarily evolve to the desired specialization pattern.

Van Marrewijk (2005), Lange and Quaas (2007) and Wu and Reimer (2016) add local 
pollution to Forslid and Ottaviano’s (2003) core-periphery economic geography model in 
order to study stable equilibria under laissez faire. Van Marrewijk (2005) assumes both 
manufacturing and agriculture are polluting (affecting household utility) and derives 
conditions under which complete agglomeration (the core-periphery outcome) and perfect 
spreading are stable equilibria. Lange and Quaas (2007) assume only manufacturing is 
polluting. They show that partial agglomeration can also be a stable equilibrium. Both 
papers find conditions under which there are two stable equilibria. Wu and Reimer (2016) 
assume a clean and a dirty industry and show that the dirty industry may be too dispersed 
in the spatial equilibrium.

While the core-periphery model is also a two-location model, there are several 
differences with our model. In our model, for simplicity there are no agglomeration forces, 
so that the laissez-faire stable equilibria are always corner solutions. Secondly, there is an 
ex ante difference between the two locations in our model (A is larger than B).8 Thirdly, we 
have two slow-moving populations (firms and households) while the core-periphery model, 
apart from Wu and Reimer’s (2016) application, only has one (human capital). Thirdly, we 
model the land rental market.

Chen et  al. (2012) model agents’ location choice between two cities: The dirty city 
where all the manufacturing takes place and the clean city. In equilibrium the agents with 

7  Benarroch and Thille (2001) and Unteroberdoerster (2001) add transboundary pollution to Copeland and 
Taylor’s (1999) model.
8  As we show in footnote 18, the first difference removes a source of multiple equilibria, while the second 
difference introduces a new source.

5  See Antoci et al. (2021) for a recent contribution.
6  They claim taxation does not lead to the optimum in this case, but Oates (1983) shows it does.
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the highest ability to work live in the clean city, trading off a cleaner environment against 
higher commuting costs. The authors find that there can be multiple equilibria, differing 
in the relative size of the two cities. While Chen et  al. (2012) assume only households 
are mobile, we also include firm mobility, which allows us to analyze the location 
choice effects of payments from households in one area to firms in the other area. Unlike 
Chen et  al. (2012), we model the land rental market, but we abstract from household 
heterogeneity and commuting costs.

Our paper builds on Dijkstra and de Vries (2006), who set up a model with two 
locations and two mobile populations. Firms cause environmental damage to households 
in the same location. The authors analyze the policy regimes of laissez faire, taxation and 
compensation. They find that each stable equilibrium features at least partial separation, 
with at least one area hosting one group only. Taxation always implements a (local) 
welfare optimum. However, laissez faire and compensation can also implement a welfare 
optimum, as long as there is complete separation, or the population that is in both regions 
takes environmental damage into account. Finally, Dijkstra and de Vries (2006) find there 
are starting points from which the economy evolves to only a local wefare optimum under 
taxation, but to the global optimum under compensation. The authors mention in the 
Conclusion that under laissez faire, households could pay firms to stay away from them. 
In this paper, we take the model and the laissez faire scenario from Dijkstra and de Vries 
(2006), and we add these payments.

Pitchford and Snyder (2003) and Innes (2008) analyze Coasean bargaining in a 
sequential location decision game of "coming to the nuisance". In both papers, party B 
considers moving close to party A, setting off a negative externality between the two 
parties. The property rights consist of injunction, damage or exclusion rights for the first 
or the second party. Pitchford and Snyder (2003) show that only second-party damage 
rights lead to the optimal outcome if A can make an ex-ante non-contractible investment.9 
Innes (2008) shows that only first-party damage rights lead to the optimal outcome in case 
relocation by A would result in another negative externality.

Guttel and Leshem (2013a) show how welfare can fall when a polluter buys out some of 
his victims.10 While our paper only considers payments from victims to polluters, payments 
in the opposite direction can be analyzed in the same way. However, there are important 
differences between Guttel and Leshem (2013a) and our paper. Guttel and Leshem (2013a) 
provide a static partial-equilibrium model of a single polluter and many victims, where the 
polluter is required to take abatement measures such that total welfare is maximized. The 
present paper provides a dynamic general-equilibrium model of many polluters and many 
victims, where the polluters cannot take abatement measures and there is no environmental 
policy. In Guttel and Leshem’s (2013a) model, the polluter can strategically reduce the 
amount of abatement required by buying out some victims, thereby reducing the harm 
from his pollution. Buying out some victims imposes a negative externality on the other 
victims. In the present paper, all the victims of the same location act as one, mirroring 
Guttel and Leshem’s (2013a) single polluter. In our general equilibrium setting, the victims 
are also the consumers, the shareholders and the land owners. Moreover, in the positive-
payment equilibrium, all households are in the same location. Thus the households take all 

9  Pitchford and Snyder (2007) generalize the model by letting the externality generator’s investment affect 
its preferred level of the externality.
10  Guttel and Leshem (2013b) treat the same subject from a legal point of view.
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the effects of their payments into account, thereby implementing the social optimum, given 
their own location.

3 � The Model

Our model builds on Dijkstra and de Vries (2006). There are two populations k: Households 
h and firms f. There is a continuum of households of mass 1. There is a continuum of firms 
of mass nf < 1. Households and firms can locate in two regions z, z = A,B . Denote by sz

k
 

the share of population k located in region z. There is a fixed total area of land in either 
region that can be occupied.11 Each household owns an equal share of land in A and in B. 
Region A’s size is normalized to one. Region B is of size 𝛽 < 1, with b ≡ 1∕𝛽 > 1.

The firms f in region z produce a homogeneous good q with land gz
f
 and a firm-specific 

indivisible factor Ff  , with Ff = 1. Each household owns an equal share in each firm’s Ff . 
The production qz

f
 of q by a firm in region z is given by:12

with 𝜙, 𝜃 > 0 . The production technology features constant returns to scale and thus 
diminishing marginal returns to land. � is the maximum amount that a firm can produce 
with Ff = 1 as gz

f
 goes to infinity.

The land rental market is perfectly competitive,   clearing instantaneously, with pz the 
rental price of land in area z. Firm f in z maximizes its operating profits Πz

f
 (revenue minus 

cost of renting land), which from (1) with Ff = 1 and the choice of q as the numeraire are 
given by:

Net utility from consumption and pollution for household h in region z is given by:

where qz
h
 is the consumption of q by a household in z and

is its utility from land. To simplify the analysis, we have set u(gz) = qz
f
(1, gz), as in Dijkstra 

and de Vries (2006).
The final term on the RHS of (3) is the environmental damage that the household incurs. 

Environmental damage from each firm to each household in the same region is constant 

(1)qz
f
= qf (Ff , g

z

f
) = Ff

(
� −

�Ff

2gz
f

)

(2)Πz

f
=

{
max
gz
f

� −
�

2gz
f

− pzgz
f

}

(3)wz

h
= u(gz

h
) + qz

h
− sz

f
nf

(4)u(gz
h
) = � −

�

2gz
h

11  There is no fixed or minimum amount of land that a firm or a household needs to occupy.
12  For simplicity, we use this specific form of Dijkstra and de Vries (2006) production function, which the 
authors also use for their Figures.
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and normalized to one. A household does not incur any damage from a firm located in the 
other region.13

A household h in region z maximizes its utility (3) under the budget constraint 
pzgz

h
+ qz

h
= Yz

h
, with Yz

h
 household h’s income in z. Yz

h
 is endogenous, but since utility ( 3) 

is quasilinear, household demand for land only depends on the land rental price and not 
on Yz

h
 (i.e. there is no income effect) or on environmental damage. The consumption good 

q is a residual on which the household spends all its remaining income.14 From (4), the 
household maximizes its consumer surplus Πz

h
 from land, given by:

The solution to both firm (2) and household (5) maximization problems yields:

as the inverse rental demand function for land with gz
f
= gz

h
= gz , i.e. a firm and a household 

occupy the same amount of land in region z. Recall that land suppy is fixed at 1 in A and 
� in B, so that in equilibrium the total area in each region is distributed equally among all 
occupants (firms plus households):

Note that plot size gz in z is the inverse of density, i.e. the number of occupants on a given 
area of land in z. Substituting (7) into (6) gives pA as a function of the number of occupants:

Substituting (6) into (2) and (5), the net payoff from land in region z is:

For the purpose of analyzing the model it is more convenient to solve for the endogenous 
gz and pz in (9) in order to express ΠA and ΠB as functions of sA

f
 and sA

h
 . This is because the 

other elements of an agent’s payoff (pollution and payments) are also functions of sA
f
 and 

sA
h
. Substituting (7) into the third equality of (9) yields:

We see that ΠA and ΠB are linear functions of sA
f
 and sA

h
. From (2) and (5) to (10), the 

following relations between the variables are clear: The larger the number of occupants in 

(5)Πz

h
=

{
max
gz
h

� −
�

2gz
h

− pzgz
h

}

(6)pz =
�

2(gz)2

(7)gA =
1

nf s
A
f
+ sA

h

, gB =
�

nf (1 − sA
f
) + (1 − sA

h
)

(8)pA =
�

2

[
nf s

A
f
+ sA

h

]2
, pB =

�b2

2

[
nf (1 − sA

f
) + (1 − sA

h
)
]2

(9)Πz

f
= Πz

h
= Πz = � −

�

gz
= � −

√
2�pz

(10)ΠA(sA
f
, sA

h
) = � − �nf s

A
f
− �sA

h
, ΠB(sA

f
, sA

h
) = � − �b

[
nf (1 − sA

f
) + 1 − sA

h

]

13  The model can also be interpreted in a way that incorporates pollution spillovers, as in Wu and Reimer 
(2016). In this interpretation, a household incurs a damage of � (� + 1) from a firm in the other (same) 
region.
14  We assume that 

�
 in (2) is so high that households have enough income from fixed factor and land own-

ership for (5) to have an interior solution.
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a region, the higher is the density. The higher the density, the higher is the land rental price 
pz, the smaller is the plot size gz and the lower is the net payoff Πz from land in z.

Let y (x) be the payment from each household in A (B) to each firm in B (A). A firm’s 
payoff Vz

f
 in z equals its payoff Uz

f
= Πz from land plus any payment from households in the 

other region. From ( 10):

A household’s payoff Vz

h
 in z equals its payoff Uz

h
 from land and pollution (the former given 

by Πz and the latter by the final term on the RHS of (3)) minus its payments to firms in the 
other region. From (10):

We see that the presence of a firm affects a household’s gross payoff linearly and negatively 
in two ways: The firm takes up space (reducing household payoff by � in A and by b� in 
B) and it pollutes (reducing household payoff by 1). Thus we can interpret � in (4) as the 
crowding effect of a marginal increase in the number of firms in A,  relative to its pollution 
effect which is normalized to 1. We shall assume that b𝜃 < 1, so that the crowding effect is 
less important than the pollution effect, even in the smaller area B.

When payoff is higher in one location than in the other, agents do not move immediately 
to the higher-payoff region. Instead there will be a stream of migration over time 
until payoffs are equalized (or until everyone has moved to the higher-payoff region). 
Households and firms only evaluate their current location choice occasionally. Households 
may be attached to their current location because they are familiar with it, and they have 
friends and family there. Firms may have made location-specific investments such as 
factories.

We assume that the rate ṡA
k
≡ dsA

k
∕dt at which population k relocates to A is 

proportionate to its payoff difference ΔVk ≡ VA
k
− VB

k
:

This is the projection dynamic (Friedman 1991;15 Lakhar and Sandholm 2008; Sandholm 
et  al. 2008).16 The projection dynamic has been applied to spatial pricing by Nagurney 
and Zhang (1996), to traffic flows by Nagurney and Zhang (1998), and to urban growth by 
Fujishima (2013).

The projection dynamic is the only deterministic dynamic described in Sandholm 
(2010, pp. 150-153) where the boundary of the state space is reached in finite time. This is 

(11)VA
f
=UA

f
+ x(1 − sA

h
), UA

f
= � − �(nf s

A
f
+ sA

h
)

(12)VB
f
=UB

f
+ ysA

h
, UB

f
= � − b�nf (1 − sA

f
) − b�(1 − sA

h
)

(13)VA
h
=UA

h
− ynf (1 − sA

f
), UA

h
= � − (� + 1)nf s

A
f
− �sA

h

(14)VB
h
=UB

h
− xnf s

A
f
, UB

h
= � − (b� + 1)nf (1 − sA

f
) − b�(1 − sA

h
)

(15)ṡA
k
=

⎧⎪⎨⎪⎩

max (0, 𝜌kΔVk) for sA
k
= 0

𝜌kΔVk for 0 < sA
k
< 1

min (0, 𝜌kΔVk) for sA
k
= 1

k = f , h; 𝜌h = 1;𝜌f > 0

15  Friedman (1991, p. 661) calls this the linear dynamic.
16  Ottaviano et al. (2002) derive a variation of the projection dynamic with forward-looking agents.
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essential for our application. Suppose all households are in A, paying firms in B, and firms 
are moving from A to B. With replicator dynamics and many other dynamics, the firms’ 
relocation speed is given by the product of sA

f
 and other factors. Thus as sA

f
 declines, the firms’ 

move to B slows down so much that there will always be some firms left in A at any time. At 
some point, households will realize that although they are paying firms in B, there are hardly 
any firms moving from A to B anymore. They will then stop trying to move firms to B. The 
result is an equilibrium that cannot be pinned down precisely, with all households in A and 
"almost" all firms in B.

Total welfare is:

In (16), we define welfare as the population-weighted average of household utilities wA
h
 and 

wB
h
 in A and B respectively, defined by (3). From (3), the first two terms on the RHS of (17) 

are the household utility from land in either location. The next two terms are utility from the 
consumption good, which from (3) equals total production with qfz(1, gz) = u(gz), z = A,B, 
in (1) and (4). The final two terms are environmental damage from (3). Substituting (4) and 
(7) into (17) yields (18).

Note that the households own all the land and all the fixed production factors. Moreover, 
as noted above, household utility (3) is quasilinear in the consumption good and land. Thus 
households spend any extra revenue from land and fixed factor ownership on the consumption 
good. This means that the rental payments for land, the firms’ profits which accrue to the fixed 
factor as well as any payments from households to polluting firms drop out of the welfare 
equation.

4 � Welfare Optima and Laissez Faire Equilibria

In this section we elaborate on Dijkstra and de Vries (2006) to derive and compare the welfare 
optima and the laissez faire equilibria. The FOCs for an interior welfare optimum are, from 
(18):

However, since damage occurs when firms and households are together, there should be 
at least one region with only firms or only households. The optimum can then be either 

(16)W(sA
h
, sA

f
) ≡sA

h
wA
h
+ (1 − sA

h
)wB

h

(17)
=sA

h
u(gA) + (1 − sA

h
)u(gB) + nf s

A
f
u(gA) + nf (1 − sA

f
)u(gB)

− nf s
A
f
sA
h
− nf (1 − sA

f
)(1 − sA

h
)

(18)
=
(
1 + nf

)
� −

�

2

[
sA
h
+ nf s

A
f

]2
−

�b

2

[
1 − sA

h
+ nf

(
1 − sA

f

)]2

− nf s
A
f
sA
h
− nf (1 − sA

f
)(1 − sA

h
)

(19)
�W

�sA
h

= − �

[
sA
h
+ nf s

A
f

]
+ �b

[
1 − sA

h
+ nf

(
1 − sA

f

)]
− nf s

A
f
+ nf (1 − sA

f
) = 0

(20)
�W

�sA
f

=nf

{
−�

[
sA
h
+ nf s

A
f

]
+ �b

[
1 − sA

h
+ nf

(
1 − sA

f

)]
− sA

h
+ (1 − sA

h
)
}
= 0
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of type HF (households in A, firms in B, and a mix of firms and households in at most 
one region) or FH (defined analogously). The global welfare optimum is HF. Intuitively, 
since there are more households than firms and A is the largest region, it is better to have 
households predominantly in A and firms in B.

We denote the different locational patterns under partial separation by notation such as 
(h, fh),  which means: only households in A, and firms and households in B.

Formally we find:17

Lemma 1 

1.	 There is always an HF welfare optimum. This is also the global optimum. The HF 
optimum is (h, fh) when: 

 and (h, f) when (21) does not hold.
2.	 There is a local FH welfare optimum (fh, h) if and only if: 

 If the first condition does not hold, the FH welfare optimum is (f, h). If the second 
condition does not hold, there is no FH welfare optimum.

3.	 If there is an interior solution to (19) and (20), this is a saddle point.

Let us now derive the laissez faire equilibria. Under laissez faire, there is no 
environmental policy and there are no payments from households to firms, i.e. x = y = 0 
and Vz

k
= Uz

k
 in (11) to (14). In the equilibrium, nobody wants to move. Figure 1 illustrates 

our findings.
On the locus hh′ , illustrated in Figure 1, households are indifferent between A and B. 

From (13) and (14):

This is the same condition as (19) which maximizes welfare with respect to sA
h
. Thus 

households make the location decision that maximizes welfare, because they take the 
pollution from firms into account.

On the locus dd′ , also illustrated in Figure 1, firms are indifferent between A and B. 
From (11) and (12):

This condition is different from (20) which maximizes welfare with respect to sA
f
. Firms 

do not make the location decision that maximizes welfare, because they disregard the 

(21)bnf < 1 −
nf

𝜃

(22)(𝜃 + 1)nf < 𝜃b < 𝜃(1 + bnf ) + (3𝜃 + 2)nf

(23)ΔUh ≡ UA
h
− UB

h
= 0 ∶ (� + 1)nf s

A
f
+ �sA

h
= (b� + 1)nf (1 − sA

f
) + b�(1 − sA

h
)

(24)ΔUf ≡ UA
f
− UB

f
= 0 ∶ nf s

A
f
+ sA

h
= bnf (1 − sA

f
) + b(1 − sA

h
)

17  The proofs of Lemmas 1 and 2 are in Appendix A.
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environmental damage they cause. However, the laissez faire equilibrium still implements 
the local welfare optimum (if there is one) as long as it is not on dd′.

The conditions for the different laissez faire equilibria and their optimality are:18

Lemma 2 

1.	 There is always a stable FH laissez faire equilibrium. This equilibrium is the local 
welfare optimum (f, h) if: 

 and (fh, h) otherwise. The (fh, h) equilibrium is the local welfare optimum if the latter 
exists, i.e. if the second inequality of (22) holds.

2.	 There is an HF laissez faire equilibrium, which is stable, if 

 The equilibrium is the global welfare optimum (h, fh) if: 

 The equilibrium is the global welfare optimum (h, f )if: 

 The equilibrium is (fh, f) if: 

 In this case, (h, f) is the global welfare optimum.
3.	 If and only if (26) holds, there is an unstable interior laissez faire equilibrium j with 

We see that four of the five possible stable laissez faire equilibria implement a (local) 
welfare optimum. Firms do not consider environmental damage in their location choice, 
but this doesn’t matter in (f, h), (fh, h) , (h,  fh) and (h,  f), because all firms locate in the 
area with the lowest land rental prices. In (fh,  f) however, firms are spread over both 
areas in such a way that land rental prices are equalized and firms are indifferent between 
the two locations, resulting in too many firms in A together with the households. Two 
conditions must hold for the (fh, f) equilibrium to exist. First, when all households are in 
A, firms should be located in both areas, rather than in B only. This is achieved by the first 

(25)nf (𝜃 + 1) > 𝜃b

(26)bnf < 2 + nf

(27)bnf < 1 −
nf

𝜃

(28)1 −
nf

𝜃
< bnf < 1

(29)1 < bnf < 2 + nf

(30)
(
s
Aj

h
, s

Aj

f

)
=

(
2b − nf + bnf

2b + 2
,
1

2

)

18  If A and B were equally large (i.e. b = 1 ), the two welfare optima would be indistinguishable from each 
other, so that there would effectively be one optimum. Likewise, there would be one laissez faire equilib-
rium. There would be no FH laissez faire equilibrium far away from the global HF welfare optimum.
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inequality bnf > 1 of (29) which means that when all households are in A and all firms are 
in B, density and land rental prices are higher in B, giving firms an incentive to move from 
B to A. The second condition for (fh, f) to exist is that when firms are spread over A and B 
such that land rental prices are equalized, households prefer A to B. This is achieved by the 
second inequality of (29).

Figure  1 illustrates the Lemma. We denote the different domains of the graph by 
notation such as BA, which means that with laissez faire, households move to B and firms 
move to A. If the hh′ and dd′ curves do not cross (as in Figure 1a), there is just one laissez 
faire equilibrium, of the FH variety. If hh′ and dd′ cross (as in Figure 1b), there is also an 
interior equilibrium and an HF equilibrium.

Figure  1 also illustrates the stability of the equilibria. The FH and HF equilibria are 
always stable. The interior equilibrium is always unstable. All points to the left (right) of 
the saddle path SP evolve to the FH (HF) equilibrium.19 ,20

5 � Positive‑Payment Equilibrium

Suppose households in one location (say A) hit upon the idea of incentivizing firms to 
move to the other location (B) and to stay there. In this section we shall first consider 
the form that this payment might take. We will then explore the properties of a payment 

(a) (b)

Fig. 1   Laissez faire phase diagrams. Panel a (left): Single equilibrium ( � =
1

5
, b =

14

3
, nf =

4

7
 ). Panel b 

(right): Two stable equilibria ( � =
5

9
, b =

5

3
, nf =

4

5
, �f =

3

2
 ). A dot represents a stable laissez faire equilib-

rium, a square represents a local (not global) welfare optimum, and the heart represents the global welfare 
optimum

19  The expression for the saddle path is derived in Appendix C.
20  Given that land suppy is fixed, a tax on the rental price of land in region A would leave the gross rental 
price (net price plus tax) at pA in (8). If the tax revenue was redistributed equally across all households in 
A and B, each household would still obtain the same revenue from owing land, only some if it would arrive 
indirectly via redistributed tax revenue. The tax would then not affect location dynamics either. If the tax 
revenue was redistributed equally across all households in A only, this would make A more attractive to 
households, and there would be more starting points from which the economy would evolve to the HF equi-
librium rather than the FH equilibrium.
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equilibrium. Finally, we examine whether an economy would move from a laissez faire 
equilibrium to a payment equilibrium.

Households in A could pay firms in A to move to B. This would be ineffective, 
because firms would keep returning from B to A in order to be paid to move back again. 
Alternatively, households in A could pay firms in A to move to B and not to return. There 
are two problems with this scheme. First, it is very difficult to establish the payment 
amount. It requires determining a firm’s payoff difference between A and B in every 
possible future scenario and calculating its net present value. Secondly, the contract needs 
to be enforced. If a firm wants to return to A, although it has promised not to, can the 
households stop the firm or force it to reimburse the payment (cf. Fields 2004)?21

The payment method we shall analyze in this paper is for households in A to pay firms 
in B. This continuous stream of payment over time gives firms in A an incentive to move to 
B and it gives firms in B an incentive to stay there. There is no problem with enforcement, 
because as soon as a firm moves from B to A, the payment stops.

We shall impose some limits on the payments from households in A to firms in B:22

Condition 1  The payment y from households in A to firms in B satisfies: 

1.	 If UA
h
≤ UB

h
 in (13) and (14), then y = 0.

2.	 If UA
h
> UB

h
, then y ≤ ymax for finite t and y < ymax for t → ∞ with ymax > 0 implicitly 

defined by: 

It seems reasonable to assume that the maximum payment that households in A will 
temporarily agree to is the payment that makes them indifferent between the two regions, 
given the current location of households and firms (Condition  1.2). The purpose of the 
payment is to make A a better place to live. A payment so large that households actually 
prefer B to A defeats the purpose. Households are willing to pay the maximum amount 
temporarily as they see the effect on firms’ location choice, but they will start objecting 
when firms hardly move anymore, or not at all. Households do not want to be trapped in a 
situation where they don’t see any difference between their current residence and the other 
region.

Households in A will then only start paying firms in B if households strongly prefer A 
to B (Condition 1.1). In this case, households identify with A. They consider it their home 
and they are interested in making it a better place to live. If households are indifferent 
between A and B, they don’t identify with the location they live in. They are not interested 
in paying firms elswhere to make their current home more pleasant. Residents of a region 
that households are leaving for the higher-payoff region are even less inclined to make 
payments. They are asking themselves whether it is time for them to move as well, not 
whether they can make their current home more attractive.

UA
h
− (1 − sA

f
)ymax = UB

h

21  A central government might be able to enforce the contract. However, our analysis is set in a world 
where local communities come up with solutions to local pollution problems, because the central govern-
ment is too weak to impose environmental policy. The central government would then also be unable to 
enforce these contracts between households and firms.
22  To save space, we only present the limits on y. The limits on x are analogous.
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Let us now explore the nature of a positive-payment equilibrium where y and/or x 
is positive. When households are spread over both locations in equilibrium, they are 
indifferent between the two locations: VA

h
= VB

h
 in (13) and (14). There are then two 

scenarios. First, payoff gross of payments is weakly lower in A ( UA
h
≤ UB

h
). Then by 

Condition 1.1, y = 0. Furthermore, by the analogoue of Condition 1.2, x cannot be so 
high that VA

h
= VB

h
. Secondly, when UA

h
> UB

h
, then by Condition 1.2, y cannot be so high 

that VA
h
= VB

h
.

There can thus only be a positive-payment equilibrium with all households in the 
same region, strictly preferring that region over the other region. In this equilibrium, 
households maximize their own utility, given that firms are indifferent between the two 
regions. Households derive utility from land and the consumption good, and disutility from 
pollution. Since households are also the recipients of land rents and of the firms’ fixed 
factor rewards, and they are all in the same region, they take all general equilibrium effects 
into account. Thus in the positive-payment equilibrium, households effectively maximize 
total welfare, given their own location: When all households are in A [B], they maximize 
W(1, sA

f
) [W(0, sA

f
)] in (16).

We know from Lemma 2.1 that the local FH welfare optimum, if it exists, is always 
implemented by laissez faire. Thus, since a positive-payment equilibrium implements the 
(local) welfare optimum, there is no FH positive-payment equilibrium.

Moving on to HF,  only the laissez faire equilibria (h, f) and (h, fh) implement the global 
HF welfare optimum by Lemma 2.2. Neither of these equilibria exists if:

so that the HF laissez faire equilibrium is either (fh, f) or it does not exist. In either case, 
there is a positive-payment equilibrium.

Condition (31) says that when all firms are in B and all households are in A, density 
and land rental prices are higher in B. From Lemma 1.1, this means that the HF welfare 
optimum is (h, f) rather than (h, fh),  because households should not be in B, where land 
rental prices and pollution are higher than in A. Condition (31) also implies that in laissez 
faire, households as well as firms prefer A to B. This is why firms need to be paid to stay in 
B, and households in A are willing to pay for this.

The payment ȳ from each household in A to each firm in B makes firms indifferent 
between A and B. From (11) and (12):

The inequality follows from (31). Yet the payment is small enough for households to still 
prefer A to B, since (h, f) is the welfare optimum so that by (13), (14) and (32):

The inequality holds because by (31) it can be rewritten as:

Now let us check whether the positive-payment equilibrium can be reached from a laissez 
faire equilibrium that is not the global welfare optimum. Payments will not arise from the 
laissez faire equilibrium (f, h). There is no need for households in B to pay firms in A, 
because all firms are already there. Payments from households in A to firms in B cannot 
arise, because there are no households in A.

(31)bnf > 1

(32)ȳ = 𝜃(bnf − 1) > 0

𝜃 + nf ȳ = 𝜃 + nf 𝜃(bnf − 1) < (b𝜃 + 1)nf

nf 𝜃(bnf − 1) < 𝜃(bnf − 1) + nf
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If the laissez faire equilibrium is (fh,  h),   payments will not arise either. Households 
are spread over both regions and are thus indifferent between them. By Condition  1.1, 
households will not pay firms in the other region.

Finally, if the laissez faire equilibrium is (fh, f),  payments will arise. Since households 
prefer A to B, they would like firms to move from A to B. Thus households in A will pay 
firms in B. The payments will eventually induce all firms to move to B so that the global 
welfare optimum (h, f) is reached.

Thus we have proved:

Proposition 1 

1.	 If and only if (31) holds, there is a positive-payment equilibrium which is unique and 
implements the global welfare optimum (h, f).

2.	 If (h, f) is a positive-payment equilibrium, households as well as firms would prefer A 
to B in (h, f) under laissez faire.

3.	 The only laissez faire equilibrium from which the economy can evolve to the positive-
payment equilibrium is (fh, f).

We conclude that each HF laissez faire equilibrium is a "good" equilibrium in the sense 
that it either implements the global welfare optimum or it can evolve to the global welfare 
optimum with payments from households in A to firms in B. The FH laissez faire equilibria 
are "bad" in the sense that they do not implement the global welfare optimum, nor can they 
evolve to it.

6 � The Effect of Payments on Location Dynamics

If the economy is on a path to an FH (HF) equilibrium, can payments set it on a path to an 
HF (FH) equilibrium instead? We shall examine households and firms moving in opposite 
directions (the same direction) under laissez faire in Sect. 6.1 (6.2).

6.1 � Households and Firms Moving in Opposite Directions

In domain AB,  households move towards A and firms to B under laissez faire, as in 
Figure 1b. Since households prefer A to B, households in A will pay firms in B. This will 
make firms move to B even faster. The households’ move to A will slow down, possibly to 
zero. Eventually, the economy will exit AB or move to its edge. With regard to the former 
option, the economy cannot cross the hh′ curve from AB into BB,   because household 
payment to firms would drop toward zero on approach of the hh′ curve. However, it might 
cross the dd′ curve from AB into AA. We shall see in subsection that the economy will then 
move back from AA into AB.

Now let us examine the edges of AB. First, when all households are in A, they will 
keep paying firms in B. If (h, f) is the laissez faire equilibrium, all firms will move to B, at 
which point households reduce their payment to zero, because firms will remain in B even 
without payment. If (h, fh) is the laissez faire equilibrium, then as we have seen in Sect. 5, 
households in A will keep paying firms in B beyond this point, crossing the dd′ curve into 
AA and reaching the positive-payment equilibrium (h, f).
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Secondly, when all firms are in B, households in A will reduce the payment to firms 
in B to zero, because the firms will stay in B even without any payment. Households will 
move from B to A until they are indifferent between A and B [laissez faire equilibrium 
(fh, h)] or until they are all in A [laissez faire equilibrium (h, f)].

By the same token, when households move towards B and firms to A under laissez faire 
(domain BA in Figures 1a and b), households in B will pay firms in A. If the economy 
remains within BA,   it will evolve toward the FH laissez faire equilibrium. The economy 
may cross dd′ into BB,  but applying the analysis that we use below for AA,  we can show 
that the economy will still end up in the FH laissez faire equilibrium.

6.2 � Households and Firms Move in the Same Direction

In this subsection we examine how payments affect the location dynamics at a certain 
point when households and firms move in the same direction under laissez faire. In Sect. 7 
we analyze the whole path to equilibrium from any starting point. We will only examine 
the domain AA where both populations initially prefer A to B. The same principles apply 
to domain BB where both prefer B to A. However, BB is usually smaller and it is more 
difficult to reach the HF equilibrium from BB than from AA.23

In AA,  firm and household payoffs are given by (11) to (14) with x = 0. Payments from 
households in A to firms in B increase firm payoff in B and decrease household payoff in A. 
Thus A becomes less attractive to both firms and households, slowing down the movement 
by both groups to A. In order to determine the direction in which the economy will move, 
we need to examine one population’s relocation speed relative to the other. From (11) to 
(15):

with:

Note that ΨA does not depend on y. Thus the relative relocation rate is monotonic in 
y. This allows us to rewrite ΨA in (33) as a function of the gross payoff differences 
ΔUk ≡ UA

k
− UB

k
, k = f , h . If ΨA > (<)0, payments increase (decrease) firms’ relocation 

speed to A relative to households’ speed.
Setting ΨA = 0 in (33) gives the locus of points where payments do not affect the 

relative relocation rates. Solving for sA
f
 yields:

d

dy

(
ṡA
f

ṡA
h

)
= 𝜌f

d

dy

(
ΔVf

ΔVh

)
=

𝜌fΨ
A

(
ΔVh

)2

(33)

ΨA
≡ − sA

h
ΔVh + nf (1 − sA

f
)ΔVf

= − sA
h

[
b(� + 1)nf (1 − sA

f
) + b�(1 − sA

h
) − (� + 1)nf s

A
f
− �sA

h

]

+ nf (1 − sA
f
)�
[
bnf (1 − sA

f
) + b(1 − sA

h
) − (nf s

A
f
+ sA

h
)
]

= − sA
h
ΔUh + nf (1 − sA

f
)ΔUf

23  For instance, if there is no laissez faire HF equilibrium (as in Figure 2), the economy can only leave the 
BB domain via dd′, after which it moves toward the FH laissez faire equilibrium.
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where the discriminant DA is:

We find that DA has its global minimum at:

Substituting this into (35) yields:

If DA > 0, there are always two solutions to ΨA = 0 in (33). Then the locus consists of an 
upper and a lower y curve. In between the curves ΨA < 0 , while ΨA > 0 above the upper 
and below the lower curve. If DA < 0, there is a range of sA

h
 for which there is no solution 

to ΨA = 0 . The locus then consists of a left-hand and a right-hand y curve outside of this 
range. Inside (outside) these curves, ΨA < (>) 0.

Lemma B1 and Proposition B1 in Appendix B give more detail on the shape of the y 
locus under different conditions. Since there are many possible scenarios, we will focus 
on two representative and distinct cases with a positive-payment equilibrium in the next 
section. Appendix B describes the two cases in detail. Figures 2 and 3 illustrate Cases 1 
and 2, respectively.24 In the light (dark) shaded areas, payments make households (firms) 

(34)sA
f
=

�
�
b + nf + 2bnf

�
− sA

h
(1 + b)(1 + 2�) ±

√
DA

2nf �(1 + b)

(35)DA
≡ (b + 1)2(4� + 1)

(
sA
h

)2
− 2�(b + 1)

(
b + nf

)
sA
h
+ �2

(
b − nf

)2

(36)sA
h
= sAD

h
≡

�(b + nf )

(b + 1)(4� + 1)

(37)DA
≥ DA

≡
4�2

4� + 1

[
�(b − nf )

2 − bnf
]

Fig. 2   Case 1: Single lais-
sez faire equilibrium 
( � =

1

5
, b =

14

3
, nf =

4

7
 ), maxi-

mum payments from households 
to firms

24  The diamonds in Figures 2 and 3 denote the stable equilibria when payments are possible, i.e. the FH 
laissez faire equilibrium and the positive-payment equilibrium C.
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move relatively faster from B to A. Note from (33) that ΨA > 0 and payments make firms 
move relatively faster if sA

h
 and ΔUh are low, and if (1 − sA

f
) and ΔUf  are high.

Case 1 features a single laissez faire equilibrium which is (fh, h). The positive-payment 
equilibrium (h, f) is in AA. The y locus in AA consists of an upper curve Ty(sA

h
) connecting 

(h,  1) with (1, y1) and a lower curve Iy(sA
h
) connecting (0,  1) with (yA, 0). In Figure  2 

illustrating Case 1, payments leave the relative speeds unchanged on the Ty and Iy curves.25 
In the area hh′y1, payments make firms move faster than households. Intuitively, since 
households only have slightly higher payoff in A than in B ( ΔUh is small) close to the hh′ 
curve, the payoff advantage of A will be affected relatively strongly when households in 
A start paying firms in B. Thus the payment will slow down households more than firms. 
In the area y0hh′CyA, payments make households move faster than firms. Intuitively, this 
area contains points close to C with many households in A and few firms in B. A high 
sA
h
 means that each firm in B will collect a large payment, making it relatively attractive 

for firms to stay in B. Moreover, a low (1 − sA
f
) means that each household in A only has 

to make a small payment, making it relatively attractive for households to move to A. 
Conversely, in the area Oy0yA there are only few households in A who can pay firms in B. 
The payment that each firm receives is rather small, which reduces firms’ speed less than it 
does households’ speed.

Case 2 features the two stable laissez faire equilibria (f, h) and (fh, f) and the positive-
payment equilibrium (h, f). The y locus in AA consists of the right-hand curve only, with 
upper branch TRy(sA

h
) and lower branch IRy(sA

h
), connecting the point (yA, 0) with the 

interior unstable laissez faire equilibrium j. In Figure 3a illustrating Case 2, payments leave 
the relative speeds unchanged on the yAj curve. In the area OhjyLyA, payments make firms 
move faster than households. This is because, as in Figure 2, this area contains points close 
to the hh′ curve where households only have a weak preference for A to begin with, and 
points where sA

h
 is low, so that each firm in B only receives a small payment. In the area 

yAyLjd′C, payments make households move faster than firms. This is because this area 

(a) (b)

Fig. 3   Case 2: Two stable laissez faire equilibria ( � =
5

9
, b =

5

3
, nf =

4

5
, �f =

3

2
 ). Panel a (left): Small pay-

ment and maximum payment from households to firms. Panel b (right): Best case scenario

25  Point y1 on Ty is just below point h′.



Payments from Households to Distant Polluting Firms﻿	

1 3

contains points close to dd′ where firms only have a weak preference for A. In addition, 
as in Figure 2, the area contains points with high sA

h
, so that each firm in B receives a large 

payment.

7 � The Path to Equilibrium

In this section we will look at the path of the economy from any starting point in AA to 
the equilibrium, given that payments from households in A to firms in B are possible. 
In Sect.  6.1 we have already analyzed this path from starting points where firms and 
households move in opposite directions. Thus this section focuses on starting points where 
firms and households move in the same direction (only to A, in order to avoid too much 
repetition) to the equilibrium or to points where they move in opposite directions.

We analyze Case 1 with a unique laissez faire equilibrium in Sect. 7.1 and Case 2 with 
multiple equilibria in Sect. 7.2. In both subsections we look at the scenario with maximum 
payments and the best case scenario. By Condition 1.2, the maximum payment that 
households will agree to pay temporarily is the one that makes them indifferent between 
A and B. The best case scenario is defined as maximizing the range of starting points that 
leads to the "good" equilibrium, implementing the global HF welfare optimum.

In Sect. 7.2 we shall also look at the effect of a small payment from households to firms. 
When there are multiple laissez faire equilibria, even a small payment might change the 
path of an economy from moving toward an FH equilibrium to moving toward an HF 
equilibrium (or vice versa).

7.1 � Case 1: Unique Laissez Faire Equilibrium

In Figure  2, recall that payments make households (firms) move relatively faster in the 
light (dark) shaded areas. Let us start with the maximum payment from households in A to 
firms in B. This payment leaves households indifferent between A and B, so that they stop 
moving.

Above the Ty curve and below the Iy curve in Figure 2, payments slow down households 
more than firms. When the payment is so large that households stop moving from B to 
A, firms are thus still moving to A. This is indicated by an upward arrow in Figure  2. 
Households in A might be disappointed that firms are still moving to A and perhaps even 
worried that the economy is moving toward the "bad" FH equilibrium. On the other hand, 
at least their payoff is increasing, because it is the same as household payoff in B, which is 
increasing because firms are leaving B.

In between the Ty and Iy curves, payments slow down firms more than households. Here, 
the payment that stops households moving from B to A is so large that firms start moving 
from A to B, a reversal of the original direction. Thus is indicated by a downward arrow 
in Figure 2. Households in A might be concerned that their payoff is decreasing, since it 
equals household payoff in B, which is decreasing because firms are moving to B. On the 
other hand, at least the movement of firms is reversed toward B and the economy appears 
to be moving toward the "good" HF equilibrium.

We distinguish three areas in AA. In the area hh′y1 in Figure 2,  firms move to A until 
the economy arrives at the hh′ locus, where households are indifferent between A and B 
without payments. After this, firms still move to A, but households start moving to B. As 
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analyzed in Sect. 6.1, the economy will end up in the laissez faire FH equilibrium (point h 
in Figure 2).

In the area yAȳAy1C in Figure 2, firms move to B until they are all there. Households in 
A will then reduce their payments to the level that is just enough to keep firms indifferent 
between A and B. This reduction in payment will induce households in B to move to A, 
as indicated by the rightward arrow in Figure 2. This continues until all households are 
in A (point C). We know from Proposition 1.1 that point C is also the positive-payment 
equilibrium, where households maximize their welfare. Thus the economy will eventually 
end up in point C,  perhaps after some further experimentation with payments.

Finally, in the area Oy0hȳAyA in Figure 2, firms move to A if sA
f
 is low (below Iy) and to 

B if sA
f
 is high (above Iy). Since by (15) the firms move with a speed proportional to their 

payoff difference, they will slow down by so much on the approach to Iy that the economy 
never actually reaches Iy. By Condition 1.2, the households in A will not agree to pay the 
maximum amount forever. There will come a moment when they reduce the payment. 
This will cause households as well as firms to move to A, a movement upward and to 
the right in Figure 2. If the economy started below Iy, this causes it to cross Iy. After a 
while, households in A will resume the maximum payment, causing the economy to move 
straight down to Iy again, but approaching it further to the right than before, as there are 
now more households in A. This process continues until the economy ends up to the right 
of yA. Eventually, as described above for the area yAȳAy1C, this will lead to the positive-
payment equilibrium C.

The whole area Oy0hy1C thus evolves to C under maximum payments. This is also 
the maximum area that can evolve to C in the best case scenario.26 This is because area 
hh′y1 cannot be made to evolve to C. In this area, payments would only make firms move 
relatively faster to A. It is inevitable that the economy hits the hh′ locus, after which it 
evolves to the FH laissez faire equilibrium.

We see that with payments, most of the area AA evolves to the "good" equilibrium 
C. This equilibrium did not even exist under laissez faire, let alone that the economy 
could evolve to it. We have also seen in Proposition 1.3 that point C cannot be reached if 
payments start from the laissez faire equilibrium FH. However, we have now seen that it 
can be reached from many points in AA.

Summarizing our results, we have:

Proposition 2  Starting in AA in Case 1, with maximum payments as well as in the best case 
scenario, all points and only the points with sA

f
< min

[
1, Ty(sA

h
)
]
 evolve to the positive-pay-

ment equilibrium (h, f).

7.2 � Case 2: Multiple Laissez Faire Equilibria

In Figure 3a, recall that payments make households (firms) move relatively faster in the 
light (dark) shaded areas. Let us first examine the effects of a small payment in AA. The 
saddle path SP(sA

h
) to the interior unstable equilibrium splits the area into points that evolve 

to HF and FH. This path is increasing in sA
h
 . By Proposition B1.1, the yAj curve is to the 

26  With a judicious choice of payments, however, it may be possible to reach C faster than with maximum 
payments.
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left of and decreasing toward the interior equilibrium j. Thus there is always an area close 
to j where the saddle path is to the right of the yAj curve. To the right of the yAj curve, 
payments make households move relatively faster to A. We conclude that points close to 
j immediately to the left of the saddle path, which would evolve to FH without payments, 
will evolve to HF with a small payment.

Let jA be the point where the saddle path intersects the sA
h
 axis:

If the point yA where the y curve intersects the sA
h
 axis is to the right of jA , as it is in 

Figure 3a, there might also be points with low sA
h
 that evolve to HF without payments, but 

to FH with a small payment.
Summarizing the effect of small payments, we have:

Proposition 3  Starting in AA in Case 2, with a small payment from households in A to 
firms in B: 

1.	 if yA ≤ jA in (38), there are starting points that switch from evolving to FH to evolving 
to HF. There are no starting points for which the opposite happens.

2.	 if yA > jA, there exists an sA∗
h

∈
[
max

(
0, jA

)
, s

Aj

h

)
 with sAj

h
 given by (30), such that for 

sA
h
≥ sA∗

h
, there are starting points that switch from evolving to FH to evolving to HF and 

there are no starting points for which the opposite happens.

Let us now consider the other extreme of the maximum payment from households in 
A to firms in B. This payment leaves households indifferent between A and B. To the left 
and above the yAj curve, firms still move from B to A, denoted by an upward arrow in Fig-
ure 3a. To the right and below the yAj curve, the payment causes firms to move from A to 
B, denoted by a downward arrow. Since the analysis is very similar to Sect. 7.1, we shall be 
brief and concentrate on the comparison with laissez faire.

Starting points in the area ȳLyLȳAjd′C in Figure 3a evolve to the payment equilibrium 
C.27 For the area ȳLyLȳAyA, the economy first moves toward IRy, then slides down IRy 
before moving to C. The saddle path SP(sA

h
) toward the interior laissez faire equilibrium 

j intersects the area ȳLyLȳAjd′C , because by Proposition B1.1, the yAj curve is to the left 
of and decreasing toward j. Thus the area contains points that would evolve to the HF 
equilibrium under laissez faire, but also points that would evolve to (f, h).

Starting points in the area OhjȳAyLȳL in Figure 3a will evolve to (f, h). Without payments, 
much of this area would also evolve to (f, h), because it is to the left of the saddle path. 
However, there could be a small triangle to the left of ȳL (as there is in Figure 3a) where 
payments would cause the economy to move to the FH equilibrium rather than the HF 
equilibrium.

The effect of maximum payments is then:

Proposition 4  In Case 2, starting from AA with maximum payments from households in A 
to firms in B: 

(38)SP(jA) = 0

27  yL is the point and ȳL is the sA
h
 value where the y curve is vertical.
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1.	 All points with sA
h
< ȳL ∪ sA

f
> TRy(sA

h
) evolve to the stable laissez faire equilibrium (f, h). 

If jA > ȳL, all these points would evolve to (f, h) under laissez faire. If jA > ȳL, points 
with sA

f
> (<) SP(sA

h
) would evolve to the FH (HF) equilibrium under laissez faire.

2.	 All points with sA
h
> ȳL ∩ sA

f
< TRy(sA

h
) evolve to the positive-payment equilibrium (h, f). 

Points with sA
f
> (<) SP(sA

h
) would evolve to the FH (HF) equilibrium under laissez faire.

Finally, we consider the best case scenario where as many starting points as possible 
evolve to the "good" equilibrium C with payments. Unlike in Sect.  7.1, there are points 
that can be made to evolve to C with a suitable strategy, although they evolve to the "bad" 
equilibrium (f, h) with maximum payments. This is illustrated in Figure 3b. We start by 
noting that the area to the right of the yAj curve can evolve to C by a suitable choice of 
payments. To the left of the saddle path, the payments should keep households moving 
to A and reverse the firms’ flow so that they move to B, steering the economy away from 
the y curve. To the right of the saddle path, the level of payments is irrelevant because the 
economy will move to C regardless.

The area to the left of the y curve is divided in two by the laissez faire path Pt(sA
h
) that is 

tangent to the y curve. This is the highest path that still has a point in common with the y 
curve. Formally, this path is defined by:

with TRy defined by (34) with the "+" sign and ṡA
k
|y=0, k = f , h, by (15) with y = x = 0.

If households in A do not pay firms in B, economies on all points below Pt will 
hit the y curve between ty and yA , from where they can be ushered to C. Somewhat 
counterintuitively, we find that in this area it is best for households not to pay firms. If they 
did, firms would move relatively faster than households, which means the economy might 
not hit the y curve anymore. In order to maximize the area that evolves to C,  households 
should not pay firms in the area below the Pt path.

The area above ty′tyj cannot be made to evolve towards C,  because households cannot 
slow down the firms’ movement toward A enough, let alone reverse it, to cross the y curve. 
The maximum possible area that can evolve from AA to C is thus the shaded area Oty′tyjd′C 
in Figure 3b. This includes the area Oty′tyyLȳL that would evolve to (f, h) under maximum 
payments28 as well as the sizable area Oty′tyjjA to the left of the saddle path that would have 
evolved to (f, h) without payments.

Summarizing the best case scenario, we have:

Proposition 5  For Case 2, starting in AA in the best case scenario, all points and only the 
points with 

{
sA
h
< t̄y ∩ sA

f
< Pt(sA

h
)
}
∪
{
sA
h
> t̄y ∩ sA

f
< TRy(sA

h
)
}

 evolve to the positive-
payment equilibrium (h, f), with Pt(sA

h
) defined by (39) .

(39)Pt(t̄y) = TRy(t̄y),
dPt(sA

h
)

dsA
h

|sA
h
=t̄y ≡

ṡA
f
|y=0

ṡA
h
|y=0

=
dTRy

(
sA
h

)

dsA
h

|sA
h
=t̄y

28  In order to keep Figure 3b legible, it does not show yL and ȳL.
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8 � Model Extensions

In this section, we discuss several extensions to the basic model: endogenous total 
emissions (Sect.  8.1), transaction costs (Sect.  8.2), a more general household utility 
function (Sect.  8.3), nonlinear environmental damage (Sect.  8.4 ) and heterogeneous 
household vulnerability to pollution, combined with incomplete information (Sect. 8.5).

8.1 � Endogenous Total Emissions

In our model, total emissions are fixed because the number of firms (the extensive margin) 
and emissions per firm (the intensive margin) are both fixed. The only way to reduce 
environmental damage is to separate firms from households. The model can be generalized 
by letting households protect themselves against pollution or pay firms to reduce their 
pollution. There are several problems with the latter option. If the firms have to invest in 
abatement equipment, it may be difficult to incentivize them in a dynamic context. A firm’s 
abatement actions and associated costs are more difficult to monitor than its location. 
Households may have to negotiate with firms about payments for abatement. Finally, 
payments for abatement as well as payments to distant firms may lead to excessive entry 
of new firms.29 If pollution is the only problem, firms make the socially optimal entry and 
exit decisions when they have to pay for the environmental damage they cause (Spulber 
1985). However, since in our model pollution gives rise to the additional problem of 
nonconvexities and multiple equilibria, it may be that payments to firms help the economy 
reach the good equilibrium. This would be analogous to compensation being better than 
taxation in Dijkstra and de Vries (2006).

8.2 � Transaction Costs

We have assumed that there are no transaction costs of organizing the payments from 
households to firms. Now, let us first assume that these transaction costs are a fixed amount. 
We have seen in Sect.  5 that in the unique positive-payment equilibrium (h,  f) where 
households in A pay firms in B, firms are indifferent between B and A, and households 
still prefer A to B. There are two cases to consider. First, if transaction costs are so large 
that households would prefer B to A, the positive-payment equilibrium no longer exists. In 
the second case, transaction costs are small enough for the positive-payment equilibrium 
to still exist. Then it may not be possible to reach this equilibrium from all starting points 
where this would be possible without transaction costs, because in many of these starting 
points (including laissez faire equilibrium (fh, f)) households have a weaker preference for 
A over B than in (h, f).

Instead of being fixed, transaction costs may be increasing in the number of households 
involved. This is especially detrimental to the existence of the positive-payment 
equilibrium, because it involves all households. Transaction costs may also be increasing in 
the rate at which households and firm relocate, because this requires adjustments to who is 
getting paid, who is paying and how much they are willing to pay. This would not affect the 
positive-payment equilibrium, but it would make it more difficult to reach this equilibrium 

29  Medema (2020, pp. 1055-6) points out that excessive entry occurs because of open access, which would 
not exist if transaction costs were truly zero.
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from starting points with high relocation rates. Finally, the transaction costs of setting up 
the payment system may be especially high. The organizers need to inform and persuade 
the households and devise a system of collecting the sums from households and paying 
them to firms. These initial costs may be so high that the payment system never happens, 
although it would increase welfare in the long run.

8.3 � Household Utility Function

We have assumed that the household’s utility function (3) is quasilinear and its subutility 
function of land (4) is the same as the firm’s profit function from land (1) with the fixed 
factor Ff = 1 . These assumptions greatly simplify the analysis. They mean that one firm 
has the same land rental demand function as one household and thus in each location, one 
household occupies the same amount of land as one firm. Furthermore, we can compare 
the number of firms to the number of households, allowing for the assumption that there 
are less firms than households (i.e. nf < 1).

As a result of the quasilinear utility function, a household’s rental demand for land 
only depends on its price. Let us now examine the impact of income effects where land 
is a normal good. Since households own all the land and the firms, income effects are 
irrelevant if all households are in the same location, making payments to firms in the 
other location, as in the (h,  f) positive-payment equilibrium. Things are different in AA,   
for instance, where the payments from households in A to firms in B ultimately end up 
equally distributed over all households across A and B. The net effect is a transfer from 
households in A to households in B. Rental land being a normal good, this leads to less 
(more) household demand for land in A (B). Land rental prices decrease in A and increase 
in B, making A relatively more attractive to firms. The income effect thus undermines the 
purpose of payments to keep firms in B.

8.4 � Nonlinear Environmental Damage

We have specified total environmental damage in area z as nf s
z

f
sz
h
 which is linear in sz

f
 and 

sz
h
. This simplifies the analysis in two ways. First, it means that payoff differences are linear 

in sz
f
 and sz

h
. Secondly, sz

f
 and sz

h
 enter the total damage function symmetrically. However, 

environmental damage might well be non-linear in the number of firms. The standard 
textbook treatment assumes strictly convex damage (leading to increasing marginal 
damage) and concave benefits (leading to decreasing marginal benefits) of emissions, 
guaranteeing a unique welfare optimum (e.g. Hanley et al. 2007, pp. 49-50, 65-67). On the 
other hand, damage in the form of visual, light and noise pollution may well be concave: 
the first wind turbine does a lot of damage, but subsequent wind turbines do not add 
much.30

In general, total environmental damage in area z can be written as sz
h
Ω(nf s

z

f
), with 

Ω� ≥ 0. Then Ω�� = 0 signifies linear damage, as before, while Ω�� < (>)0 means strictly 
concave (strictly convex) damage. Note that with nonlinear damage, payoff differences 
ΔVk will generally not be linear in sz

f
 anymore, and sz

f
 and sz

h
 do not enter the total damage 

function symmetrically anymore.

30  Dröes and Koster (2016) find that this is the effect of wind turbines on local house prices in the Nether-
lands.
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With concave (convex) damage, it becomes more (less) attractive to locate all firms 
in the same area. However, the main issue we are interested in is the effect of nonlinear 
damage on the existence of a positive-payment equilibrium. We have seen in Sect. 5 that 
there is only a positive-payment equilibrium with at least partial separation if the HF 
laissez faire equilibrium is (fh, f) or non-existent. The condition that separates the laissez 
faire equilibria (fh, f) and (h, f) is whether or not firms prefer to be in B when all households 
are in A.31 Since in laissez faire firms base their decision only on land rent prices, this 
condition has nothing to do with enviromental damage and therefore is not affected by the 
properties of the damage function. Thus, nonlinear damage does not affect the existence of 
the HF positive-payment equilibrium.

When the damage function is very convex, there can be an interior welfare optimum 
with firms and households in both locations, with the FOCs (19) and (20) as well as the 
SOCs for a welfare optimum satisfied for 0 < sA

f
, sA

h
< 1 . One area will have low land rent 

prices and high environmental damage, while the other will have high land rent prices and 
low environmental damage. Firms will be fairly evenly spread over the two locations, with 
total and marginal damage relatively low because of the very convex damage function. 
Payments from the households in the low-density, high-damage area to the firms in the 
high-density, low-damage area would be needed to implement this welfare optimum. 
However, since households are indifferent between the two locations in laissez faire,32 the 
households will not make these payments. Thus, the interior welfare optimum cannot be 
implemented with payments.

8.5 � Heterogeneous Vulnerability and Incomplete Information

We have assumed that all households are identical. Here we will explore household 
heterogeneity in their vulnerability to pollution. In population games such as the game 
studied in this paper, agents in a given population are assumed to be identical (Sandholm 
2010,  p. 3). We can then model household heterogeneity by having multiple household 
populations, for instance one with high vulnerability and one with low vulnerability to 
pollution. Welfare optima and laissez faire equilibria where households (namely the less 
vulnerable households) mix with firms would then become more prevalent. Payments from 
households to distant polluting firms would still be able to implement a welfare optimum, 
if there was complete information about the vulnerability of each household. Without this 
information, each household would claim to have low vulnerability, in order to reduce its 
payment.33 It may be easier for a government to identify a household’s vulnerability than it 
is for other households. However, households may try to avoid behaviour (such as locating 
in the less polluting area) that could mark them out as being more vulnerable, thereby 
introducing further distortions.

31  We see in Lemma 2.2 and its proof that firms are indifferent between A and B when bnf = 1.
32  As we have seen in Sect. 4, the FOC (19) for welfare to be maximized with respect to sA

h
 is the same as 

condition (23) under which households are indifferent between the two locations in laissez faire.
33  However, if the total amount of payment required is relatively low, the optimum can still be implemented 
when each household pays the amount acceptable to a less vulnerable household.
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9 � Conclusion

We have presented a model where households and polluting firms can choose from two 
locations: A and B. Households incur environmental damage from firms in the same 
location. The welfare optimum features at least partial separation. The global welfare 
optimum is HF: households in A, firms in B, and at most one location with both groups. 
This is better than FH (which could be a local optimum) because the largest group should 
be in the largest area. Laissez faire implements the (local) welfare optimum if it features 
firms in one area only.

Households in one location (say A) might hit upon the idea of paying firms in the other 
location (B). The payments will prompt firms to move from A to B and to stay there, 
thus reducing damage to households in A. We have found that there is a unique positive-
payment equilibrium which implements the HF global welfare optimum when the HF 
laissez faire equilibrium does not. However, this equilibrium cannot be reached from an 
FH laissez faire equilibrium.

It is by no means certain that payments from households in A to firms in B will set the 
economy on a path to the "good" equilibrium HF rather than the "bad" equilibrium FH. 
The crucial point to bear in mind is that these payments make A less attractive not just to 
firms, but also to households. Thus when both groups are moving from B to A, we need to 
consider carefully whether payments slow down households or firms more.

There are starting points from which the economy will evolve to the bad equilibrium, 
regardless of payments. Other starting points will only evolve to the good equilibrium with 
a specific programme of payments. The government could nudge the economy towards the 
good equilibrium by making these payments. It should be noted that the required payment 
pattern can be quite counterintuitive. It could be that at the outset it is best not to have any 
payments, so as to let the economy drift toward a point from where payments can take it to 
the good equilibrium. In this situation, payments initially only risk setting the economy on 
a path to the bad equilibrium.

We can consider our findings in light of the Coase theorem, although the setting is 
different from the usual Coasean scenario. Victims of pollution pay firms that don’t harm 
them, but this is not as a result of a contract. There is no process of bargaining between 
households and firms, but payments evolve over time as households and firms relocate and 
households learn about the effect of payments. Nevertheless, the payments create paths to 
the global welfare optimum. However, this optimum cannot be reached from all starting 
points.

When households start making payments, or are considering to do so, they may not 
have the information needed to know which path the economy will take. It would be useful 
to develop some early warning signs that the economy is on a wrong path, and what (if 
anything) the households can change to move toward the good equilibrium.

We have assumed that all households are identical and they can completely overcome 
the free rider problem when paying firms. If there is heterogeneity in this ability across 
communities, polluting firms may end up mainly in communities that are less able 
to organize themselves. If residents in these areas also tend to be poor and from ethnic 
minorities, this will fuel concerns of environmental justice (Grainger and Ruangmas 2018; 
Banzhaf et  al. 2019). A tendency for richer households to move to cleaner areas would 
further exacerbate these concerns (Chen et al. 2012; Binner and Day 2018).

We have considered three relatively straightforward scenarios for payments starting 
from a dynamic situation: a small payment, the maximum payment that leaves households 
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indifferent between A and B, and the best case scenario. In future work, we could 
consider more sophisticated scenarios, based on the households’ learning and decision 
making behaviour. Furthermore, we have only evaluated the paths in terms of their 
ultimate equilibrium. Future work could consider the whole path toward the equilibrium. 
Since payments tend to slow down households and firms, it may take longer to reach the 
equilibrium with payments. This is a disadvantage of payments that we have not considered 
in the present paper.

We have only analyzed payments starting from laissez faire, comparing them with 
laissez faire itself. Future work could analyze payments starting from other regulatory 
regimes such as taxation, compensation (both analyzed by Dijkstra and de Vries 2006), 
community-based tradable permits (Yang and Kaffine 2016) and zoning (Shertzer et  al. 
2018), and compare payments to different regulatory regimes.

When firms are required to compensate households for environmental damage, they 
might want to pay households to stay away. The results would be similar to the present 
paper, but not an exact mirror image, because there are more households than firms in the 
model. However, while local government might help households overcome free riding (as 
with the Santa Maria feedlot), it is less clear how firms would address this problem.

Appendix A Proof of Lemmas 1 and 2

Lemma 1  Part 1. The HF welfare optimum cannot be (fh, f). This would be the optimum 
if (20) could hold with sA

f
> 0 and sA

h
= 1. However, the condition for this is b𝜃nf > 1 + 𝜃, 

which is incompatible with b𝜃 < 1.

The HF welfare optimum is (h, fh) when (19) holds and 𝜕W∕𝜕sA
f
< 0 in (20) with sA

h
< 1 

and sA
f
= 0 . It is easily seen that 𝜕W∕𝜕sA

f
< 0 holds in (h,  fh), because density and land 

rental prices must be higher in A for (19) to hold. This requires that there are more house-
holds in A than in B. Thus if firms move from B to A, they move to a more crowded area 
where they cause more damage. This would reduce welfare. We then find that the HF wel-
fare optimum is (h,  fh) when (21) holds and (h,  f) when it doesn’t. HF being the global 
welfare maximum is Dijkstra and de Vries’ (2006) Proposition 6. We can invoke Dijkstra 
and de Vries’ (2006) proofs for laissez faire and welfare maximization, because our model 
is a specific version of theirs in these respects.

Part 2. The FH welfare optimum cannot be (f, fh),  because when all households are in 
B, there should be no firms in B where it is crowded and they cause environmental dam-
age. The FH welfare optimum is (fh,  h) when (19) holds and 𝜕W∕𝜕sA

f
> 0 in (20) with 

sA
h
> 0 and sA

f
= 1 . In (fh, h),  condition (19) becomes:

Solving for sA
h
:

We see that sA
h
> 0 if and only if the first condition of (22) holds. If not, households should 

not be in A and the FH welfare optimum is (f, h).

nf (� + 1) + �sA
h
= �b(1 − sA

h
)

(40)sA
h
=

b� − nf (� + 1)

�(1 + b)
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Substituting sA
f
= 1 and (40) into (20), the condition for 𝜕W∕𝜕sA

f
> 0 becomes the sec-

ond condition of (22). If this condition does not hold, moving firms to B increases welfare 
and there is no FH welfare optimum.

Part 3. This is Dijkstra and de Vries’ (2006) Proposition 5.3.

Lemma 2  Since condition (23) is the same as (19), but (24) is different from (20), laissez 
faire equilibria (f , h), (fh, h), (h, f ) and (h,  fh) implement a (local) welfare optimum, if it 
exists. This is because they all feature all firms in one location. For stability, see Dijkstra 
and de Vries’ (2006) Proposition 4. The remainder of the proof is as follows.

Part 1. The FH equilibrium cannot be (f, fh), because with all households in B, firms 
would prefer A to B.

In the (fh, h) equilibrium, sA
h
> 0 if (25) does not hold. For households to be indifferent 

between A and B, density and land rental prices must be lower in A. Thus, firms always 
prefer A.

Part 2. The first inequality of (28) for HF equilibrium (h, f) ensures that households pre-
fer to be in A by (13) and (14) and the second ensures that firms prefer B by (11) and (12).

In the HF equilibrium (fh, f), firms are indifferent between A and B. From (11) and (12) 
this implies:

so that:

Thus sA
f
> 0 implies bnf > 1 , which is (31) as well as the first inequality of (29).

Households prefer to be in A, which from (13) and (14) implies:

Substituting (41), the inequality holds if and only if the second inequality of (29) holds.

In the (fh,  f) equilibrium, bnf > 1 − nf∕𝜃 by (31). By Lemma 1.1, the global welfare 
optimum is (h, f) in this case.

Reviewing conditions (27) to (29), we see that there is only an HF equilibrium if (26) 
holds.

Part 3. Solving (23) and (24) yields (30). The condition for sAj
h
< 1 is (26).

nf s
A
f
+ 1 = bnf (1 − sA

f
)

(41)sA
f
=

bnf − 1

nf (1 + b)

(42)(𝜃 + 1)nf s
A
f
+ 𝜃 < (b𝜃 + 1)nf (1 − sA

f
)
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Appendix B. The y Locus

In this Appendix we analyze the y locus given by (34) as the solution to ΨA = 0 in (33). 
This locus contains all the points in AA where payments from households in A to firms 
in B do not change the relocation speed of firms relative to households.

Lemma B1  Only the following points on the edges of AA satisfy ΨA = 0 in (33): 

1.	 the point (yA, 0). This point always exists.
2.	 the point (1, y1). This point exists if and only if (26) does not hold.
3.	 the interior equilibrium j where ΔUh = ΔUf = 0, with slope y′ negative but flatter than 

hh′. This point exists if and only if (26) holds.
4.	 the point (h, 1),  where ΔUh = 0 and sA

f
= 1, with slope y′ negative and steeper than hh′, 

or positive. This point exists if and only if (25) does not hold.
5.	 the point (0, 1),  where sA

h
= 0 and sA

f
= 1, with slope y′ < 0. This point exists if and only 

if (25) does not hold.

Proof  Part 1. Since (33) is a quadratic function, there can be at most two (yA, 0) points in 
AA. For all sA

f
= 0, define yA

f
 as the payment from each household in A to each firm in B 

such that firms are indifferent between A and B. From (11) and (12):

If the households’ location preference is different for the minimum sA
h
 than for the 

maximum sA
h
, then there is exactly one (yA, 0) point in AA.

For the minimum sA
h
, as sA

h
 goes to zero,   yA

f
 in ( 43) goes to infinity, and households 

prefer B to A.
The maximum sA

h
 in AA is d′ if (d�, 0) exists and 1 if it does not (if (h�, 0) exists, it is to 

the right of (d�, 0) ). At d′ , yA
f
= 0 and households prefer A to B.

If the maximum sA
h
 is 1, then bnf > 1 by Lemma 2.2 and yA

f
= �

(
bnf − 1

)
 by (43). From 

(13) and (14):

Thus ΔVh = nf + 𝜃
(
1 − nf

)(
bnf − 1

)
> 0.

Since ΔVh < 0 at sA
h
→ 0 and ΔVh > 0 at the maximum sA

h
, there is exactly one point 

(yA, 0) on the y curve in AA.
Part 2. First note that by Lemma 2.2, (1, y1) only exists in AA if bnf > 1.Since (33) is a 

quadratic function, there can be at most two (1, y1) points in AA. For all sA
h
= 1, define yA

f
 

as the payment from each household in A to each firm in B such that firms are indifferent 
between A and B. From (11) and (12):

If the households’ location preference is different for sA
f
= 0 than for s̄A

f
∈ (0, 1], then there 

is exactly one (1, y1) point with y1 ∈ (0, s̄A
f
).

For sA
f
= 0, ΔVh > 0 as we have seen in the proof of Part 1.

(43)−�sA
h
= −b�(nf + 1 − sA

h
) + yA

f
sA
h

VA
h
= −� − �nf (bnf − 1) VB

h
= −(b� + 1)nf

−�(nf s
A
f
+ 1) = −b�nf (1 − sA

f
) + y1

f
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By Lemma  2.2, if bnf > 2 + nf , the maximum sA
f
 in AA is at point h′ with ΔUh = 0 . 

Then y1
f
> 0 there and ΔVh < 0. Since ΔVh > 0 at sA

f
= 0 and ΔVh < 0 at the maximum sA

f
, 

there is exactly one point (1, y1) on the y curve in AA.
By Lemma 2.2, if 1 < bnf < 2 + nf  , the maximum sA

f
 in AA is at point d′ with ΔUf = 0 . 

Then y1
f
= 0 there and ΔVh > 0. Then there are no or two points (1, y1) on the y curve in 

AA. However at (1, 1), the total payment from households in A to firms in B would be zero, 
because there are no firms in B. Then ΔVh < 0. This means there must be a point (1, y1) 
outside of AA. Then there cannot be a point (1, y1) in AA.

Part 3. By (33), the only point on dd′ with ΔUf = 0  where ΨA = 0 is the interior 
equilibrium j where ΔUh = 0 as well (Note that a point (0, d) with sA

h
= 0, ΔUf = 0 and 

sA
f
< 1 cannot exist). By Lemma 2.4, point j exists if and only if (26) holds.
From (33), the slope y′ of a y curve is implicitly given by:

When ΔUf = ΔUh = 0 , this becomes:

Substituting sAj
h

 and sAj
f

 from (30) yields:

Comparing y�(j) to the slope of hh′ from (23) yields:

Thus y(j) is flatter than hh′.
Part 4. By (33), the only point on hh′ with ΔUh = 0 where ΨA = 0 apart from point j 

(see Part 3) is point (h, 1) with sA
f
= 1. By Lemma 2.1, this point exists if and only if (25) 

does not hold.
For y′, (44) in (h, 1) becomes:

Substituting for ΔUf  from (33) and solving for y′ yields:

Substituting (40), we obtain:

(44)
−ΔUh + sA

h
(b + 1)

[
� + (� + 1)nf y

�
]
− nfΔUf y

� − �nf (1 − sA
f
)(b + 1)

[
1 + nf y

�
]
= 0

y�(j) =
�

(
nf (1 − s

Aj

f
) − s

Aj

h

)

nf

(
(� + 1)s

Aj

h
− �nf (1 − s

Aj

f
)
)

y�(j) = −
2𝜃(b − nf )

nf (b + 1)
(
2𝜃 − nf 𝜃 + 2

) < 0

−
2𝜃(b − nf )

nf (b + 1)
(
2𝜃 − nf 𝜃 + 2

) +
𝜃

(𝜃 + 1)nf
=

𝜃
(
2nf + 2𝜃 + 𝜃nf − b𝜃nf + 2

)

nf (𝜃 + 1)(b + 1)
(
2𝜃 − nf 𝜃 + 2

) > 0

sA
h
(b + 1)

[
� + (� + 1)nf y

�
]
− nf �ΔUf y

� = 0

y� =
sA
h
(b + 1)�(

−sA
h
(b + 1)(� + 1) + �

[
b(1 − sA

h
) − (nf + sA

h
)
])
nf

y� =
�
(
b� − nf (� + 1)

)

nf
[
�nf −

(
b� − nf (� + 1)

)
(� + 1)

]
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The sign of the RHS is the sign of the term between square brackets in the denominator. If 
this term is negative, we can show that the y curve is steeper than hh′ in (23):

This is because cross-multiplying and simplifying yields:

Part 5. By (33), the only point where ΨA = 0 with sA
f
= 1 apart from point (h, 1) (see Part 

4) is point (0, 1) with sA
h
= 1, sA

f
= 0. By Lemma 2.1, this point lies in AA if and only if 

(25) does not hold.
For y′, (44) in (0, 1) becomes:

Since ΔUh > 0 and ΔUf > 0 in AA,  the slope y′ must be negative. 	�  ◻

Proposition B1 

1.	 If and only if (26) does not hold, there exists a unique y1 such that (1, y1) is on a y curve 
in AA.

2.	 If and only if (26) holds so that an interior equilibrium j exists, j is on a y curve with 
negative slope, but flatter than hh′.

3.	 If the FH laissez faire equilibrium is (f, h), the y locus in AA consists of the right-hand 
curve only, connecting the point (yA, 0) with (1, y1) or with j.

4.	 If the FH laissez faire equilibrium is (fh, h), there are two y curves in AA. 

(a)	 If DA < 0 in (37), the left-hand curve connects (0, 1) with (h, 1) and the right-hand 
curve connects (yA, 0) with (1, y1) or with j.

(b)	 If DA > 0 in (37), the lower curve connects (0, 1) with (yA, 0) and the upper curve 
connects (h, 1) with (1, y1) or with j.

Proof  For the proof of Parts 1 and 2, see Lemma B1.2 and 3 respectively.
Part 3. When the FH equilibrium is (f, h),  condition (25 ) holds. Then by Lemma B1, 

there are only two points on the edge of AA: (yA, 0) and either (1, y1) or j. There can then 
only be one y curve. Since condition (25) for (f, h) implies DA < 0 in (37), this is either 
the left-hand or the right-hand curve. It is the right-hand curve because (1, y1) is to the 
Northwest of (yA, 0) and the y curve is decreasing at j.

Part 4. When the FH equilibrium is (fh,  h),   condition (25 ) does not hold. Then by 
Lemma B1, there are four points on the edge of AA: (yA, 0), (h, 1), (0, 1) and either (1, y1) or 
j. These points cannot all be part of the same left-hand or right-hand curve. This is because 
from (36) the point sAD

h
 where DA in (35) has its minimum satisfies 0 < sAD

h
< 1 (the second 

inequality follows from nf < 1). This means that the whole left-hand curve lies to the left 
of sA

h
= 1 and the whole right-hand curve lies to the right of sA

h
= 0. Thus there are always 

two y curves, either left-hand and right-hand or upper and lower. 	�  ◻

𝜃
(
b𝜃 − nf (𝜃 + 1)

)

nf
[
𝜃nf −

(
b𝜃 − nf (𝜃 + 1)

)
(𝜃 + 1)

] < −
𝜃

nf (𝜃 + 1)

[
b𝜃 − nf (𝜃 + 1)

]
(𝜃 + 1) >

[
b𝜃 − nf (𝜃 + 1)

]
(𝜃 + 1) − 𝜃nf

−ΔUh − nfΔUf y
� = 0
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Since there are many possible scenarios, we focus on two representative and distinct 
caes with a positive-payment equilibrium in Sect. 7:

Case 1 

1.	 Inequality (26) does not hold, so that: 

(a)	 by Lemma 2.2, there is no HF laissez faire equilibrium,
(b)	 inequality (31) holds and the positive-payment equilibrium (h,  f) exists by 

Proposition 1.1 and is in AA by Proposition 1.2.

2.	 𝜃(b − nf )
2 > bnf  so that: 

(a)	 inequality (25) does not hold and the FH laissez faire equilibrium is (fh, h) by 
Lemma 2.1,

(b)	 DA > 0 in (37) and the y locus consists of an upper curve Ty(sA
h
) connecting 

(h, 1) with (1, y1) and a lower curve Iy(sA
h
) connecting (0, 1) with (yA, 0) by 

Propositions B1.1 and B1.4b.

Case 2 

(a)	 Inequality (29) holds, so that: 

(a)	 by Lemma 2.2, there is an (fh, f) laissez faire equilibrium,
(b)	 inequality (31) holds and the positive-payment equilibrium (h,  f) exists by 

Proposition 1.1.

(c)	 Inequality (25) holds, so that: 

(a)	 by Lemma 2.1, the FH laissez faire equilibrium is (f, h), 
(b)	 by Propositions B1.2 and B1.3, the y locus in AA consists of the right-hand curve 

only, with upper branch TRy(sA
h
) and lower branch IRy(sA

h
), connecting the point 

(yA, 0) with j.

Appendix C. Laissez Faire Saddle Path

In laissez faire, the system of dynamic equations is, from (11) to ( 15) with x = y = 0:

with � ≡ �(1 + b) . The eigenvalues of the 2x2 matrix on the RHS are:

with eigenvector 
(
�1 1

)′ where:

(45)
(
ṡA
f

ṡA
h

)
=

(
−𝜌f nf 𝛾 − 𝜌f 𝛾

−nf (𝛾 + 2) − 𝛾

)(
sA
f

sA
h

)
+

(
𝜌f 𝜃(1 + nf )b

𝜃(1 + nf )b + nf

)

(46)r1 = −
1

2

√
𝛾

�
(1 + 𝜌f nf )

√
𝛾 +

�
𝛾(𝜌f nf + 1)2 + 8𝜌f nf

�
< 0
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and

with eigenvector 
(
�2 1

)′ where

The solution to (45) is then:

with r1,�1, r2 and �2 given by (46) to (49).
On the saddle path, C2 = 0 in (50). Solving for sA

f
 as a function of sA

h
 then yields:
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