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Abstract Image-based plant phenotyping is a growing
application domain of computer vision in agriculture. A
key task is the segmentation of all individual leaves in im-
ages. Here we focus on the most common rosette model
plants Arabidopsis and young tobacco. Although leaves
do share appearance and shape characteristics, the pres-
ence of occlusions and variability in leaf shape and pose,
as well as imaging conditions, render this problem chal-
lenging. The aim of this paper is to compare several leaf
segmentation solutions on a unique and first of its kind
dataset containing images from typical phenotyping ex-
periments. In particular, we report and discuss meth-
ods and findings of a collection of submissions for the
first Leaf Segmentation Challenge (LSC) of the Com-
puter Vision Problems in Plant Phenotyping (CVPPP)
workshop in 2014. Four methods are presented: three
segment leaves via processing the distance transform in
an unsupervised fashion, and the other via optimal tem-
plate selection and Chamfer matching. Overall, we find
that although separating plant from background can be
achieved with satisfactory accuracy (>90% Dice score),
individual leaf segmentation and counting remain chal-
lenging when leaves overlap. Besides, accuracy is lower
for younger leaves. We find also that variability in datasets
does affect outcomes. Our findings motivate further in-
vestigations and development of specialized algorithms
for this particular application, and that challenges of
this form are ideally suited for advancing the state of
the art. Data are publicly available (http://www.plant-
phenotyping.org/CVPPP2014-dataset) to support fu-
ture challenges beyond segmentation within this appli-
cation domain.
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segmentation · machine learning
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1 Introduction

The study of a plant’s phenotype, i.e., its performance
and appearance, in relation to different environmental
conditions is central to understanding plant function.
Identifying and evaluating phenotypes of different cul-
tivars (or mutants) of the same plant species, are rele-
vant to, e.g., seed production and plant breeders. One
of the most sought-after traits is plant growth, i.e., a
change in mass, which directly relates to yield. Biolo-
gists grow model plants, such as Arabidopsis (Arabidop-
sis thaliana) and tobacco (Nicotiana tabacum), in con-
trolled environments and monitor and record their phe-
notype to investigate general plant performance. While
previously such phenotypes were annotated manually by
experts, recently image-based nondestructive approaches
are gaining attention among plant researchers to measure
and study visual phenotypes of plants [24,28,41,55].

In fact, most experts now agree that lack of reliable
and automated algorithms to extract fine-grained infor-
mation from these vast datasets forms a new bottleneck
in our understanding of plant biology and function [39].
We must accelerate the development and deployment of
such computer vision algorithms, since according to the
Food and Agriculture Organization of the United Na-
tions (FAO), large-scale experiments in plant phenotyp-
ing are a key factor in meeting agricultural needs of the
future, one of which is increasing crop yield for feeding
11 billion people by 2050.

Yield is related to plant mass and the current gold
standard for measuring mass is weighing the plant, how-
ever this is invasive and destructive. Several specialized
algorithms have been developed to measure whole-plant
properties and particularly plant size [6,17,25,27,31,40,
55,61]. Nondestructive measurement of a plant’s pro-
jected leaf area (PLA), i.e., the counting of plant pix-
els from top-view images, is considered a good approx-
imation of plant size for rosette plants and is currently
used. However, when considering growth, PLA reacts rel-
atively weakly, as it includes growing and non-growing
leaves, but the per leaf derived growth (implying a per
leaf segmentation), has a faster and clearer response.
Thus, for example, growth regulation [5] and stress situ-
ations [28] can be evaluated in more detail. Additionally,
since growth stages of a plant are usually based on the
number of leaves [15], an estimate of leaf count as pro-
vided by leaf segmentation is beneficial.

However, obtaining such refined information at the
individual leaf level (as for example in [56]), which could
help us identify even more important plant traits, from
a computer vision perspective is particularly challeng-
ing. Plants are not static, but self-changing organisms
with complexity in shape and appearance increasing over
time. In the range of hours leaves move and grow, with
the whole plant changing over days or even months, in
which the surrounding environmental (as well as mea-
surement) conditions may also vary.

Fig. 1: Example images of Arabidopsis and tobacco from
the datasets used in this study [48].

Considering also the presence of occlusions, it is not
surprising that the segmentation of leaves from single
view images (a multi-instance image segmentation prob-
lem), remains an unsolved problem even in the controlled
imaging of model plants. Motivated by this we organized
the Leaf Segmentation Challenge (LSC) of the Computer
Vision Problems in Plant Phenotyping (CVPPP 2014)
workshop,1 held in conjunction with the 13th European
Conference on Computer Vision (ECCV), to assess the
current state of the art.

This paper offers a collation study and analysis of
several methods from the LSC challenge but also from
the literature. We briefly describe the annotated dataset,
the first of its kind, that was used to test and evaluate
the methods for the segmentation of individual leaves in
image-based plant phenotyping experiments (see Figure
1 and also [48]). Color images in the dataset show top-
down views on rosette plants. Two datasets show differ-
ent cultivars of Arabidopsis (A. thaliana) while another
one shows tobacco (N. tabacum) under different treat-
ments. We manually annotated leaves in these images
to provide ground-truth segmentation and defined ap-
propriate evaluation criteria. Several methods are briefly
presented in a dedicated section and in the results section
we discuss and evaluate each method.

The remainder of this article is organized as follows:
Section 2 offers a short literature review, while Section 3
defines the adopted evaluation criteria. Section 4 presents

1 http://www.plant-phenotyping.org/CVPPP2014



Leaf segmentation in plant phenotyping: A collation study 3

the datasets and annotations used to support the LSC
challenge, which is described in Section 5. Section 6 de-
scribes the methods compared in this study, with their
performance and results discussed in Section 7. Finally,
Section 8 offers conclusions and outlook.

2 Related work

At first glance the problem of leaf segmentation appears
similar to leaf identification and isolated leaf segmenta-
tion (see e.g. [12–14,30,50,59]), although as we will see
later it is not. Research on these areas has been moti-
vated by several datasets showing leaves in isolation cut
from plants and imaged individually, or showing leaves
on the plant but with a leaf encompassing a large field
of view (e.g., by imaging via a smart phone application).
This problem has been addressed in an unsupervised [50,
59], shape-based [13,14,30], and interactive [12–14] fash-
ion.

However, the problem at hand is radically different.
The goal, as the illustrative example of Figure 1 shows,
is not to identify the plant species (usually known in
this context) but to segment accurately each leaf in an
image showing a plant. This multi-instance segmenta-
tion problem is exceptionally complex in the context of
this application. This is due to the variability in shape,
pose, and appearance of leaves, but also due to lack of
clearly discernible boundaries among overlapping leaves
with typical imaging conditions where a top-view fixed
camera is used. Several authors have dealt with the seg-
mentation of a live plant from background to measure
growth using unsupervised [17,25] and semi-supervised
methods [36], but not of individual leaves. The use of
color in combination with depth images or multiple im-
ages for supervised or unsupervised plant segmentation
is also common practice [4,10,29,46,49,51,52,57].

Several authors have considered leaf segmentation in
a tracking context, where temporal information is avail-
able. For example, Yin et al. [61] segment and track
the leaves of Arabidopsis in fluorescence images using
a Chamfer-derived energy functional to match available
segmented leaf templates to unseen data. Dellen et al. [18]
use temporal information in a graph based formulation
to segment and track leaves in a high spatial and tempo-
ral resolution sequence of tobacco plants. Aksoy et al. [3]
track leaves over time, merging segments derived by su-
perparametric clustering by exploiting angular stability
of leaves. De Vylder et al. [16] use an active contour
formulation to segment and track Arabidopsis leaves in
time-lapse fluorescence images.

Even in the general computer vision literature, this
type of similar appearance, multi-instance problem is not
well explored. Although several interactive approaches
exist [23,42], user interaction inherently limits through-
put. Therefore, here we discuss automated learning-based
object segmentation approaches, which might be adapt-

able to leaf segmentation. Wu and Nevatia [58] present
an approach that detects and segments multiple, par-
tially occluded objects in images, relying on a learned,
boosted whole-object segmentor and several part detec-
tors. Given a new image, pixels showing part responses
are extracted and a joint likelihood estimation inclu-
sive of inter-object occlusion reasoning is maximized to
obtain final segmentations. Notably, they test their ap-
proach on classical pedestrians datasets, where appear-
ance and size variation does exist, so in leaf segmenta-
tion where neighboring leaves are somewhat similar this
approach might yield less appealing results. Another in-
teresting work [47] relies on Hough voting to jointly de-
tect and segment objects. Interestingly, beyond pedes-
trian datasets they also use a dataset of house windows
where appearance and scale variation is high (as is com-
mon also in leaves), but they do not overlap. Finally,
graphical methods have also been applied to resolve and
segment overlapping objects [26], and were tested also
on datasets showing multiple horses.

Evidently, till now the evaluation and development of
leaf segmentation algorithms using a common reference
dataset of individual images without temporal informa-
tion is lacking, and is the main focus of this paper.

3 Evaluation measures

Measuring multi-object segmentation accuracy is an ac-
tive topic of research with several metrics previously pro-
posed [33–35,44]. For the challenge and this study, we
adopted several evaluation criteria and devised Matlab
implementations. Some of these metrics are based on the
Dice score of binary segmentations:

Dice (%) =
2|P gt ∩ P ar|
|P gt|+ |P ar|

, (1)

measuring the degree of overlap among ground truth P gt

and algorithmic result P ar binary segmentation masks.
Overall, two groups of criteria were used. To evaluate

segmentation accuracy we used:

– Symmetric Best Dice (SBD), the symmetric aver-
age Dice among all objects (leaves), where for each
input label the ground truth label yielding maximum
Dice is used for averaging, to estimate average leaf
segmentation accuracy. Best Dice (BD) is defined as:

BD(La, Lb) =
1

M

M∑
i=1

max
1≤j≤N

2|La
i ∩ Lb

j |
|La

i |+ |Lb
j |
, (2)

where |·| denotes leaf area (number of pixels), and La
i

for 1 ≤ i ≤ M and Lb
j for 1 ≤ j ≤ N are sets of leaf

object segments belonging to leaf segmentations La
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and Lb, respectively. SBD between Lgt, the ground
truth, and Lar, the algorithmic result, is defined as:

SBD(Lar, Lgt) =

min
{

BD(Lar, Lgt), BD(Lgt, Lar)
}
. (3)

– Foreground-Background Dice (FBD), the Dice score
of the foreground mask (i.e., the whole plant assum-
ing the union of all leaf labels), to evaluate a de-
lineation of a plant from the background obtained
algorithmically with respect to the ground truth.

We should note that we also considered the Global Con-
sistency Error (GCE) [34] and Object-level Consistency
Error (OCE) [44] metrics, which are suited for evaluat-
ing segmentation of multiple objects. However, we found
that they are harder to interpret and that the SBD is
capable of capturing relevant leaf segmentation errors.

To evaluate how good an algorithm is in identifying
the correct number of leaves present, we relied on:

– Difference in Count (DiC), the number of leaves
in algorithm’s result minus the ground truth:

DiC = #Lar −#Lgt . (4)

– |DiC|, the absolute value of DiC.

In addition to the metrics adopted for the challenge,
in Section 7.5 we augment our evaluation with metrics
that prioritize leaf shape and boundary accuracy.

4 Leaf data and manual annotations

4.1 Imaging setup and protocols

We devised imaging apparatuses, setups, and experiments
emulating typical phenotyping experiments, to acquire
three imaging datasets, summarized in Table 1, to sup-
port this study. They were acquired in two different labs
with highly diverse equipment. Detailed information is
available in [48], but brief descriptions are given below
for completeness.

Arabidopsis data: Arabidopsis images were acquired
in two data collections, in June 2012 and in September-
October 2013, hereafter named Ara2012 and Ara2013,
respectively, both consisting of top-view time-lapse im-
ages of several Arabidopsis thaliana rosettes arranged in
trays. Arabidopsis images were acquired using two setups
for investigating affordable hardware for plant phenotyp-
ing.2 Images were captured during day time only, every
6 hours over a period of 3 weeks for Ara2012, and every
20 minutes over a period of 7 weeks for Ara2013. Two
cameras were used: a 7 megapixel commercial grade cam-
era (Canon PowerShot SD1000), shorthanded as Canon,
and an even lower cost system based on the Rasberry

2 http://www.phenotiki.com

Pi, Model B, with the Rasberry Pi 5 megapixel camera
module. In this study only Canon data are used.

Acquired raw images (3108×2324 pixels, pixel size of
∼ 0.167 mm) were first developed into an uncompressed
(TIFF) format, and subsequently encoded using the loss-
less compression standard available in the PNG file for-
mat [54].

Tobacco data: Tobacco images were acquired using
a robotic imaging system for the investigation of auto-
mated plant treatment optimization by an artificial cog-
nitive system.3 The robot head consisted of two stereo
camera systems, black-and-white and color, each consist-
ing of 2 Point-Grey Grashopper cameras with 5 megapixel
(2448×2048, pixel size 3.45µm) resolution and high qual-
ity lenses (Schneider Kreuznach Xenoplan 1.4/17-0903).
We added lightweight white and NIR LED light sources
to the camera head.

Using this setup, each plant was imaged separately
from different but fixed poses. In addition, for each pose
small baseline stereo image pairs were captured using
each single camera, respectively, by a suitable robot move-
ment, allowing for 3D reconstruction of the plant. For the
top view pose, distance between camera center and top
edge of pot varied between 15 cm and 20 cm for differ-
ent plants, but being fixed per plant, resulting in lateral
resolutions between 20 and 25 pixel/mm.

Data used for this study stemmed from experiments
aiming at acquiring training data and contained a sin-
gle plant imaged directly from above (top-view). Images
were acquired every hour, 24/7, for up to 30 days.

4.2 Selection of data for training and testing

As part of the benchmark data for the LSC we released
three datasets, named respectively ‘A1’, ‘A2’, and ‘A3’,
consisting of single-subject images of Arabidopsis and
tobacco plants, each accompanied by manual annotation
(discussed in the next section) of plant and leaf pixels.
Examples are shown in Figure 1.

From the Ara2012 dataset, to form the ‘A1’ dataset
we extracted (by cropping) from tray images, 161 indi-
vidual plant images (500×530 pixels), spanning a period
of 12 days. Additional 40 images (530×565 pixels) form
‘A2’, which were extracted from the Ara2013 dataset
spanning a period of 26 days. From the tobacco data-
set, to form the ‘A3’ dataset we extracted 83 images
(2448×2048 pixels). Each dataset was split into training
and testing sets for the challenge (cmp. Section 5).

The data differ in resolution, fidelity, and scene com-
plexity, with plants appearing in isolation or together
with other plants (in trays), with plants belonging to
different cultivars (or mutants), and subjected to differ-
ent treatments.

Due to the complexity of the scene and of the plant
objects, the datasets present a variety of challenges with

3 http://www.garnics.eu/
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Table 1: Summary of information of the Arabidopsis and tobacco experiments providing the three datasets.

Experiment Subjects Wild- Mutants Period Image Field Per Plant
types (days) resolution of view resolution

Ara2012 19 Col-0 No 21 7 MPixel whole tray 0.25 MPixel
Ara2013 24 Col-0 Yes (4) 49 7 MPixel whole tray 0.25 MPixel

Tobacco (23.01.2012) 20 Samsun No 18 5 MPixel single plant 5 MPixel
Tobacco (16.02.2012) 20 Samsun No 20 5 MPixel single plant 5 MPixel
Tobacco (15.05.2012) 20 Samsun No 18 5 MPixel single plant 5 MPixel
Tobacco (10.08.2012) 20 Samsun No 30 5 MPixel single plant 5 MPixel

respect to analysis. Since our goal was to produce a good
variety of images, images corresponding to several chal-
lenging situations were included.

Specifically, in ‘A1’ and ‘A2’, occasionally, a layer of
water in the tray due to irrigation causes reflections. As
the plants grow, leaves tend to overlap, resulting in se-
vere leaf occlusions. Nastic movements (a movement of
a leaf usually on the vertical axis) make leaves appear
of different shape and size from one time instant to an-
other. In ‘A3’ beneath shape changes due to nastic move-
ments, also different leaf shapes appear due to differ-
ent treatments. Under high illumination conditions (one
of the treatment options in the Tobacco experiments),
plants stay more compact with partly wrinkled leaves,
severely overlapping. Under lower light conditions, leaves
are more round and larger.

Furthermore, ‘A1’ presents a complex and changing
background, which could complicate plant segmentation.
A portion of the scene is slightly out of focus (due to
the large field of view) and appears blurred, and some
images include external objects such as tape or other
fiducial markers. In some images, certain pots have moss
on the soil, or have dry soil and appear yellowish (due
to increased ambient temperature for a few days). ‘A2’
presents a simpler scene (e.g., more uniform background,
sharper focus, without moss); however, it includes mu-
tants with different phenotypes related to rosette size
(some genotypes produce very small plants) and leaf ap-
pearance with major differences in both shape and size.

‘A3’ presents much higher image resolution, making
computational complexity more relevant. Additionally,
in ‘A3’ plants undergo a wide range of treatments chang-
ing their appearance dramatically, while Arabidopsis is
known to have different leaf shape among mutants. Fi-
nally, self-occlusion, shadows, leaf hairs, leaf color varia-
tions and others, make the scene even more complex.

4.3 Annotation strategy

Figure 2 depicts the procedure we followed to anno-
tate the image data. In the first place, we obtained a
binary segmentation of the plant objects in the scene
in a computer-aided fashion. For Arabidopsis, we used
the approach based on active contours described in [36],
while for tobacco, a simple color-based approach for plant

Original Image Plant Segmentation Leaf Segmentation

Fig. 2: Schematic of the workflow to annotate the images.
Plants were first delineated in the original image, then
individual leaves were labeled.

segmentation was used. The result of this segmentation
was manually refined using raster graphics editing soft-
ware. Next, within the binary mask of each plant, we
delineated individual leaves, following an approach com-
pletely based on manual annotation. A pixel with black
color denotes background, while all other colors are used
to uniquely identify the leaves of the plants in the scene.
Across the frames of the time-lapse sequence, we consis-
tently used the same color code to label the occurrences
of the same leaf. The labeling procedure involved always
two annotators to reduce observer variability, one anno-
tating the dataset and one inspecting the other.

Note that LSC did not involve leaf tracking over time,
therefore all individual plant images were considered sep-
arately, ignoring any temporal correspondence.

4.4 File types and naming conventions

Plant images were encoded using the lossless PNG [54]
format and their dimensions varied. Plant objects ap-
peared centered in the (cropped) image. Segmentation
masks were image files encoded as indexed PNG, where
each segmented leaf is identified with a unique (per im-
age) integer value, starting from ‘1’, whereas ‘0’ denotes
background. The union of all pixel labels greater than
zero provides the ground truth plant segmentation mask.
A color index palette was included within the file for vi-
sualization reasons. The filenames have the form:

– plantXXX_rgb.png: the original RGB color image;
– plantXXX_label.png: the labeled image;

where XXX is an integer number. Note that plants were
not numbered continuously.
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5 CVPPP 2014 LSC challenge outline

The LSC challenge was organized by two of the authors
(HS and SAT), as part of the CVPPP workshop, which
was held in conjunction with the European Conference
on Computer Vision (ECCV), in Zürich, Switzerland,
in September 2014. Electronic invitations for participa-
tion were communicated to a large number of researchers
working on computer vision solutions for plant pheno-
typing and via computer vision and pattern recognition
mailing lists and several phenotyping consortia and net-
works such as DPPN,4 IPPN,5 EPPN,6 iPlant.7 Inter-
ested parties were asked to visit the website and register
for the challenge after agreeing to rules of participation
and providing contact info via an online form.

Overall, 25 teams registered for the study and down-
loaded training data, 7 downloaded testing data, and fi-
nally 4 submitted manuscript and testing results for re-
view at the workshop. For this study we invited several
of the participants (see Section 6).

5.1 Training phase

An example preview of the training set (i.e., one example
image from each of the three datasets as shown in Fig-
ure 1) was released in March 2014 on the CVPPP 2014
website. The full training set, consisting of color images
of plants and annotations, was released in April 2014.

A total of 372 PNG images were available in 186 pairs
of raw RGB color images and corresponding annotations
in the form of indexed images, namely 128, 31, and 27
images for ‘A1’, ‘A2’, and ‘A3’, respectively. Images of
many different plants were included at different time
points (growth stages). Participants were unaware of any
temporal relationships among images, and were expected
to treat each image in an individual fashion. Partici-
pants were allowed to tailor pipelines to each dataset
and could choose supervised or unsupervised methods.
Matlab evaluation functions were also provided to help
participants assess performance on the training set using
the criteria discussed in Section 3. We should note that
data and evaluation script are in the public domain.8

5.2 Testing phase

We released 98 color images for testing (i.e., 33, 9, and
56 for ‘A1’, ‘A2’, and ‘A3’, respectively) and kept the re-
spective label images hidden. Images here corresponded
to plants at different growing stage (with respect to those

4 http://www.dppn.de/
5 http://www.plant-phenotyping.org/
6 http://www.plant-phenotyping-network.eu/
7 http://www.iplantcollaborative.org/
8 http://www.plant-phenotyping.org/CVPPP2014-

dataset

included in the training set) or completely new and un-
seen plants. Again this was unknown to the participants.
A short testing period was allowed: the testing set was
released on June 9, 2014, and authors were asked to sub-
mit their results by June 17, 2014, and accompanying
papers by June 22, 2014.

In order to assess the performance of their algorithm
on the test set, participants were asked to email to the
organizers a ZIP archive following a predefined folder/file
structure that enabled automated processing of the re-
sults. Within 24 hours all participants who submitted
testing results received their evaluation using the same
evaluation criteria as for training, as well as summary
tables in LATEX and also individual per image results in
a CSV format. Algorithms and the papers were subject
to peer review and the leading algorithm [43] presented
at the CVPPP workshop.

6 Methods

We briefly present the leaf segmentation methods used in
this collation study. We include methods not only from
challenge participants but also others for completeness
and for offering a larger view of the state of the art.
Overall, three methods rely on post-processing of dis-
tance maps segment leaves, while one uses a database of
templates which are matched using a distance metric.
Each method’s description aims to provide an under-
standing of the algorithms, and wherever appropriate we
offer relevant citations to background for readers seeking
additional information.

Please note that participating methods were given
access to the training set (including ground truth) and
testing set but without ground truth.

6.1 IPK Gatersleben: Segmentation via 3D histograms

The IPK pipeline relies on unsupervised clustering and
distance maps to segment leaves. Details can be found
in [43]. The overall workflow is depicted in Figure 3 and
summarized in the following.

1. Supervised foreground/background segmentation uti-
lizing 3D histogram cubes, which encode the proba-
bility for any observed pixel color in the given train-
ing to belong to the fore- or background; and

2. Unsupervised feature extraction of leaf-center points
and leaf-split point detection for individual leaf seg-
mentation by using a distance map, skeleton, and the
corresponding graph representation (cmp. Figure 3).

To avoid the partitioning of the 3D histogram in rect-
angular regions [32], here a direct look-up in the 3D
histogram cubes instead of (multiple) one-dimensional
color component thresholds is used. For this approach
two 3D histogram cubes for foreground and background
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Fig. 3: Workflow of the IPK approach, including main
processing components: segmentation, image feature ex-
traction (including leaf detection) and individual leaf
segmentation.

are accumulated using the provided training data. To
improve the performance against illumination variabil-
ity, input images are converted into the Lab color space
[7]. Entries which are not represented in the training data
are estimated by using an interpolation of the surround-
ing values of a histogram cell. The segmentation results
are further processed by morphological operations and

cluster-analysis to suppress noise and artifacts. The out-
come of this operation serves as input for the feature ex-
traction phase to detect leaf center-points and optimal
split-points of corresponding leaf segments.

For this approach, the leaves of Arabidopsis plants in
‘A1’ and ‘A2’ are considered as compact objects which
only partly overlap. In the corresponding Euclidean dis-
tance map (EDM) the leaf center points appear as peaks,
which are detected by a maximum search. At a next step,
a skeleton image is calculated. To resolve leaf-overlaps,
split-points at the thinnest connection points are de-
tected. Values of the EDM are mapped on the skeleton
image. The resulting image is used for creating a skele-
ton graph, where leaf center points, skeleton end-points,
and skeleton branch-points are represented as nodes in
the graph. Edges are created if the corresponding image
points are connected by a skeleton line. Additionally, a
list of the positions and minimal distances of each par-
ticular edge segment are saved as an edge-attribute. This
list is used to detect the exact positions of the leaf split
points. To find the split point(s) between two leaf center
points and therefore graph nodes, all edges of the graph
structure connecting these two points are traversed and
the position with the minimal EDM value is determined.
This process is repeated, if there are still connections
between the two leaves which need to be separated. For
calculating the split line belonging to a particular mini-
mal EDM point, two coordinates on the plant leaf border
are calculated. The nearest background pixel is searched
(first point), and also the nearest background pixel at
the opposite position relative to the split point (second
point) is located. The connection line is used as border
during the segmentation of overlapping leaves. In a final
step the separated leaves are labeled by a region-growing
algorithm.

Our approach was implemented in Java, and tested
on a desktop PC with 3.4 GHz processor and 32 GB mem-
ory. Java was configured to use a maximum of 4 GB RAM
(-Xmx4g). On average each image takes 1.6, 1.2, and 9
seconds for ‘A1’, ‘A2’, and ‘A3’, respectively.

6.2 Nottingham: Segmentation with SLIC superpixels

A superpixel-based method that does not require any
training is used. The training dataset has been used for
parameter tuning only. The processing steps visualized
in Figure 5 can be summarized as follows:

1. Superpixel over-segmentation in Lab color-space us-
ing SLIC [1];

2. Foreground (plant) extraction using simple seeded re-
gion growing in the superpixel space;

3. Distance map calculation on extracted foreground;
4. Individual leaf seed matching by identifying the su-

perpixels whose centroid lays in the local maxima of
the distance map; and
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Fig. 4: Example images of each of the steps in the Not-
tingham approach. First row: original image (left), SLIC
superpixels (center), thresholded superpixels (right).
Second row: distance map with superpixel centroids
(left), filtered superpixel centroids (middle), watershed
segmentation (right).

Fig. 5: The Nottingham leaf segmentation process.

5. Individual leaf segmentation by applying watershed
transform with the extracted seeds.

Steps 1) and 2) are used to extract the whole plant
while 3), 4) and 5) for extracting individual leafs. Fol-
lowing is a detailed explanation of each of the steps with
Figures 4 and 5 summarizing the process.

Preparation. Given an RGB image, it is first con-
verted to the Lab color space [7], to enhance discrimina-
tion between foreground leaves and background. Then,
SLIC superpixels [1] are computed. A fixed number of su-
perpixels is computed over the image. Empirically, 2000
pixels was found to provide good coverage of the leaves.
The mean color of the ‘a’ channel (which characterizes
well the green color of the image) is extracted for each
superpixel. A Region Adjacency Map (superpixel neigh-
borhood graph) is created from the resulting superpixels.

Foreground extraction. Having the mean color of each
superpixel for channel ‘a’, a simple region growing ap-
proach [2] in superpixel space allows the complete plant
to be extracted. The superpixel with the lowest mean

color (the most bright green superpixel) defined in Lab
space is used as the initial seed. However, for ‘A1’ and
‘A2’, since they do not contain shadows, an even sim-
pler thresholding of the mean color of each superpixel
allows faster yet still accurate segmentation of the plant.
Thresholds for the ‘A1’ and ‘A2’ are set to −25 and −15
respectively.

Leaf identification. Once the plant is extracted from
the background, superpixels not belonging to the plant
are removed. A distance map is computed (first remov-
ing strong edges using the Canny detector [11]) and the
centroids are calculated for all superpixels. A local max-
ima filter is applied to extract the superpixels that lay
in the center of the leaves. A superpixel is selected as
a seed only if its centroid is best-centered in the leaf
compared to its neighbors within a radius. This is im-
plemented by considering the superpixel centroid value
in the already calculated distance map, and filtering the
superpixels that do not have the maximum value within
its neighbors.

Leaf segmentation. Finally, watershed segmentation
[53] is applied with the obtained initial seeds over the
image space, yielding the individual leaf segmentation.

Using a Python implementation running on a i3 quad-
core desktop with i3-4130 (3.4 GHz) processor and 8 GB
memory, on average each image takes < 1 second for
dataset ‘A1’ and ‘A2’, and 1-5 seconds for ‘A3’.

Overall, it is a fast method with no training required.
It also could be tuned to get a much higher accuracy on
a per-image basis. The parameters that can be tuned
are: (1) number of superpixels, (2) compactness of su-
perpixels, (3) foreground extractor (threshold or region
growing), (4) parameters of the canny edge detector, (5)
color space for SLIC, foreground extractor and canny
edge detector. All those parameters were tuned in a per
dataset basis using the training set in order to maximize
the mean Symmetric Best Dice score for each dataset.
However, they can be easily tuned manually on a per
image basis if required.

6.3 MSU: Leaf segmentation with Chamfer matching

The MSU approach extends a multi-leaf alignment and
tracking framework [60–62] to the LSC. As discussed in
Section 2 this framework was originally designed for seg-
menting and tracking leaves in fluorescence plant videos
where plant segmentation is straightforward due to the
clean background. For LSC, a more advanced background
segmentation process was adopted.

The framework is motivated by the well-known Cham-
fer Matching (CM) [8], which aligns one object instance
in an image with a given template. However, since there
are large variations of leaves in plant images, it is unfeasi-
ble to match leaves with only one template. Therefore, we
generate a set of templates with different shapes, scales,
and orientations. Specifically, H leaves with represen-
tative shapes (e.g., different aspect ratios) are selected
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Fig. 6: Overview of the MSU approach: training is done
once for each plant type (i.e., twice for three datasets),
and pre-processing and segmentation are performed for
each image.

from H images of the training set. Each leaf shape is
scaled to S different sizes, and each size is rotated to R
different orientations. This leads to a set of H × S × R
leaf templates (5× 9× 24 for ‘A1’ and ‘A2’, 8× 10× 24
for ‘A3’) with labeled tip locations, which will be used
in the segmentation process.

An accurate plant segmentation and edge map are
critical to obtain reliable CM results. To this end, all
RGB images are converted into the Lab color space, and
a threshold τ is applied to channel ‘a’ for estimating a
foreground mask (chosen empirically for each dataset: 40
for ‘A1’, and 30 for ‘A2’ and ‘A3’), which is refined by
standard morphological operations. The Sobel edge oper-
ator is applied within the foreground segment to generate
an edge map. Since ‘A3’ has more overlapping leaves and
the boundaries between the leaves are more visible due
to shadows, an additional edge map is used, obtained by
applying the edge operator on the image resulting as the
difference of ‘a’ and ‘b’ channels.

Morphological operations are applied to remove small
edges (noise) and lines (leaf veins). Mask (Figure 6 (a))
and edge map (Figure 6 (b)) are cropped from the RGB
image.

For each template, we search all possible locations
on the edge map and find one location with the mini-
mum CM distance. Doing so for all templates generates
an overcomplete set of leaf candidates (Figure 6 (c)).
For each leaf candidate, we compute the CM score, its
overlap with foreground mask, and the angle difference,
which measures how well the leaf points to the center of
the plant. Our goal is to select a subset of leaf candidates
as the segmentation result. First, we delete candidates
with large CM scores, small overlap with the foreground
mask, or a large angle difference. Second, we develop an
optimization process [62] to select an optimal set of leaf
candidates by optimizing the minimal number of candi-
dates with smaller CM distances and leaf angle differ-
ences to cover the foreground mask as much as possible.
Third, all leaf candidates are selected as an initialization

and gradient descent is applied to iteratively delete re-
dundant leaf candidates, which leads to a small set of
final leaf candidates.

As shown in Figure 6(d), a finite number of templates
can not perfectly match all edges. We apply a multi-leaf
tracking procedure [61] to transform each template, i.e.,
rotation, scaling, and translation, to obtain an optimal
match with the edge map. This is done by minimizing
the summation of three terms: the average CM score, the
difference between the synthesized mask of all candidates
and the test image mask, and the average angle differ-
ence. The leaf alignment result provides initialization of
the transformation parameters and gradient descent is
used to update these parameters. When a leaf candidate
becomes smaller than a threshold, we will remove it. Af-
ter this optimization, the leaf candidates will match the
edge map much better (Figure 6 (e)), which remedies
the limitation of a finite set of leaf templates. Finally,
we use the tracking result and foreground mask to gen-
erate a label image so that all and only foreground pixels
have labels.

Only one leaf out of each of the H training images
is used for template generation. The same pre-processing
and segmentation procedures are conducted independent-
ly for each image of the training and testing set.

Using our Matlab implementation running on a quad-
core desktop with 3.40 GHz processor and 32 GB mem-
ory, on average each image takes 63, 49, and 472 seconds
for ‘A1’, ‘A2’, and ‘A3’ respectively.

6.4 Wageningen: Leaf segmentation with watersheds

The method consists of two steps: plant segmentation
and separate leaf segmentation, illustrated in Figure 7.
Plant segmentation from background is done using su-
pervised classification with a neural network. Since the
nature of the three datasets (‘A1’, ‘A2’, and ‘A3’) is dif-
ferent, a separate classifier and post-processing are ap-
plied to each individual set. The ground truth images
are used to mask plant and background pixels. For all
images 3000 pixels of each class are randomly selected
for training. When the plant is smaller than 3000 pixels,
all plant pixels are used. To separate the plants from the
background, four color and two texture features are used
for each pixel. The color features used in the classification
are: red, green and blue pixel values (R, G, B) and the ex-
cessive Green value (2G-R-B) which highlights green pix-
els. For texture features the pixel values of the variance
filtered green channel [63], and the pixel values of the
gradient magnitude filtered green channel are used. The
latter two highlight edges and rough parts in the image.
A large range of linear and nonlinear classifiers have been
tested on each dataset, with a feed-forward (MLP) neu-
ral network with one hidden layer of 10 units giving the
best results. Morphological operations are applied on the
binary image obtained after plant classification, resulting



10 Scharr et al.

Fig. 7: Steps of the Wageningen approach, shown on an
image from ‘A3’ (top left, with zoomed detailed shown
in red box): test RGB image (top left), neural net-
work based foreground segmentation (top middle), in-
verse distance image transform (top right), watershed
basins (bottom left), intersection of basins and the fore-
ground image mask (bottom middle), final leaves seg-
mentation after rejecting small regions (bottom right).

Fig. 8: Wageningen: Accentuating holes.

in the plant masks (FGBG). For ‘A1’ and ‘A2’ the mor-
phological operations consist of an erosion followed by
a propagation using the original results as mask. Small
blobs mainly from moss are removed this way. For ‘A3’
all blobs in the image are removed, except for the largest
one. In order to remove moss that occurs in ‘A2’ and
‘A3’ and in order to emphasize spaces between stems
and leaves (cmp. Figure 8) to which the watershed algo-
rithm is highly sensitive, additional color transformation,
shape and spatial filtering, and morphological operations
are applied. For ‘A2’, all components of the foreground
segmentation are filtered out that are further away from
the center of gravity of the foreground mask than 1.5
times estimated radius of the foreground mask. The ra-
dius r is estimated from mask area A as r = (A/π)

1
2 .

Next, the Y-component image of the YUV color trans-
formation, giving the luminance, is thresholded with a
threshold optimized on the training set (th = 85). For
‘A3’ there are cases of large moss areas attached to the
foreground segmentation mask. To remove them, first
the compactness C of the foreground mask is calculated
as C = L2/(4πA), where L is the foreground mask con-
tour length. C > 20 indicates presence of a large moss

area segmented as foreground. There, the X-component
of the XYZ color transformation yielding chromatic in-
formation is thresholded (th = 55), and the pixels that
are smaller than the threshold are filtered out. In this
way, the moss pixels which have a slightly different color
than the plants are removed from the foreground image.
Next, in order to emphasize spaces between the leaves
and the stems all foreground masks are corrected with
the thresholded Y-component of the YUV color trans-
formed image as described for ‘A2’.

The second step, i.e. separate leaf segmentation, is
achieved using a watershed method [9] applied on the
Euclidean distance map of the resulting plant mask im-
age of the first step of the method. Initially, the water-
shed transformation is computed without applying the
threshold between the basins. In the second step, the
basins are successively merged if they are separated by
a watershed that is smaller than a given threshold. The
threshold value is tuned on the training set in order to
produce the best result. The thresholds are set to 30, 58,
and 70 for the datasets ‘A1’, ‘A2’, and ‘A3’ respectively.

Plant segmentation is done in Matlab 2015a and the
perClass classification toolbox (http://perclass.com)
on a MacBook with 2.53 GHz Intel Core 2 Duo. Learning
the neural network classifier using a training set of 6000
pixels takes about 4 s per image. Plant segmentation us-
ing this trained classifier and postprocessing take 0.76 s,
0.73 s and 24 s for ‘A1’, ‘A2’, and ‘A3’ respectively. Moss
removal and leaf segmentation are performed in Halcon,
running on a laptop with 2.70 GHz processor and 8 GB
memory. On average each image takes 160 ms, 110 ms,
and 700 ms for ‘A1’, ‘A2’, and ‘A3’ respectively.

7 Results

In this section we discuss the performance of each method
as evaluated on testing and training sets. Note that the
ground truth was available to participants (authors of
this study) for the training set, however, the testing set
was only known to the organizers of the LSC (i.e., S. A.
Tsaftaris, H. Scharr, and M. Minervini) and was blinded
to all others. Training set numbers are provided by the
participants (with the same evaluation function and met-
rics used also on the testing set).

Note that since Nottingham is an unsupervised meth-
od the results reflect directly performance on all the
training set. MSU since they use some of the leaves in
the training set to define their templates some bias could
exist, but it is minimal. IPK and Wageningen apply su-
pervised methods to obtain foreground segmentation, us-
ing the whole dataset (Wageningen: random selection of
3000 pixels per class per image).
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Fig. 9: Selected results on test images. From each dataset ‘A1’ – ‘A3’ an easier and a harder image are shown, together
with ground truth, and results of IPK, Nottingham, MSU, and Wageningen (from top to bottom, respectively).
Numbers in the image corners are: number of leaves (upper right), SBD (lower left), and FBD (lower right). For
viewing ease, matching leaves are assigned the same color as the ground truth. Figure best viewed in color.

7.1 Plant segmentation from background

Figure 9 shows selected examples of test images from the
three datasets. We choose from each dataset two exam-
ples: one to show the effectiveness of the methods and one
to show limitations. We show visually the segmentation
outcomes for each method together with ground truth;
we also overlay the numbers of the evaluation measures
on the images.

Overall, we see that most methods perform well in
separating plant from background, except when the back-
ground presents challenges (e.g., moss) as does the sec-
ond image shown for ‘A1’. Then FBD scores are lower for
almost all methods, with IPK and Nottingham showing
more robustness. These observations are evident in the
whole dataset (cf. FBD numbers in Tables 2 and 3). Av-
erage testing numbers are lower than training for most
methods with the exception of Nottingham, which does
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Fig. 10: Dataset ‘A1’: Dice score per leaf versus (leaf area)
1
2 , i.e., ground truth average leaf radius (in pixels). Larger

symbols refer to larger leaves. Color also indicates Dice score for better visibility. Figure best viewed in color.

significantly better in ‘A2’ and ‘A3’ in the testing case.
Given that their method is unsupervised this behaviour
is not unexpected.

7.2 Leaf segmentation and counting

Referring again to Figure 9 and Tables 2 and 3, let us
evaluate visually and quantitatively how well algorithms
do in segmenting leaves. When leaves are not overlapping
all methods perform well. Nevertheless, each method ex-
hibits different behaviour. IPK, MSU, and Wageningen
obtain higher SBD scores, however, IPK does produce
straight line boundaries that are not natural – they should
be more curved to better match leaf shape. There seems
to be also an interesting relationship between segmenta-
tion error and leaf size (see also next section for effects
related to plant size).

In fact, plotting leaf size vs. Dice per leaf,9 see Fig-
ure 10, we observe that with all methods larger leaves
are more accurately delineated; with exception of the
largest few leaves in MSU. Dice for smaller leaves shows

9 To measure Dice per leaf, we first find matches between a
leaf in ground-truth and an algorithm’s result that maximally
overlap, and then report the Dice (Eq. (1)) of matched leaves;
for non matched leaves a zero is reported.

more scatter and smaller leaves are more frequently not
detected, as evidenced by the high symbol density at
Dice = 0 (blue symbols). For small leaves with (leaf

area)
1
2 . 20 Wageningen performs best, detecting more

leaves than the others and with higher accuracy. IPK
shows better performance than others in the mid range

40 . (leaf area)
1
2 . 80 due to higher per leaf accuracy

(see the more dark / black symbols in the region above
Dice = 0.95) and fewer non-detected leaves. In the mid
range only Wageningen performs similarly with respect
to leaf detection (fewest symbols at Dice = 0), closely
followed by MSU.

We should note that measuring SBD and FBD with
Dice, does have some limitations. If a method reports
a Dice score of 0.9, this loss of 0.1 can be attributed
to either an under-segmentation (e.g., loss of a stem
in Arabidopsis, non-precise leaf boundary) or an over-
segmentation (considering background as plant). There-
fore, in Section 7.5, we apply two measures being more
sensitive to shape consistency, in order to investigate the
solutions’ performance with respect to leaf boundaries.

With regards to counting most methods show their
limitations, and in fact using such metric also highlights
errors in leaf segmentation. For example, in Figure 9 we
see that when the images are more challenging, some
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Table 2: Segmentation and counting results on the train-
ing set. Average values are shown for metrics described
in Section 3 and in parenthesis standard deviation. ‘ALL’
denotes the average (and standard deviation) among the
three datasets for each method. Other shorthands and
abbreviations as defined in text (Sections 3 and 6).

SBD [%] FBD [%] |DiC| DiC

IPK
A1 74.2(7.7) 97.4(1.8) 2.6(1.8) -1.9(2.5)
A2 80.6(8.7) 99.7(0.3) 0.9(1.0) -0.3(1.3)
A3 61.8(19.1) 98.2(1.1) 2.1(1.7) -2.1(1.7)
ALL 73.5(11.5) 98.0(1.9) 2.2(1.7) -1.7(2.3)

Nottingham
A1 68.0(7.4) 94.6(1.6) 3.8(2.0) -3.6(2.4)
A2 60.9(18.5) 87.5(19.7) 2.5(1.5) -2.5(1.5)
A3 47.1(25.0) 79.4(34.5) 2.3(1.8) -2.3(1.9)
ALL 63.8(15.3) 91.2(16.2) 3.4(2.0) -3.2(2.2)

MSU
A1 78.0(6.4) 95.8(1.9) 2.3(1.5) -2.3(1.6)
A2 72.3(9.5) 94.1(4.1) 1.6(1.4) -1.3(1.7)
A3 69.6(16.5) 95.0(6.5) 1.4(1.5) -1.3(1.5)
ALL 75.8(9.6) 95.4(3.4) 2.1(1.5) -2.0(1.7)

Wageningen
A1 72.8(7.8) 95.0(2.4) 2.2(2.0) 0.4(3.0)
A2 71.7(8.0) 95.2(2.4) 1.3(1.1) -0.6(1.6)
A3 69.6(19.9) 96.1(5.1) 1.7(2.4) 0.6(2.9)
ALL 72.2(10.5) 95.2(3.0) 2.0(2.0) 0.3(2.8)

Table 3: Segmentation and counting results on the test-
ing set. Shorthands and abbreviations as in Table 2.

SBD [%] FBD [%] |DiC| DiC

IPK
A1 74.4(4.3) 97.0(0.8) 2.2(1.3) -1.8(1.8)
A2 76.9(7.6) 96.3(1.7) 1.2(1.3) -1.0(1.5)
A3 53.3(20.2) 94.1(13.3) 2.8(2.5) -2.0(3.2)
ALL 62.6(19.0) 95.3(10.1) 2.4(2.1) -1.9(2.7)

Nottingham
A1 68.3(6.3) 95.3(1.1) 3.8(1.9) -3.5(2.4)
A2 71.3(9.6) 93.0(4.2) 1.9(1.7) -1.9(1.7)
A3 51.6(16.2) 90.7(20.4) 2.5(2.4) -1.9(2.9)
ALL 59.0(15.6) 92.5(15.6) 2.9(2.3) -2.4(2.8)

MSU
A1 66.7(7.6) 94.0(1.9) 2.5(1.5) -2.5(1.5)
A2 66.6(7.9) 87.7(3.6) 2.0(1.5) -2.0(1.5)
A3 59.2(17.8) 95.0(5.2) 2.3(1.9) -2.3(1.9)
ALL 62.4(14.8) 94.0(4.7) 2.4(1.7) -2.3(1.8)

Wageningen
A1 71.1(6.2) 94.7(1.5) 2.2(1.6) 1.3(2.4)
A2 75.7(8.4) 95.1(2.0) 0.4(0.5) -0.2(0.7)
A3 57.6(24.8) 89.5(22.3) 3.0(4.9) 1.8(5.5)
ALL 63.8(20.5) 91.7(17.0) 2.5(3.9) 1.5(4.4)

methods merge leaves: this lowers SBD scores but affects
count numbers even more critically. Other methods (e.g.,
Wageningen) tend to over-segment and consider other
parts as leaves (see for example the second image of ‘A1’
in Figure 9), which sometimes leads to over counting.
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Fig. 11: For each method scatters of number of leaves in
ground-truth vs. Difference in Count (DiC) are shown for
the testing set. Each dataset is color coded differently.
Also, lines of average and average ± one standard devi-
ation of DiC are shown, as solid and dashed blue lines,
respectively.

These misestimations are evident throughout train-
ing and testing sets (cf. Tables 2 and 3). Stepping away
from the summary statistics of the tables, over and under
estimation are readily apparent in Figure 11. All algo-
rithms present counting outliers, where MSU yields the
least count variability, even though with a clear under-
estimation. The mean DiC of Wageningen is the closest
to zero, albeit featuring the highest variances. We also
observe that DiC slopes down as the number of leaves
increases, particularly in the case of ‘A3’.

7.3 Plant growth and complexity

Plants are complex and dynamic organisms that grow
in time, and move throughout the day and night. They
grow differentially, with younger leaves growing faster
than mature ones. Therefore, per leaf growth is a bet-
ter phenotyping trait when evaluating growth regulation
and stress situations. As they grow, new leaves appear
and plant complexity changes: in tobacco more leaves
overlap and exhibit higher nastic movements; and in Ara-
bidopsis younger leaves emerge, overlapping other more
mature ones.

At an individual leaf level, the findings of Figure 10
–Dice of smaller leaves showing higher variability scat-
ter and with smaller leaves being missed– illustrate that
we need to achieve homogeneous performance and ro-
bustness if we want to obtain accurate per leaf growth
estimates.
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Fig. 12: Effect of plant complexity (measured as number
of leaves) on leaf segmentation accuracy, i.e., SBD, for
‘A3’. Each method is marker coded separately.
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Fig. 13: Effect of plant size, measured as number of plant
pixels in ground truth, (Projected Leaf Area) on leaf
segmentation accuracy, i.e., SBD, for ‘A3’. Each method
is marker coded separately.

Using classical growth stages, which rely on leaf count
as a marker of growth, the downwards slope seen in Fig-
ure 11 could be attributed to growth. This is more clear
in Figure 12, where we see that with more leaves, leaf
segmentation accuracy (SBD) also decreases.

Even if we consider plant size (measured as projected
leaf area, i.e., the size of the plant in ground-truth, ob-
tained as the union of all leaf masks), we observe a de-
creasing trend in SBD for each method with plant size,
see Figure 13. Observe the large variability in SBD when
plants are smaller. Even isolating it to a single method
we see that when plants are small, depending on the
plant’s leaf arrangement, variability is extremely high:
either good (close to 0.8) or rather low SBD values are
obtained.

7.4 Effect of foreground segmentation accuracy

In Figure 14 we plot FBD vs. SBD for each method pool-
ing the testing data together. We see that high SBD can
only be achieved when FBD is also high; but obtain-
ing a high FBD is not at all a guarantee for good leaf
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Fig. 14: Effect of plant vs. leaf segmentation accuracy
(FBD vs. SBD). Each method is marker coded sepa-
rately. Data from all datasets pooled together; results
with FBD<0.6 are omitted for clarity.

segmentation (i.e., a high SBD) since we observe large
variability in SBD even when FBD is high.

This prompted us to evaluate the performance of the
leaf segmentation part isolating it from errors in the
plant (foreground) segmentation step. Thus, we asked
participants to submit results on the training set assum-
ing that also a foreground (plant) mask is given (as ob-
tained by the union of leaf masks), effectively not requir-
ing a plant segmentation step.

Naturally, all methods benefit when the ground-truth
plant segmentation is used: compare SBD, DiC, and |DiC|
between Tables 2 and 4. SBD improves considerably in
most cases; for counting improvement is less pronounced,
and sometimes results even get worse. Best performance
is shared across IPK and Wageningen, closely followed
by MSU. Note that for ‘A3’ IPK’s SBD performance
increases substantially with known plant segmentation.
Overall, additional investment in obtaining better per-
forming foreground segmentation is therefore warranted.

Comparing the count numbers (DiC and |DiC| in Ta-
bles 2 and 4) the best performer is Wageningen, with
slight over-estimation in Table 2 and slight under-esti-
mation Table 4, while again all other methods under-
estimate the number of leaves present. Even when fore-
ground plant mask is given these numbers do not improve
significantly. So it is not errors in the foreground segmen-
tation component that cause such performance, but the
inherent assumption of low overlap that each method
relies on to find leaves. As a result most approaches
miss small leaves and sometimes miscount plant parts
for leaves. The Wageningen algorithm is more resilient
to this problem, presumably due to the optimization of
the basins threshold. When the threshold increases, the
leaf count decreases. The thresholds were tuned with re-
spect to the best SBD, but apparently this also affects
DiC. A positive effect is also due to emphasizing spaces
between leaves and stems, avoiding that small spaces be-
tween leaves are wrongly segmented as foreground, re-
sulting in a higher number of leaves.
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Table 4: Segmentation and counting results on the train-
ing set assuming foreground segmentation known. Short-
hands and abbreviations as in Table 2.

SBD [%] |DiC| DiC

IPK
A1 79.1(5.5) 2.1(1.4) -1.9(1.7)
A2 80.7(10.8) 1.2(1.3) -1.1(1.4)
A3 71.0(20.6) 1.8(1.8) -1.8(1.8)
ALL 78.2(10.4) 1.9(1.5) -1.8(1.7)

Nottingham
A1 71.0(7.2) 4.4(1.7) -4.4(1.7)
A2 66.5(21.6) 2.5(1.5) -2.7(1.5)
A3 59.5(11.3) 2.4(1.3) -2.4(1.3)
ALL 68.6(12.1) 3.9(1.9) -3.9(1.9)

MSU
A1 78.5(5.5) 2.5(1.4) -2.5(1.4)
A2 77.4(8.1) 1.6(1.3) -0.9(1.9)
A3 76.1(14.1) 1.2(1.2) -1.1(1.2)
ALL 78.0(7.8) 2.2(1.4) -2.0(1.6)

Wageningen
A1 77.3(4.9) 1.5(1.3) -0.3(2.0)
A2 75.5(8.0) 1.3(1.3) -0.9(1.6)
A3 76.5(14.6) 1.4(1.3) -1.3(1.4)
ALL 76.9(7.6) 1.5(1.3) -0.5(1.9)

7.5 Performance under blinded shape based metrics

Most of the metrics we adopted for the challenge rely
on segmentation and area based measurements (cf. Sec-
tion 3). It is thus of interest to see how the methods per-
form on metrics that evaluate boundary accuracy and
reward methods that best preserve leaf shape. Notice
that these metrics were not available to the participants,
so methods have not been optimized for such metrics.
For brevity we present results on the testing set only.

We adopt two metrics, based respectively on the Mod-
ified Hausdorff Distance (MHD) [19] and Pratt’s Figure
of Merit (FoM) [45], to compare point sets A and B de-
noting leaf object boundaries.

The Modified Hausdorff Distance (MHD) [20] mea-
sures the displacement of object boundaries as the aver-
age of all the distances from a point in A to the closest
point in B. With

D(A,B) =
1

|A|
∑
p∈A

min
q∈B
‖p− q‖, (5)

where ‖ · ‖ is the Euclidean distance, MHD is defined as:

MHD(A,B) = max {D(A,B), D(B,A) } . (6)

This metric is known to be suitable for comparing tem-
plate shapes with targets [20]. It prioritizes leaf boundary
accuracy, being relevant for shape-based leaf recognition
purposes.

Pratt’s Figure of Merit (FoM) [45] was introduced
in the context of edge detection and penalizes missing or

displaced points between actual (A) and ideal (I) bound-
aries:

FoM(A, I) =
1

max{|A|, |I|}

|A|∑
i=1

1

1 + αd2i
, (7)

where α = 1/9 is a scaling constant penalizing boundary
offset, and di is the distance between an actual boundary
point and the nearest ideal boundary point.

Let Bar and Bgt be sets of leaf object boundaries
extracted from leaf segmentation masks Lar and Lgt,
respectively, where Bar is the algorithmic result and Bgt

is the ground truth. To evaluate how well leaf object
shape and boundaries are preserved, and to follow the
spirit of SBD defined in Section 3, we use:

– Symmetric Best Hausdorff (SBH), the symmetric
average MHD among all object (leaf) boundaries,
where for each input label the ground truth label
yielding minimum MHD is used for averaging. Best
Hausdorff (BH) is defined as:

BH(Ba, Bb) =
√
w2 + h2

if either
Ba = ∅ or
Bb = ∅

1

M

M∑
i=1

min
1≤j≤N

MHD(Ba
i , B

b
j ) otherwise

(8)

where Ba
i for 1 ≤ i ≤ M and Bb

j for 1 ≤ j ≤ N are
point sets corresponding to the boundaries, respec-
tively, Ba and Bb, of leaf object segments belonging
to leaf segmentations La and Lb; w and h denote, re-
spectively, width and height of the image containing
the leaf object. SBH is then:

SBH(Bar, Bgt) =

max
{

BH(Bar, Bgt), BH(Bgt, Bar)
}
. (9)

SBH is expressed in units of length (e.g., pixels or mil-
limetres) and is 0 for perfectly matching boundaries.
If Bar is empty, SBH is equal to the image diagonal
(i.e., the greatest possible distance between any two
points).

– Best Figure of Merit (BFoM), the average FoM a-
mong all leaf objects, where for each input label the
ground truth label yielding maximum FoM is used
for averaging.

BFoM(Bar, Bgt) =

1

M

M∑
i=1

max
1≤j≤N

FoM(Bar
i , Bgt

j ), (10)

We express BFoM in percentage, where 100% denotes
perfect match.
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Table 5: Segmentation results on the testing set with
respect to leaf shape. Shorthands and abbreviations as
in Table 2. Notice that for SBH lower is better whereas
for BFoM higher is better.

SBH [pix] SBH [mm] BFoM [%]

IPK
A1 9.2(3.2) 1.54(0.53) 62.6(7.3)
A2 6.9(3.6) 1.15(0.60) 66.9(8.1)
A3 174.9(442.8) 7.00(17.7) 41.9(17.3)
ALL 103.6(343.5) 4.62(13.4) 51.1(17.6)

Nottingham
A1 13.0(5.9) 2.17(0.99) 58.7(9.0)
A2 9.3(5.7) 1.55(0.95) 62.3(7.4)
A3 193.6(589.7) 7.74(23.6) 49.2(21.8)
ALL 115.8(453.1) 5.30(17.8) 53.6(18.1)

MSU
A1 13.3(5.6) 2.22(0.94) 50.9(10.3)
A2 10.0(6.3) 1.67(1.05) 52.0(12.2)
A3 81.1(105.6) 3.24(4.22) 46.5(19.0)
ALL 51.7(86.6) 2.76(3.25) 48.5(16.1)

Wageningen
A1 13.0(5.6) 2.17(0.94) 54.1(9.1)
A2 10.2(7.8) 1.70(1.30) 61.1(9.7)
A3 109.1(227.0) 4.36(9.08) 43.7(26.7)
ALL 67.7(177.6) 3.38(6.90) 48.8(21.8)

In Table 5 we see the results on the testing set using
these metrics. SBH values vary strongly between dataset
‘A3’ and the other two (‘A1’ and ‘A2’). This indicates an
issue when using SBH with images of different size. Being
a distance, SBH given in pixel depends on resolution. We
therefore also give it in object dimensions i.e. mm, even
though object resolution depends on (the non-constant)
local object distance from the camera. Overall, MSU re-
ports best average performance according to SBH (al-
though this result is largely influenced by the ‘A3’ data-
set) with IPK performing best on ‘A1’ and ‘A2’. With
respect to BFoM, IPK again performs best on ‘A1’ and
‘A2’, while Nottingham outperforms the other methods
on ‘A3’. Interestingly, the overall ranking of the methods
according to the two metrics is opposite.

MSU exhibits lower variance compared to IPK, Not-
tingham and Wageningen, since the latter methods in-
clude some empty segmentations (i.e., no leaf objects
found) in the testing results, which in BFoM evaluate
to 0 and in SBH to the image diagonal length. This
situation occurs for some images of very small plants,
which are probably missed in the segmentation step of
the methods.

7.6 Differences among datasets

Although the tobacco dataset, ‘A3’, has higher resolution
and leaf boundaries are more evident, rich shape varia-
tion and large overlap among leaves challenge all meth-
ods: almost all achieve lower performance compared to

‘A1’ and ‘A2’ (Tables 2 and 3). Even the variability in ac-
curacy increases for ‘A3’. The MSU algorithm shows the
least variability among datasets probably due to the fact
that it uses templates (rotated and scaled). As such it
can adapt better to different shape variability and heav-
ier occlusions and is more robust to plant segmentation
errors. It is also due to the reliance on an edge map to fit
the templates: on ‘A3’ it can be estimated more reliably
compared to ‘A1’ and ‘A2’, where some images can be
blurry (due to larger field of view) and resolution is lower.
However, when foreground is known (Table 4) variability
of the Wageningen solution also becomes lower between
datasets.

‘A2’ does contain images from different mutants but
shows different image background with respect to ‘A1’
(black textured tray vs. red smoother tray). When plant
mask is assumed known, SBD results on the training set
show (Table 4) that Nottingham, MSU, and Wageningen
still do better in ‘A1’ than in ‘A2’, and all methods show
higher variances in ‘A2’ than in ‘A1’. So it might appear
that different mutants play a role; however, this result
is not conclusive since ‘A2’ has fewer images than ‘A1’.
In fact, a simple unpaired t-test between SBD in ‘A1’
and ‘A2’ shows no statistical difference (for any of the
methods).

We should point out that both Nottingham and Wa-
geningen use the same mechanism to segment leaves: a
watershed on the distance (from the boundary) map.
However, Nottingham relies on finding first centers and
then using those as seeds for leaf segmentation, while
Wageningen obtains an over-segmentation and then mer-
ges parts using a threshold on the basins. Their perfor-
mance difference due to this algorithm selection becomes
apparent when comparing results with given foreground
segmentation (Table 2). We see that the Wageningen al-
gorithm does better compared to the Nottingham solu-
tion. We conclude that finding suitable seeds for segmen-
tation is hard and further, comparing Figure 10, that this
is true especially for small leaves. On the other hand, it
appears that the Wageningen algorithm finds a suitable
threshold for merging according to the dataset.

7.7 Discussions on Experimental Work

Through this study we find that plant segmentation can
be achieved with unsupervised approaches (threshold-
ing) reaching average accuracy above 90%. As we sus-
pected whenever complications in the background are
present, they do lower plant segmentation accuracy (ex-
plaining also large variation in performance). Possibly
higher performance (and lower variability) can be ob-
tained with methods relying on learned classifiers and
active contour models [36]. Lower plant segmentation ac-
curacy negatively affects leaf segmentation accuracy in
almost all cases. Nevertheless, a first level measurement
of plant growth (as PLA) can be achieved with a rela-
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tively good accuracy, although methods that obtain high
average and low variance should be sought-after.

On the other hand, measuring individual leaf growth
on the basis of leaf segmentations shows currently low ac-
curacy. The algorithms presented here show an average
accuracy of 62.0% (best 63.8%, see Table 3) in segment-
ing a leaf and almost always miss leaves, particularly un-
der heavy occlusions among leaves and when both small
(young) and larger (mature) leaves are present within
the same plant. SBD does not necessarily capture that,
but is evident when analyzing leaf size vs. Dice accu-
racy and leaf counts. In several occasions leaf count is
off (missing several leaves) and frequently the algorithms
are segmenting as leaves disconnected leaf parts (partic-
ularly their stems).10

Several approaches (IPK and Nottingham) assume
that once a center of a leaf is found that segmentation can
be obtained by region growing methods. Naturally, when
leaves heavily overlap they do miss to identify the cen-
ters (and find less leaf centers than in the ground truth),
which holds for both rosette plants considered here. Also
when image contrast is not ideal, lack of discernible edges
leads to a misestimation of leaf boundaries. This is par-
ticularly evident in the Arabidopsis data (‘A1’ and ‘A2’)
and affects approaches that rely on edge information
(MSU). The tobacco dataset (‘A3’) being high resolu-
tion does offer superior contrast, but the amount of over-
lap and shape variation is significant leading to under-
performance for most of the algorithms.

We also investigate performance on leaf boundaries
using SBH and BFoM (cf. Section 7.5). SBH penalizes
boundary regions being far away from where they should
be, whereas BFoM acknowledges boundaries being in the
right position. Thus, from a shape sensitive application
viewpoint, low SBH is needed if boundary outliers lead
to low performance, whereas high BFoM is advisable if
an algorithm is robust against outliers. When choosing
from the solutions presented here, a trade-off needs to
be found, as high BFoM (good) comes with high SBH
(bad) and vice versa.

Evident by the meta-analysis of all results is the ef-
fect of plant complexity (due to plant age, mutant, or
treatment) on algorithmic accuracy. Leaf segmentation
accuracy decreases with larger leaf count (Figure 12),
using leaf count as a proxy for maturity [15]. This is
expected: as the plant grows and becomes more com-
plex, more leaves and higher overlap between young and
mature leaves are present. Overall, most methods face
greater difficulties in detecting and segmenting smaller
(younger) leaves (Figure 10), most likely not due to their
size, but overlap: they tend to grow on top of more ma-
ture leaves.

Moving forward, no approach here relies on learning
a model on the basis of the training data to obtain leaf

10 This indicates that additional (possibly tailored) evalua-
tion metrics may be necessary, although our testing with some
common in the literature did not yield any improvement.

segmentations and this might lead to promising algo-
rithms in the future. Interestingly, some of our findings
on learning to count leaves do show that leaf count can
be estimated without segmentation [22]. However, indi-
vidual and accurate leaf segmentation is still important:
for example, studying individual leaf growth, tracking
leaf position and orientation, classifying young from old
leaves, and others.

One alternative which changes the problem defini-
tion and may reduce complexity is to provide additional
data such as temporal (time-lapse images) and/or depth
(stereo and multiview imagery) information. The former
can be used for better leaf segmentation, e.g. via joint
segmentation-tracking approaches [60,61]. Both types of
information will help in resolving occlusions and obtain-
ing better boundaries. Currently, such data are not pub-
licly available but we are working to release such curated
datasets and dedicated annotation tools to the commu-
nity [38,37].

8 Conclusion and Outlook

This paper presents a collation study of a variety of leaf
segmentation algorithms as tested within the confines of
a common dataset and a true scientific challenge: the
Leaf Segmentation Challenge of CVPPP 2014. This is
the first of such challenges in the context of plant phe-
notyping and we believe that such formats will help ad-
vance the state of the art of this societally important
application of machine vision.

Having annotated data in the public domain is ex-
tremely beneficial and this is one of the greatest out-
comes of this work. They can be used not only to moti-
vate and enlist interest from other communities but also
to support future challenges (similar to this one). We all
believe that here is the future: it is via such challenges
that the state of the art advances rapidly and new chal-
lenges for 2015 have already been publicized.11 However,
these challenges should happen in a rolling fashion, year-
round, with leader boards and automated evaluation sys-
tems. It is for this reason that we are considering a web-
based system, e.g., similar in concept to Codalab,12 for
people to submit results but also deposit new annotated
datasets. This has been proven useful in other areas of
computer vision (consider for example PASCAL VOC
[21]) and it will benefit also plant phenotyping.

In summary, the better we can “see” the plant-organs
via new computer vision algorithms evaluated on a com-
mon dataset and collectively presented, the better phe-
notyping we do, and the higher societal impact.

11 See the 2015 LSC and the new Leaf Counting Challenge of
CVPPP 2015 at BMVC (http://www.plant-phenotyping.
org/CVPPP2015).
12 https://www.codalab.org/
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30. Kalyoncu, C., Toygar, Ö.: Geometric leaf classification.
Computer Vision and Image Understanding (133), 102 –
109 (2015)

31. Klukas, C., Chen, D., Pape, J.M.: Integrated Analysis
Platform: an open-source information system for high-
throughput plant phenotyping. Plant physiology 165(2),
506–518 (2014)

32. Kurugollu, F., Sankur, B., Harmanci, A.E.: Color im-
age segmentation using histogram multithresholding and
fusion. Image and Vision Computing 19(13), 915–928
(2001)



Leaf segmentation in plant phenotyping: A collation study 19

33. Martin, D., Fowlkes, C., Malik, J.: Learning to detect
natural image boundaries using local brightness, color,
and texture cues. IEEE Transactions on Pattern Analysis
and Machine Intelligence 26(5), 530–549 (2004)

34. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of
human segmented natural images and its application to
evaluating segmentation algorithms and measuring eco-
logical statistics. In: International Conference on Com-
puter Vision (ICCV), vol. 2, pp. 416–423 (2001)

35. Mezaris, V., Kompatsiaris, I., Strintzis, M.: Still image
objective segmentation evaluation using ground truth.
In: 5th COST 276 Workshop, pp. 9–14 (2003)

36. Minervini, M., Abdelsamea, M.M., Tsaftaris, S.A.:
Image-based plant phenotyping with incremental learn-
ing and active contours. Ecological Informatics 23, 35–48
(2014)

37. Minervini, M., Fschbach, A., Scharr, H., Tsaftaris, S.:
Finely-grained annotated datasets for image-based plant
phenotyping. Pattern Recognition Letters (2015). Under
review

38. Minervini, M., Giuffrida, M.V., Tsaftaris, S.: An interac-
tive tool for semi-automated leaf annotation. In: British
Machine Vision Conference (BMVC), Workshop on Com-
puter Vision Problems in Plant Phenotyping, pp. 1–13
(2015)

39. Minervini, M., Scharr, H., Tsaftaris, S.A.: Image analysis:
The new bottleneck in plant phenotyping. IEEE Signal
Processing Magazine 32(4), 126–131 (2015)

40. Müller-Linow, M., Pinto-Espinosa, F., Scharr, H.,
Rascher, U.: The leaf angle distribution of natural plant
populations: assessing the canopy with a novel software
tool. Plant Methods 11(1), 11 (2015)

41. Nagel, K., Putz, A., Gilmer, F., Heinz, K., Fischbach, A.,
Pfeifer, J., Faget, M., Blossfeld, S., Ernst, M., Dimaki, C.,
Kastenholz, B., Kleinert, A.K., Galinski, A., Scharr, H.,
Fiorani, F., Schurr, U.: GROWSCREEN-Rhizo is a novel
phenotyping robot enabling simultaneous measurements
of root and shoot growth for plants grown in soil-filled
rhizotrons. Functional Plant Biology 39, 891–904 (2012)

42. Nieuwenhuis, C., Cremers, D.: Spatially varying color dis-
tributions for interactive multilabel segmentation. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence 35(5), 1234–1247 (2013)

43. Pape, J.M., Klukas, C.: 3-D histogram-based segmenta-
tion and leaf detection for rosette plants. In: Computer
Vision - ECCV 2014 Workshops, vol. 8928, pp. 61–74
(2015)

44. Polak, M., Zhang, H., Pi, M.: An evaluation metric for
image segmentation of multiple objects. Image and Vi-
sion Computing 27(8), 1223–1227 (2009)

45. Pratt, W.K.: Digital Image Processing. Wiley-
Interscience, New York, NY, USA (1978)

46. Quan, L., Tan, P., Zeng, G., Yuan, L., Wang, J., Kang,
S.: Image-based plant modeling. ACM Transactions on
Graphics 25(3), 599–604 (2006). Proc. SIGGRAPH ’06

47. Riemenschneider, H., Sternig, S., Donoser, M., Roth,
P.M., Bischof, H.: Hough regions for joining instance
localization and segmentation. In: Computer Vision –
ECCV 2012, vol. 7574, pp. 258–271 (2012)

48. Scharr, H., Minervini, M., Fischbach, A., Tsaftaris, S.A.:
Annotated image datasets of rosette plants. Tech.
Rep. FZJ-2014-03837, Forschungszentrum Jülich GmbH,
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