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Abstract—Segmentation and analysis of histological images
provides a valuable tool to gain insight into the biology and
function of microglial cells in health and disease. Common
image segmentation methods are not suitable for inhomogeneous
histology image analysis and accurate classification of microglial
activation states has remained a challenge. In this paper, we
introduce an automated image analysis framework capable of
efficiently segmenting microglial cells from histology images and
analysing their morphology. The framework makes use of vari-
ational methods and the fast-split Bregman algorithm for image
denoising and segmentation, and of multifractal analysis for
feature extraction to classify microglia by their activation states.
Experiments show that the proposed framework is accurate and
scalable to large datasets and provides a useful tool for the study
of microglial biology.

Index Terms—microglia analysis, Mumford-Shah, fast split
Bregman, fast Fourier transform, multifractal analysis, histology
data analysis.

I. INTRODUCTION

ICROGLIA are immune cells exclusive to the central

nervous system (CNS) and about 1.5 trillion of them
reside in the brain and spinal cord [1], [2]. In response to
a variety of signals, microglia show a range of phenotypes,
from protective to detrimental associated with motility and
morphological changes [3]. In the healthy brain, microglia
constantly survey the surrounding tissue with extended pro-
cesses, clear debris from dead cells, and prune and maintain
brain synapses. They are also essential to learning and memory
[4], [5], protect neurons from damage, and mediate pain [6],
[7]. In response to an injury or infection, microglia initiate
an early, protective response by moving towards the site of
injury, where they release a cascade of chemicals leading to
repair of the damaged area. Microglial activation is a hallmark
of chronic neuroinflammation, which is believed to play an
important role in a range of brain disorders, which has yet
to be fully understood, including stroke, multiple sclerosis,
Parkinson’s, Huntington’s and Alzheimer’s disease [8], [9],
[10], and can also reflect a neuroprotective behaviour in these
chronic conditions [3].

The heterogeneity of microglial functions is in part linked
to their shape and activation state, and much information
can be obtained from their morphological characteristics [11].
Microglial cell shape evolves from a resting fully ramified
shape with extending processes and smaller soma, to the
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fully activated amoeboid shape with a larger soma and shorter
processes [12], [13]. To date, microglia activation has been
linked to three distinct functions: a classical pro-inflammatory
activation state, an alternative activated anti-inflammatory
state and a complementary deactivation state associated with
an anti-inflammatory and functional repair phenotype [3].
Classifying microglia activation states in histological images
can help pathologists with disease diagnosis [14], provides
key information for understanding diseases of the central
nervous system [15] and is essential for the validation of in
vivo biomarkers that allow the stratification and monitoring of
patients and populations at risk [16], [17].

One of the major challenges in quantitative microglial
analysis from immunohistological images is the development
of automated microglial segmentation methods. Manual or
semi-automated segmentation methods are time consuming
and require user intervention [18], [19] with an element
of subjectivity and inter-observer variability. Image analysis
approaches commonly used for quantifying histology that
rely on thresholding struggle with inhomogeneous immun-
ohistochemistry images, where even staining over a single
brain slice can be challenging. Another key challenge is the
classification of distinct morphological states from resting-
ramified to activated amoeboid, particularly the intermediate
states, which is intimately linked to the multiple phenotypes
of microglia [11]. Recent work has considered microglia as
monofractals, and used a single fractal dimension value to
describe the entire microglial structure [20], [11]. However,
fractal dimension alone is not enough to discriminate microglia
activation states as it only measures the dimension of the
space that the data fills but not how the data fills the
space. Multifractal analysis methods have the potential to
classify microglia morphology across the range of shapes from
ramified to activated microglia. However, a systematic review
has indicated that there is little research in classification of
microglia activation states. [11], [20], [21].

In this paper, new methods are proposed for quantitative
analysis of microglial morphology. Microglia are segmented
using the Mumford-Shah Total Variation [22], [23], [24], [25],
[26] and fast split Bregman [27], [28], [29], [30] methods fol-
lowed by multifractal analysis of the segmented structures. The
proposed analysis method considers microglia as multifractals,
and uses a multifractal spectrum to describe the microglial
structure. Multiple discriminant features reflecting microglial
cell morphology are then extracted from the multifractal
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spectrum at varying scales for effective classification. A
Support Vector Machine (SVM) is used to classify microglia
activation states based on the multifractal features extracted.
Results show that high classification accuracy can be achieved
by combining features extracted in both spatial and frequency
domains. We also show that this framework offers advantages
over manual analysis of histology data of wild type mice
and transgenic mouse models of Alzheimer’s disease. The
proposed segmentation method is fast, more accurate than
thresholding and is scalable to large datasets, allowing the
analysis of microglia morphology in regions of interest as well
as across the whole brain.

This paper is organized as follows. Section II provides
details of the proposed framework. In Section III, experimental
results and a discussion of the advantages and limitations of
the proposed framework are given. Section IV concludes the
proposed framework.

II. METHODS DEVELOPMENT

The methodology of the work includes image denoising and
enhancement, segmentation, and multifractal feature extraction.

A. Segmentation

Workflow of the proposed methods: One of the major tasks
of microglia analysis is to calculate the sizes of microglial
bodies and processes. As such a weak smoothing (a=10) and a
strong smoothing (a=300) are applied to the grayscale image
for segmenting microglia process and soma respectively.

Noise is inherent in histology images. Research for quantitat-
ive analysis of microglial often relies on thresholding (manual
or automatically) [20], [21], [31]. These methods are not
suitable for dealing with noisy and inhomogeneous histological
images of microglia. A preprocessing step is therefore needed
to remove noise whilst preserving the details of microglia in the
image. An adaptive thresholding algorithm, which automatically
determines threshold values for different parts of the image, is
then applied to the denoised images to extract the microglia.
Tiny microglia with a soma size smaller than 16.7um are
also removed, as suggested in [20]. In Alzheimer’s Disease,
clusters of microglia with the morphological appearance of an
activated phenotype are found around amyloid plaques [32].
These clusters are detected by their abnormal soma sizes and
analysed separately. Finally, the segmented microglia processes
are skeletonised and combined with the segmented microglia
soma, and the isolated microglial processes, not connected to
any microglia soma, are removed. Figure 1 shows the workflow
of the proposed segmentation method.

Denoising with Mumford-Shah Total Variation: Our previous
research [25], [26], [33] has shown that the classical variational
Mumford-Shah model [22], [24] that uses a total variation
regulariser (named as MSTV model in this paper) [23] is fast
and accurate and is therefore chosen to denoise microglia
images. The MSTV model can smooth microglia images
and preserve the edges of objects, making it easier to detect
microglia in the image. Furthermore, MSTV can benefit from
fast imaging solvers such as the FFT and shrinkage, which

makes it very efficient to implement. The MSTV model works
as follows [24],

Bow) = [ (u= 1) da
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where o, 3 and ¢ are three positive parameters balancing the
energy terms; u is a piecewise smooth function to approximate
the original image f; and v is a piecewise smooth function to
represent object edges in the image (v takes value 0 on the
edges and 1 in smooth regions). This energy functional can be
used to smooth the image as well as find the edges of objects
in the image.

A fast split Bregman algorithm [27] is designed for discret-
ising and solving the MSTV model equations. This algorithm
has been widely used to solve L1-based variational models [34],
[351, [36], [28], [29], [30]. An auxiliary vector w = (w1, ws)
and a Bregman iteration parameter b = (by, by) are introduced
to transform the minimisation of the MSTV model into
optimising energy functional, as follows:
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where 6 is positive penalty parameter. In practice, each variable
u, w and v in functional (2) is solved separately, for example,
variables v and w fixed first, and the Euler-equation of w is
solved as follows,

u+ 0Au = f + Odiv (wk — bk)
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where div and A denote divergence operator and Laplace
operator respectively, and k stands for the current number of
iterations. By applying discrete Fourier transform to both sides
of the equation, the closed-form solution of w is obtained,
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where F (-) and F~! (-) denotes the discrete Fourier transform
and inverse Fourier transform respectively. % (-) is the real
part of a complex number, '—’ stands for pointwise division of
matrices. The minimization with respect to w can be expressed
as follows,
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Figure 1. Workflow of the proposed segmentation for a sample image (a) Original histology image (b) Smoothed image (a=10) (c) Smoothed image (a=300)
(d) Soma segmentation (¢) Soma and processes segmentation (f) Automatically labelled microglia overlaid onto histological image. Inclusion criteria: soma size

larger than 16.7um.

with the convention 0/0 = 0.

The above equation is known as the analytical soft threshold-
ing equation or shrinkage. Note that shrinkage (3) includes two
subshrinkages for each component of vector w. The solution
of the Euler-Lagrange equation of v with the v and w fixed is
obtained as follows,

-1
20w [wF ] — 2BeAv + ﬁ% =0 (7

This equation can be efficiently solved by one iteration of
Gauss-Seidel. Finally, the parameter is updated using

bk+1 — bk + vuk+l _ u}k‘+1 (8)

The parameters «, 6, 8 and € in (2) can be adjusted. « is a
smoothing parameter and larger o gives smoother result. We
set a=10 as a weak smooth and a=300 as a strong smooth.
The selection of o was based on the results of a series of
experiments using different smoothing values on microglial
images. Figure 2 shows example results of a single microglial
cell that was smoothed using different o values. It can be
seen that the method produced the best results when a=10 and
a=300 were chosen for, removing noise, and simultaneously
preserving the details of microglial cell body and processes in
the images respectively.

Due to the Bregman iteration technique used, different pen-
alty parameter # will provide similar smooth result. However,
the algorithm may have different rate of convergence with
different values of #. In all the experiments, the value of
0 is fixed as 5 in order to achieve a fast convergence rate.
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Figure 2. Smoothed microglial cell (a) =0 (b) a=10 (c) =20 (d) a=30 (e)
a=100 (f) =200 (g) =300 (h) a=400.

Parameter $ balances the last energy term against the other
three terms in model (2). It is empirically chosen as 0.1 for all
experiments. The approximation of Mumford-Shah regulariser
term in the proposed model (i.e. the last two energy term in
(1)) is based on the phase field approach under y-convergence
[37]. Theoretically, parameter € should be close enough to zero
to satisfy such approximation. Therefore, we set ¢ = 0.0001
for all the experiments.

B. Feature Extraction

Multifractal Spectrum Features: Microglia typically exhibit
fractal properties in their appearance, displaying self-similarity
at multiple scales [11]. Fractal analysis can therefore be used
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Figure 3. Multifractal spectra of microglia. (a) Segmented microglia rotated in four different directions (b) Multifractal v/ f () spectra of the microglia. (c)
Segmented microglia in four common activation states (d) Multifractal o/ f (o) spectra. Ramified (Blue): resting (1) and intermediate (2,3). Partially ramified

(Red): bushy. Slightly ramified (Green). Activated (Cyan): amoeboid.

to extract features from microglia. A major concept in fractal
analysis of a structure is fractal dimension D, which can be
defined in different ways depending on the measure with which
the scaling law is determined. The simplest is the box-counting
dimension, where the measure is the box that contains at
least a point of the fractal structure, and the scaling law is
N(s) = lim s~ P, where N(s) is the minimum number of
boxes neé(Ted to cover the structure, s is the monotonically
decreasing size of the box, and D is the fractal dimension of
the structure.

Rather than calculating a single fractal dimension value,
multifractal analysis [38], [39] produces a fractal spectrum
D(h) for the fractal structure, consisting of a set of fractal
dimensions, each of which measures the dimension of the set
of points on the structure with the same Holder exponent value
h. The Holder exponent is the supremum of all h € (n,n + 1)

that satisfy the following condition:
(%) = Pu(x = x0)| < Clx = xo|" )

where f is a function; x is a point in the neighbourhood of
xo; C' is a constant; and P, is a polynomial of degree n < h.
Effectively, the Holder exponent of a function f at a point
characterises the regularity of f at that point.

The multifractal spectrum D(h) is a function of Holder
exponent h. In the literature the Holder exponent is commonly
represented as «, and the corresponding multifractal spectrum
f(a). In practice, a and f(«) are approximated based on
their relationship with generalised dimension D, and measure
1, based on the analogy between the multifractal formalism
and statistical thermodynamics, which provides the connection
between f(«) and 7(q) [40], [41] through the power law
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Figure 4. (a) Fourier power spectra in log-log scale and (b) lacunarity plot of the microglia in Figure 3 in four common activation states. Ramified (Blue):
resting (1) and intermediate (2,3). Partially ramified (Red): bushy. Slightly ramified (Green). Activated (Cyan): amoeboid.

behaviour of the partition function Z:

Z(q,5) = (3 ul(s) ~ 57

fla) =qalq) —7(q) (1)

where the variables ¢ and 7(g) play the same role as the
inverse of temperature and free energy in thermodynamics;
the Legendre transform (11) indicates that « and f(«) are
the thermodynamical conjugate to ¢ and 7(q); and 7(q) =
(q—1)Dy, alg) = 452

Figure 3b shows multifractal spectra of the same microglia
image rotated in eight directions. It is clear that the fractal
spectra for all the images are the same. Orientation invariant
is one of the advantages of multifractal analysis, as the same
structure may appear in different orientations in images and
image analysis methods should be robust to these orientation
variations. In general, the more complex and ramified the
microglia’ structure, the larger the fractal dimension, and the
wider the multifractal spectrum, the denser the microglia’
structure. The spectrum can be left or right skewed or
symmetrical when o,y — o and @g — oy are equal, oy
is where the spectrum reaches its maximum. Experiments
show that these characteristics of the multifractal spectrum can
be used to distinguish microglia in different activation states.
Figure 3c and Figure 4b show microglia in four activation states
and their fractal spectra: Ramified (resting and intermediate),
partially ramified (bushy), slightly ramified and activated
(amoeboid). The spectra of microglia images in different
activation states are distinct. However, for some images, these
features are not discriminative enough, which means that these
features alone are not sufficient to describe the local variations
of the microglia. To improve classification accuracy, further
information about the microglia image is needed.

Fourier Fractal Features: We first resort to the Fourier
transform to extract additional information about the structure
in the frequency domain. Recall that when calculating fractal

(10)

dimension using the box counting method, the number of
boxes N needed to cover a structure and the size s of the
box obey the power law, and fractal dimension is the slope of
the log-log plot log(N) on the Y-axis against log(s) on the
X-axis. A steeper slope means that the microglia’ structure is
less ramified. According to [42], the Fourier power spectrum
(FPS) of a grayscale image and spatial frequency (f) also obey
the power law. This provides another way to calculate fractal
dimension, using the Fourier transform. The Fourier fractal
dimension (FFD) can be defined as the slope of the log-log
plot of log(F'PS) on the Y-axis against log(f) on the X-axis.
In practice, the Fourier fractal dimension (FFD) is defined as:

6+ 5

FFD = ——
2

where (3 is the slope of the least square line fitted to the Fourier
power spectrum in log-log scale.

Example plots of log(FPS) of images against log(f) are
shown in Figure 4a. Because binary microglia images are used
for the experiments and the Fourier power spectra and spatial
frequency slightly deviate from the power law. This has also
been reported in [43]. However, the plots of microglia images
in different activation states are still quite distinct, especially
at high frequencies.

Lacunarity Features: Further more, lacunarity, which de-
scribes the heterogeneity of fractal structures, complements
fractal dimension by measuring how the data fills the space
[11]. A box-counting algorithm is used for estimating lacunarity
[44]. The algorithm uses a unit box of size r to glide over
the entire image. The number of points within the box (mass
p) is counted at each step and a distribution of box masses
B(p,r) is created at the end of gliding. The distribution is then
converted into a probability distribution Q(p,r) by dividing
the total number of boxes B(r) of size r:

Q(p,r) = BB(]Z;;)

(12)

13)
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Lacunarity is then defined as the division of first and second
moments of the box mass probability distribution:

>, PQ (P,7)
(£, En)

Figure 4b shows example lacunarity plots of microglia in
different states. The plots of microglia images in different
activation states are distinct at small scales (box size), more
ramified microglia has higher lacunarity values than less
ramified microglia as it is “’less rotationally invariant”. This is
in agreement with the results in [11].

In summary, in this paper, the features extracted from the
microglia for classification are the multifractal features (the
peak of the multifractal spectrum (fp) and the symmetry
features amax — 9 and oy — aumin), lacunarity value at the
smallest scale (L,,;,) as well as the Fourier features (FFD
and the FPS magnitude values at high frequencies), and these
features together are named the combinatory feature.

L(r)= (14)

III. EXPERIMENTAL VALIDATION OF METHODS
A. Data Acquisition

The data used in this paper were generated from brain tissue
from female mice, transgenic APPswe/PS1dE9, a mouse model
of Alzheimer’s disease, or their wild-type littermate. All mice
were were bred in the University of Nottingham’s Biomedical
Service Unit as previously described [45]. Some of these mice
had been treated 10 days before with a lipopolysaccharide im-
mune challenge (LPS, 100ug/kg) known to selectively activate
microglia or its vehicle Phosphate Buffered Saline (PBS, Sigma
Aldrich, St. Louis, MO, USA). The genotype and treatment
condition ensured a wider representation of morphological
states but were not analysed systematically as the focus on
the paper is on classification. All procedures were approved
as required under the UK Animals (Scientific Procedures) Act
1986. Brains were fixed in 4% Paraformaldehyde for at least
24 hours at 4°C and embedded in paraffin wax on a tissue
embedding station (Leica TP1020). 7um-thick coronal sections
were cut throughout the hippocampus using a microtome,
mounted on 3-Aminopropyltriethoxysilane-coated slides and
dried overnight at 40°C. Immunostaining was catried out using
standard procedures at room temperature, as described below.

All the solutions were freshly prepared using PBS + 1%
Tween 80, except DAB solution that was prepared in distilled
water. Briefly, the tissue was re-hydrated in consecutive rinses
in Xylene, 100% ethanol, 70% ethanol and distilled water.
Antigen retrieval was performed by 20 minutes incubation in
Sodium Citrate buffer at 95-99°C, followed by incubation in
1% H202 (Sigma Aldrich, St. Louis, MO, USA). Tissue was
then blocked in 5% normal goat serum (Vector Laboratories,
Burlingame, CA), incubated in rabbit polyclonal anti-Iba-
1 primary antibody (1:6000; WAKO Chemicals, VA, USA)
for 1 hour followed by 30 minutes incubation with anti-
rabbit secondary antibody (1:200; Vector Laboratories Inc.
Burlingame, CA). After washing, sections were incubated with
Vectastain Elite ABC kit (Vector Laboratories Inc. Burlingame,
CA) and labelled with DAB peroxidase substrate (Vector

Laboratories, Burlingame, CA) according to manufacturer’s
instructions. To reveal histologic morphology, sections were
then lightly counterstained with haematoxylin (purplish-blue
nuclear stain) and eosin (pink cytoplasmic stain) and mounted
with DPX-mount media.

Digital focused photo-scanning images were acquired using
a Hamamatsu NanoZoomer-XR with TDI camera technology at
a magnification of 20X. Rectangular regions of interest (ROIs)
were drawn within the hippocampus subfields with an area of
0.2 mm? or 0.1mm? using NDP.view2.

B. Validation of Segmentation Method

Previous studies have identified the limitations of the existing
microlia segmentation methods [16]. This includes: microglia
contrast issues within the same image, large artifacts, different
visual textures within the same field of view and textures that
blur the distinction between microglia cell and background.
Experiments show that the proposed segmentation method
is accurate and overcomes these problems. Some example
segmentation results are shown in Figure 5.

20 images randomly selected from all experimental condition
were used for validation of the proposed automated technique
against manual analysis. For manual segmentation, the soma
of microglial cells was delineated using the freehand line tool
in NDP.view2 at a magnification of 40x and the data (number
of soma per ROI and soma size in um?) extracted. ROIs
were exported 20x and saved as Jpeg images for subsequent
analysis of the percentage of area stained, using ImageJ [46].
Images were split into red, green and blue using the RGB stack
command, prior to thresholding. The blue stack was chosen
to eliminate non-specific highlighting of the neuronal nuclei.
The threshold level was adjusted manually for each image
to highlight the soma and processes, and the percentage area
stained extracted. Data were analysed using one-way ANOVA
followed, where appropriate, by post-hoc planed comparison
to detect significant differences between analyses. Example
automated segmentation result by the proposed method for
analysing the number of soma per ROIs and soma size in um?
is shown in Figure 6e, the analysis of the percentage of area
stained is shown in Figure 6f. The results by the proposed
automatic method and the manual method on the image dataset
are compared. As shown in Figure 7, the proposed method
has produced similar results as those obtained by the manual
method for the number of cells per ROI, though the proposed
method produced slightly higher error rate due to the artifacts
in the histology image, example of which are shown in Figure 8.
These artifacts can compromise the accuracy of the automated
segmentation method, but they can be removed manually. For
soma size, the proposed method is more accurate. Differences
between scorers for the manual analysis are due to differences
in judgement in defining the border of the soma. The proposed
method is better than the manual method for percentage area
stained which is very dependent upon the scorer’s judgement
leading to inconsistencies between scorers (Figure 6) as it can
be compromised by background staining, counterstaining of
neuronal nuclei and inhomogeneities in tissue.
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Figure 5. Challenges described in [16] and the proposed method overcomes these problems (a) Image shows microglia cells with strong and weak intensities
(b) Image has a large complex artifact with microglia located partly inside the artifact (c) image shows two regions that exhibit different visual textures (d)
Image displays a complex texture appearance that blurs the distinction between microglia cell and background pixels. (¢) (h) Microglia soma labelled using the
proposed method.

(@ (e) ®

Figure 6. Examples of soma area estimation and estimation of the percentage of the area stained. (a) and (d) Iba-1 positive microglial cells in unprocessed
images. (b) Freehand delineation of microglial somas and annotation of the soma size calculated by NDP.viewer2 software. (¢) Soma segmentation by the
proposed method (e) Example of manually adjusted threshold level for the estimation of the percentage of area stained by Iba-1. (f) Example of automatic
estimation of the percentage of area stained by Iba-1.
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Figure 7. Comparison of segmentation results using the proposed segmentation method and the manual segmentation method. (a) Microglia soma segmented
using the proposed automatic segmentation method. (b) Microglia soma manually segmented by an expert. Analysis results calculated using automatic and
manual segmentation methods within the hippocampus. (¢) Soma number (d) Soma area. ***, p;0.0001. Statistically significant differences between scorers and
between some scorers and automated method (e) Percent area stained. **, p;j0.01. *** p;0.0001. Statistically significant differences between scorers and
between scorers and automated method. Automatic: results produced by the proposed method. Manual A and Manual B: results produced by the experts. Data
are presented as means + standard error.
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Figure 8. Artifacts that the both the thresholding and proposed method incorrectly detected as microglia and which can be manually unselected with the
proposed metthod.

C. Feature Extraction on the segmented microglia to obtain multifractal spectra and
features are extracted from the spectra. Eight sets of features
are used for microglia activation state classification in the
experiments. Figure 9 show the multifractal spectra, the Fourier
power spectra and the lacunarity plots of all 500 microglia, and

To evaluate the performance of the extracted multifractal
features for classification, 500 microglia are first extracted
from a selected histology image and divided into four groups
based on their morphologies. Multifractal analysis is performed
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Figure 9. Multifractal analysis of microglia in four common activation states (a) Multifractal o/ f(cx) spectra (b) Fourier power spectra in log-log scale. (c)
Lacunarity/box size plot. (d) Feature of the multifractal spectra in (a) g — Qmin— /maz — o /fo (e) Feature of the multifractal spectra g — Qmin—
laumaz — oo (f) Feature of the spectra in (a) amaaz — @0 /fo. The boundary curve (by SVM classifier) show clear difference between four classes.

Number of Features Feature Descriptions Feature Names Accuracy
Mono 1 Peak of Multifractal Spectrum fo 93.17%
Fractal Features 1 Slop of Fourier Power Spectrum FFD 45.62%
1 Lacunarity Value (at Minimum Scale) Lmin 90.32%
3 Combination of Three Mono Fractal Features fo+ FED+L i, 93.15%
Multi 3 Peak of Multifractal Spectrum+ Symmetry Feature fo+ @0 — Amint Qmaz — @0 91.08%
Fractal Features 4 Peak of Multifractal Spec_trum+ Symmetry Feature, fo+ @0 — Amint Amaz — Qo+ 93.92%
Lacunarity Value Lmin
Slop of Fourier Power Spectrum+
4 Fourier Power Spectrum Magnitude Values at High Frequencies FED+FPS feature 86.25%
ing . . . fot+ a0 — mint Qmaz — o+
8 Combinatory Fractal Features Lonin+ FED+ EPS feature 94.27%
Gabor 40 Gabor Features. Extrz.icted Gabor Features 21.65%
Features From Greyscale Microglia Image

Table T
CLASSIFICATION ACCURACY WITH SVM ON DIFFERENT FEATURES.

the plots are colour coded to represent the different activation
states of the microglia. It can be seen that the plots of the
four classes are separated. Figure 9d, Figure 9e and Figure 9f
show that the plot of four classes using three features is more
discriminate than the plots using two features. The results
indicate there is a good ground for automated classification of
the microglia using the extracted fractal features.

D. Classification

To evaluate the performance of the proposed feature extrac-
tion methods for classification, a non-linear Support Vector
Machine (SVM) classifier with Gaussian Radial Basis Function
(RBF) kernel [47] is chosen for classification of the extracted
microglia features. The SVM classifies data by finding an
optimal hyperplane that separates data points of one class

from those of the other class. The position of the hyperplane
is defined by a small subset of data that lies closest to the
decision surface, and these points are known as support vectors.
The best hyperplane for an SVM is the one with the largest
margin between the two classes, where margin is the distance
from the decision surface to the support vectors.

The dataset is split into half, one as training set and one
test set, each containing an equal number of microglia images
in different activation states. The classifier is trained using
the training set and tested using the test set. The process is
repeated 100 times and results are averaged. The classification
results are shown in Table I. Results show that SVM performed
poorly on monofractal dimension features (fy, FFD, L)
of the microglia. The combination of features achieved the
highest classification accuracy (94.27%).
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Figure 10. Analysis results of a typical (a) Alzheimer’s mouse brain slice (b) healthy mouse brain slice (c)(d) Zoomed in hippocampal regions of the images
in (a)(b) respectively. Microglia are labelled in five different colours. Cyan: activated, Green: slightly ramified, Red: partially ramified. Blue: fully ramified,
Yellow: Clusters or artifacts. (e)(f) Heat map of the microglia density image and the corresponding colour bar, representing the number of microglia within a

square region.

Performance of features extracted from the original microglia
images was also evaluated and compared with the proposed
methods using multifractal features. Gabor wavelets were
applied directly to the grayscale microglia images. Results
show that SVM performed poorly using the features from the
microglia images. This is because the classification is affected
by the orientation of the microglia and the illumination of the
images. In contrast, the proposed methods using multifractal

features have produced good classification accuracy.

The scalability of the proposed methods on large datasets is
tested in the analysis of microglial distribution in images of
both healthy mouse brain and Alzheimer’s Disease mouse brain
models, each of which is 8640%15360 in size. An example of
these images is shown in Figure 10. Zoomed-in hippocampal
regions are shown in Figure 10c and 10d, and density map
images are shown in Figure 10e and Figure 10f. From these
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it can be seen that there are more microglia cells in the
hippocampal region of the Alzheimer’s Disease brain.

We have applied this method in a recent study, where we
investigated the relationship between microglial and astrocyte
activation and metabolite concentration in the CNS of a mouse
model of Alzheimer’s disease [48], [49]. This also indicates
the potential use of the proposed method for the quantitative
analysis of other cell types in immunohistological images.

IV. CONCLUSION AND FUTURE WORK

In this paper, automated image analysis methods are intro-
duced for segmenting the microglia from histology images and
analysing their morphology. Segmentation of both microglia
process and soma is achieved through a novel variational
method in combination with a fast split Bregman algorithm
which overcomes the problems caused by inhomogeneity of
histology images. Analysis of microglia activation states is
achieved through SVM classification of a combination of
multifractal features extracted from the microglia. Experiments
show that the proposed methods are accurate, thus eliminating
the inter-rater variability seen with manual analysis, and
scalable to analysing large microglial datasets. To the best of
our knowledge, this is the first time that multifractal analysis
is used to extract features for classifying microglial activation
states. For future work, the microglia segmentation and analysis
framework described in this paper will be tested on large
histology datasets of healthy and diseased brains, along with
ground truth images, to validate its sensitivity to disease
progression and pro-inflammatory states and therefore a viable
tool for studying microglial biology.
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