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Introduction 

Glioblastoma multiforme (GBM) is the most common malignant brain tumour in adults (annual 

incidence 3 per 100,000; [1]). It carries a very poor prognosis with mean overall survival of 12-17 

months. Despite testing a multitude of chemotherapy agents and strategies, very little progress has 

been made in extending the life expectancy of those diagnosed with a GBM, since the establishment 

of the Stupp protocol (a combination of radiotherapy and temozolomide) a decade ago [2, 3].  This is 

believed to be due to a high level of intrinsic drug resistance [4]  combined with the fact that these 

tumours tend to diffusely invade the local brain parenchyma making it difficult to identify the 

perimeter and effectively remove them surgically [5-7]. An improvement in clinical outcome 

therefore requires identification of drugs that can inhibit invasion as well as promote cell death.   

Antineoplastic effects of topoisomerase inhibitors have been observed in glioma cells. 

Topoisomerases are enzymes involved in cleaving and religating supercoiled DNA. Topoisomerase I 

does this through making single strand breaks whereas topoisomerase II breaks both strands.  

Inhibition of either enzyme results in cell death and cancer cells have been shown to be selectively 

sensitive to topoisomerase inhibitors. Indeed there are a number of ongoing glioma clinical trials 

exploring the combination of established inhibitors with other marketed drugs e.g. the phase II 

clinical trial NCT01574092 is assessing irinotecan (topoisomerase I inhibitor) in combination with 

cisplatin. In addition to which, small molecule inhibitors such as the topoisomerase II inhibitor 

Banoxantrone (phase I/II) or the topoisomerase I inhibitors Cositecan (phase I) and Gimatecan 

(phase I) are also currently in clinical trials [8]. Over time, however, studies have shown that many 

tumours become resistant to topoisomerase II inhibitors due to increased DNA repair or acquired 

mutations in topoisomerase II [9, 10], although whether this is paralleled by an increase in general 

drug resistance mechanisms (e.g. multidrug efflux pumps) is unknown. 

In this study, we set out to determine the cellular effects of long-term exposure to topoisomerase 

inhibitors in a glioma cell line (C6), focusing on acquired cross-resistance and invasion.  The C6 

glioma cell line was grown out from a glioma induced in an outbred Wistar rat strain by repeated 

rouŶds of treatŵeŶt ǁith N’N’-methylnitrosourea [11, 12]. Injection of the C6 cell line into newborn 

rats produced a tumour with pathology consistent with a glioblastoma multiforme including a 

diffuse invading border [13]. Since then it has been used as an experimental model in a number of 

different studies (reviewed in [14]).  C6 cells were continuously exposed to either a topoisomerase I 

inhibitor (irinotecan) or a topoisomerase II inhibitor (etoposide). In common with other studies we 

found that continuous treatment with etoposide resulted in increased resistance to this agent, but 
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did not induce cross-resistance to irinotecan. In contrast, even after many rounds of exposure to the 

irinotecan, sensitivity to this drug was maintained and, importantly, we also observed a reduction in 

migratory capacity of treated cells. This data argues for the further clinical investigation of 

topoisomerase I inhibition as a mechanism to limit glioma invasion without incurring increased 

resistance to chemotherapy. 

  

Materials and Methods 

Cell culture 

The rat C6 glioma cell line was maintained at 37˚C/5% CO2 in DulďeĐĐo’s Modified Eagle Medium 

(DMEM) (Invitrogen) with 10% foetal bovine serum (FBS). Drug selected cell lines (C6-etoposide and 

C6-irinotecan) were established by continuous culture over 5 passages at the drug concentration 

established to cause death of 70% of cells i.e.in the presence of 16 ʅM etoposide ;“igŵaͿ aŶd 10 ʅM 

irinotecan (Sigma). In the case of etoposide selection, cells were incubated for 2 hours [15]  and then 

media was changed while for irinotecan  selection, cells were incubated for 96 hours then media was 

changed [16]. Similarly, in experiments with prolonged duration such as clonogenic assays, the drugs 

were removed after 2 hours and 96 hours for etoposide and irinotecan, respectively.   

 

Western blot analysis 

Cell pellets were resuspended in PBS/glycerol (10% v/v) supplemented with EDTA free protease 

inhibitor cocktail set III (Calbiochem) and lysed by probe sonication for 3 x 10-20 second bursts. 

Equal quantities of total protein were resolved on 8-12% w/v polyacrylamide gels and protein was 

transferred to HybondTM–P PVDF membrane (Amersham Biosciences). Membranes were blocked 

with 5% w/v non- fat Marvel milk in TBST buffer (25 mM Tris pH 7.6, 0.15 M NaCl, 0.1% v/v Tween-

20) at room temperature for an hour followed by incubation with primary antibodies (dilutions given 

in figure legends) at 4°C overnight. The membranes were then washed with TBST and incubated for 

1 hour at room temperature with horseradish peroxidase conjugated secondary antibodies. 

Following washing, the specific proteins were detected using a SuperSignal® West Pico 

Chemilluminescent Substrate (Thermo Scientific). Where band intensity was quantified, the density 

of unsaturated exposures was determined with Scion Image software (NIH, USA) after scanning the 

blots at 600 dpi resolution. 
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Quantitative RT- PCR analysis 

RNA was isolated using a mirVaŶa™ ŵiRNA isolatioŶ kit ;AŵďioŶ) and transcribed into cDNA using 

Superscript III reverse transcriptase (Invitrogen). Quantitative reverse transcription PCR (qPCR) 

analysis was carried out using a CFX96 real-time PCR machine (Biorad) and iQ SYBR Green Superrmix 

(Biorad; primers in Supplementary Table 1).  Samples were analysed in triplicate and data obtained 

from three independent experiments were used for analysis of relative gene expression compared to 

GAPDH aŶd β-Actin [17] with the Pfaffl equation [18]. 

 

Clonogenic assay 

Viability was determined following an established clonogenic assay protocol [19]. Approximately 100 

cells were seeded in a 2 ml volume into a 6 well plate and were treated with etoposide (5 - 80 µM), 

irinotecan (0.5 - 24 µM) or a vehicle control (DMSO either 0.08% v/v or 0.02% v/v for etoposide and 

irinotecan respectively). Plates were incubated for 7-10 days until colonies containing approximately 

50 cells were visible in control wells.  Subsequently, media was removed and colonies were fixed 

with paraformaldehyde (4% (w/v) PFA in PBS, 20 minutes) and stained with crystal violet (0.1% (w/v) 

in distilled H2O, 5 minutes), prior to colony counting.  

 

Flow cytometry 

Single cell suspensions (2 x 106 cells/ 0.1 ml) in fluorescent activated cell sorting (FACS) buffer (0.5% 

w/v BSA in phenol red free DMEM) were incubated with rhodamine 123 (2 µM) and periodically 

inverted during a 30 minute incubation at 37°C. Cells were washed twice by pelleting (250g, 3 

minutes, 4°C) and resuspension in FACS buffer. Cellular fluorescence was determined using a 

Cytomics FC500 (Beckman Coulter) flow cytometer and data analysed with WinMDI (Scripps 

Institute). 

 

Reactive oxygen species (ROS) assay 

Black clear-bottom 96-well plates (Greiner Bio-one) were seeded with 10,000 cells per well. After 

overnight incubation, media was replaced by Hanks Balanced Salt Solution (HBSS) supplemented 

with 50 ʅM Ϯ’,7’-dichlorofluorescin diacetate (DCFH-DA; Invitrogen)   and the plate was incubated in 

a 37˚C/5% CO2 incubator for 30 minutes. Excess DCFH-DA was removed by washing with HBSS. ROS 
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production was then induced by incubation with indicated concentrations of tert-butyl 

hydroperoxide (TBHP) (Sigma). The increase in DCF fluorescence (indicative of ROS production) was 

measured (ʄEx 485nm; ʄEm 530nm) on a Flexstation 3 fluorescence microplate reader (Molecular 

Devices, USA) over a 3 hour period. Rates of ROS production were determined across the linear 

region of the time course (typically 60-90 minutes) and fold-changes in the rate of ROS production 

were determined compared to cells without TBHP treatment. 

 

Wound scratch assay 

Cells (0.5x106 in DMEM containing 10% FBS) were seeded in duplicate sterile 6-well plates and 

iŶĐuďated oǀerŶight iŶ 37˚C/5% CO2. A scratch was then made across the centre of each well with a 

sterile Ϯ00 ʅl pipette tip. Cell migration was assessed with time lapse microscopy (LEICA DMIRB 

MiĐrosĐope, LEICA MiĐrosysteŵͿ at 37˚C for up to 65 hours. Images were taken with brightfield 10x 

phase contrast objective lens, every 30 minutes at three different positions along each scratch. All 

images were analysed using ImageJ software to determine the wound size relative to the initial 

scratch.  

 

Transwell migration assay 

A transwell migration assay was performed to determine the migration response under the influence 

of a chemo-attractant (10% FBS). Experiments were performed using the ChemoTx®System kit 

(Neuro Probe) aĐĐordiŶg to the ŵaŶufaĐturer’s iŶstruĐtioŶs. Cells ;2x104) were added to the upper 

filter and migration towards the chemo-attractant (with HBSS as control) occurred during incubation 

for 24 hours (37˚C/5% CO2). Following the incubation, the media was aspirated and cells were fixed 

(4% PFA in PBS, 20 minutes), prior to nuclear DNA staining with Hoechst 33342 for 5 minutes. Filters 

were washed once with PBS and the microplate was scanned on an ImageXpressMICRO (Molecular 

Devices, USA) to determine the total number of migrated cells.  

 

Statistical analysis 

All experiments were conducted on at least three independent occasions. GraphPad Prism 

(GraphPad Software, San Diego California USA) was used for all data fitting and statistical data 

analysis. Clonogenic assay data were fitted to the general sigmoidal dose response equation. Wound 
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closure data was fitted using exponential decay equations. ROS production rates were determined 

using linear regression. Where data from multiple experiments are displayed in column format the 

error bars represent the standard error of the mean. Statistical significance was analysed by one way 

ANOVA or unpaired t-test (as described in figure legends) to compare between cell lines. A P value 

smaller than 0.05 (P<0.05) was considered significant. 

 

Results: 

Understanding of glioma drug resistance and local invasion is critical if we are to develop better 

therapies for this type of brain tumour. We were interested in observing whether changes in drug 

resistance and invasion occurred, in a model glioma cell line (C6), following exposure to 

topoisomerase I and topoisomerase II inhibition. Initially, we explored whether etoposide 

(topoisomerase II inhibitor) and irinotecan (topoisomerase I inhibitor) were cytotoxic against the C6 

cell line and used a clonogenic assay to determine IC50,70 values (the concentration of drug required 

to achieve 50 or 70%-maximal inhibition of colony growth; Figure 1). The colony formation of the C6 

cell line following a single exposure to either drug could be inhibited by low micromolar 

concentrations of both drugs (IC50 for etoposide 8.6 ± 0.6 µM; IC50 for irinotecan 5.3 ± 0.4 µM). Since 

chemotherapy is normally given to patients in cycles, consisting of a weekly dose for several weeks 

then a period of rest followed by further cycles, we investigated how C6 cells would respond to 

chronic cyclical exposure to topoisomerase inhibitors at cytotoxic concentrations. Therefore, we 

cultured cells for multiple passages in the presence of IC70 concentrations of etoposide or irinotecan 

(16 µM and 8 µM respectively), resulting in the production of sub-lines called C6-Et (for a cell line 

cultured in the presence of etoposide) and C6-Ir (for a cell line cultured in the presence of irinotecan. 

A further cell line (C6-V) was established after continuous culture in the presence of DMSO (0.05% 

v/v), the solvent for both drugs.  

 

A common mechanism that might be expected to show alteration upon drug selection is the up-

regulation of ABC transporters of the multidrug resistance family [20]. We saw increased expression 

of ABCB1/P-glycoprotein in both cell lines compared to a DMSO (vehicle control) selected C6 cell line 

(Figure 2A). Similarly, a functional assay, based upon extrusion of the fluorescent dye rhodamine 123 

(R123) by ABCB1-expressing cells, demonstrated that the percentage of cells capable of exporting 

R123 increased to over 75% in both selected cell lines (Figure 2B). For comparison, the DMSO-

treated C6 cell line showed R123 extrusion in 35% of cells, a value identical to that of the parental C6 
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cell line (Figure 2B). Thus, both cell lines displayed elevated ABCB1 expression and function following 

continuous exposure to topoisomerase inhibitors. In contrast, ABCG2 (breast cancer resistance 

protein) was not detected either before or after drug selection of the C6 cell line, and ABCC1 

(multidrug resistance associated protein 1) was only expressed after exposure of cell lines to 

topoisomerase inhibitors for greater than 10 passages, culture conditions that were not typical in 

our experiments (data not shown). 

 

We then examined whether the increase in ABCB1 expression was associated with increased 

resistance to the topoisomerase inhibitor used in their selection, or with acquired cross-resistance. 

In clonogenic assays, the C6-Et cell line showed an increase (2.5-fold; p < 0.05; Figure 3A) in the IC70 

for etoposide but showed no cross-resistance to irinotecan, although both drugs are ABCB1 

substrates [21]. The modest increase in resistance to etoposide upon continuous exposure without 

associated cross-resistance leads us to propose that the mechanism of elevated resistance is not 

solely via a classical multidrug export pump, and that other mechanism(s) of drug resistance, or 

protection against the damaging effects of etoposide is more active in the C6-Et cell line. Conversely, 

the C6-Ir cell line maintained the same IC70 for irinotecan compared to the C6-V cell line (Figure 3B), 

i.e. growing C6 cells in the presence of irinotecan did not result in the selection of cells with elevated 

irinotecan resistance, in agreement with studies indicating that ABCB1, although capable of 

transporting irinotecan [21], is not able to establish substantial concentration gradients of this drug 

[22]. 

 

Resistance to chemotherapy in cancer cell lines has also been associated with the emergence of a 

sub-population of cells that displays lower levels of reactive oxygen species, and concomitant 

elevation of antioxidant enzyme expression [23]. We investigated whether this was true for the drug 

exposed C6 cell lines by determining their ROS production rates following incubation with tertiary 

butyl hydroperoxide. ROS production rates were linear for at least 60 minutes following TBHP 

administration, and were consistent in all three cell lines at multiple concentrations of TBHP (Figure 

4A; ANOVA P > 0.05), indicating that the cell lines do not differ in their ability to respond to ROS 

production. In confirmation of this, the expression level of ROS-detoxifying enzymes (e.g. catalase) 

was equal across the 3 cell lines (Figure 4B, C). This suggests that the prolonged exposure to 

irinotecan or etoposide does not result in the emergence of a cell population better able to respond 

to oxidative stress.  
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One of the hallmarks of glioma is local invasion [5, 7] , and it was therefore of interest to determine 

cell migration following drug exposure in a glioma cell line model. Monolayers of C6-V, C6-Et and C6-

Ir cells were scratch-wounded with a sterile 0.2ml pipette tip and the rate of migration into the cell 

free area monitored by time-lapse microscopy. Apparent from the still images taken from time-lapse 

videos is the reduced wound closure in irinotecan treated cells (Figure 5A, compare for example the 

16 and 24 hour time points). The size of the wound was measured at 30 minute intervals allowing for 

a single exponential fit of the data (Figure 5B) to determine the half-time for wound closure. Two of 

the three cell lines fitted a single exponential equation, whilst the fitting of the C6-Et cell line data 

required the presence of a short lag phase before an exponential decay. Non-linear regression of the 

data shows that the C6-Ir cell line closed the wound significantly slower (t1/2 = 720 ± 35 mins) than 

the other two cell lines (C6-Et t1/2 457 ± 24 mins, parental C6 cell line t1/2 294 ± 24 mins). A similar 

reduction in migratory ability for the C6-Ir cell line was observed with transwell migration assays 

(Figure 5C).A potential molecular basis of this reduced rate of migration was investigated by 

determining the expression of collagens Col1A2 and Col3A1, both of which are implicated in tumour 

invasion and/or epithelia to mesenchymal transition [24]. For Col3A1, the C6-Ir cell line showed a 

significantly reduced gene expression compared to the C6-Et and C6-V cell line (Figure 5D), and for 

Col1A2 C6-Ir also showed reduced gene expression compared to the C6-Et (Figure 5E).  

 

Discussion 

In this study we compared the effect of two established antineoplastic agents (the topoisomerase II 

inhibitor etoposide and the topoisomerase I inhibitor irinotecan) on glioma cell line drug resistance 

and invasion. Instead of monitoring glioma cell response to a single exposure, we focused instead on 

cellular response after several rounds of treatment (mirroring the clinical regimen). What we 

observed was that C6 glioma cells do not acquire additional resistance to irinotecan when 

continuously treated with this type I topoisomerase I inhibitor. In contrast, C6 cells became more 

resistant to etoposide after several rounds of treatment with this type II topoisomerase inhibitor. 

Analysis of C6-Et cells revealed that they had increased expression of the multidrug transporter 

ABCB1. An increase in ABCB1 expression was however observed in cells treated with both etoposide 

and irinotecan, but only resistance to etoposide was increased, and this was in the absence of cross-

resistance to irinotecan. Hence, although ABCB1 is upregulated this does not appear to be a major 

drug resistance mechanism in these cells. We also assayed the ability of our continuously exposed 
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cells to withstand reactive oxygen species, but saw no change in this ability. The resistance to 

etoposide therefore appears to be highly specific and the majority of resistance is probably due to a 

mutation within topoisomerase II itself preventing interaction with etoposide [9] or an increase in 

the rate of DNA repair [10]. These data indicate that etoposide is a poor choice for cyclical therapy in 

glioma as it leads to elevated etoposide resistance. Continuous exposure to irinotecan, on the other 

hand, does not lead to increased resistance to itself or cross-resistance to etoposide. 

 

Local invasion is a major problem in glioma and makes it difficult to completely surgically remove 

these tumours. Glioma cells have been shown to be able to produce their own extracellular matrix 

factors including collagens [25] and high concentrations of collagen in the glioma microenvironment 

have been shown to correlate with more effective migration [24]. C6 glioma cells produce a diffusely 

invading tumour in animal models and so may be more useful for modelling invasion in vitro 

compared to U87 cells which produce more circumscribed tumours. We observed a reduced 

migratory capacity of C6 cells treated with repeated cycles of irinotecan, and a reduction in 

expression of collagen Col3A1 suggestive that impaired migration may be due to inhibition of cell 

matrix interactions that are essential for tumour invasion. In contrast, etoposide treated cells which 

show rapid wound closure also display elevated collagen expression, suggesting that treatment has 

selected cells with an increased migratory capacity which would be an undesirable effect in therapy. 

Although there are no clinical reports of increased metastatic potential of etoposide treated 

tumours, there are growing reports that tumour drug resistance and invasion are interlinked and our 

data further contributes to this emerging picture [26-29]. 

 

In conclusion, repeated rounds of treatment of glioma cells with the topoisomerase I inhibitor 

irinotecan does not result in increased drug resistance or ROS resistance, rather it produces a cell 

line with impaired migration, supporting further the investigation of irinotecan and derivatives in 

treatment of glioma. 
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Figure Legends 

Figure 1.  The glioma cell line C6 is sensitive to DNA topoisomerase inhibitors. A, B clonogenic 

assays of C6 cells were performed in the presence of increasing concentrations of etoposide (A) or 

irinotecan (B) resulting in dose-dependent inhibition of colony growth. The mean IC70 concentrations 

are 16.2 µM for etoposide and 7.6 µM for irinotecan. All data are derived from at least 3 

independent experiments and error bars denote the standard error of the mean. 

 

Figure 2. Expression and function of ABCB1 is increased in drug exposed C6 sub-lines. A. 

Microsomal membrane fractions (40 µg) of the indicated C6 cell lines were resolved on 8% w/v 

polyacrylamide gels and, following electro-transfer, membranes were probed with anti-ABCB1 

antibody C219 (1:1000). Blots were subsequently re-probed with anti-tubulin antibodies. Results are 

representative of at least 3 independent experiments. ABCB1 is observed as a two bands indicative 

of glycosylation. B. ABCB1 function was confirmed in a flow cytometry assay in which the percentage 

of cells exporting rhdoamine-123 (R123) was determined. Results are the mean (s.e.m.) of at least 3 

independent experiments. Data were compared using ANOVA and Newman-Kuels post-test. Cell 

lines showing increased % of rhodamine extruding cells compared to vector treated controls are 

designated by * (p < 0.05) and ** (p < 0.01). 

 

Figure 3. Continuous exposure of C6 to etoposide, but not to irinotecan, results in selection of a 

more drug resistant population. The resistance of parental C6 and drug exposed  sub-lines lines was 

assessed by clonogenic assays (A, B). The C6-Et line showed increased resistance to etoposide 

compared to the other cell lines (A, p < 0.05; ANOVA), whereas the C6-Ir cell line showed no increase 

in resistance (B).  The C6-Et cell line did not exhibit cross-resistance to irinotecan. 

 

Figure 4. Prolonged exposure to DNA topoisomerase inhibitors is not associated with increased 

resistance to ROS. A Cells were cultured in the absence or presence of a reactive oxygen species 

inducer (TBHP) and a fluorescent indicator of ROS production (DCF). A linear rate of ROS production 

was measured over 60 minutes following TBHP addition (relative fluorescence units/minute). 

Relative rates of ROS production compared to untreated cells were calculated over this linear period 

and displayed as a function of TBHP concentration. B, C. Expression of catalase was determined by 

western blotting using polyclonal anti catalase antibody at 1:500 dilution (Abcam) and relative 
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expression determined by comparison to actin band intensity (AC-74 monoclonal antibody at 1:5000 

dilution) (C). All data represents the mean (s.e.m.) of at least 3 independent experiments. 

 

Figure 5. Exposure to irinotecan results in reduced migration and expression of collagens.  A 

Wound scratch healing assays were analysed by time-lapse microscopy, and representative images 

in the time-lapse are shown. B Wound closure is represented in the form of percentage initial 

scratch size as a function of time. Individual data points and errors are omitted for clarity (as each 

line results from >130 data points). Non-linear regression of the data shows that the C6-Ir cell line 

closed the wound significantly slower (t1/2 = 720 ± 35 mins) than the C6-Et (457 ± 24 mins) and 

parental C6 cell line. C. Transwell migration assays demonstrate that C6-Ir displays a reduced 

migration in response to a chemoattractant compared to C6-Et. D, E qPCR of collagens 3A1 (D) and 

1A2 (E) demonstrates reduced collagen expression in the C6-irinotecan cell line compared to the C6-

etoposide cell line (p-vales obtained from post-test comparisons following ANOVA, * p < 0.05, ** P < 

0.01, *** P < 0.001). The relative expression of the collagens was determined compared to the 

geoŵetriĐ ŵeaŶ of tǁo ͞housekeepiŶg geŶes͟ GAPDH aŶd B-actin. All data represents the mean 

(s.e.m.) of at least 3 independent experiments. 
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Supplementary Table 1: Primer pairs designed for qRT-PCR 

Gene Forward primer Reverse primer 

PCR 

product 

size 

COL1A2 
5’-GCCCGCACATGCCGTGACTT-3’ 
 

5’-GGGCCTGGATGCAGGTTTCA-3’ 
 

142 bp 

 

COL3A1 
5’-TGGTGGACAGATGCTGGTGCTG-3’ 
 

5’-GGCCCGGCTGGAAAGAAGTCTG-3’ 
 

150 bp 

 

GAPDH 
5’-CCCCCTGGCCAAGGTCATCCA-3’ 
 

5’-CGGCCATCACGCCACAGCTT-3’ 
 

126 bp 

 

β-Actin 
5’-ACCGAGGCCCCTCTGAACCC-3’ 
 

5’-CCAGTGGTACGACCAGAGGCA-3’ 
 

134 bp 

 

 

 

Supplemental Material Click here to download Supplemental Material Supplementary Table 1.docx 

http://www.editorialmanager.com/neon/download.aspx?id=209586&guid=06c8969b-9f09-4f55-b84c-ac4c6bc16e95&scheme=1
http://www.editorialmanager.com/neon/download.aspx?id=209586&guid=06c8969b-9f09-4f55-b84c-ac4c6bc16e95&scheme=1

