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MUTATIONS OF FAKE WEIGHTED PROJECTIVE PLANES

MOHAMMAD E. AKHTAR AND ALEXANDER M. KASPRZYK

Abstract. In previous work by Coates, Galkin, and the authors, the notion of mutation be-

tween lattice polytopes was introduced. Such a mutation gives rise to a deformation between

the corresponding toric varieties. In this paper we study one-step mutations that correspond to

deformations between weighted projective planes, giving a complete characterisation of such mu-

tations in terms of T -singularities. We show also that the weights involved satisfy Diophantine

equations, generalising results of Hacking–Prokhorov.

1. Introduction

In [ACGK12] we described a combinatorial notion of mutation between convex lattice poly-

topes. In this paper we begin to explore the geometry behind this idea. Given a convex lattice

polytope P containing the origin and with primitive vertices, there is a corresponding toric va-

riety X defined by the spanning fan of P . A mutation between polytopes P and Q determines

a deformation between XP and XQ [Ilt12]. Our main result characterises mutations between

triangles; thus we characterise certain deformations, over P1, with fibers given by fake weighted

projective planes. We recover and generalise certain results of Hacking and Prokhorov [HP10,

Theorem 4.1] connecting the fake weighted projective planes with T -singularities to solutions of

Markov-type equations. We prove the following:

Proposition 1.1. Let X “ Ppλ0, λ1, λ2q be a weighted projective plane. Up to reordering of

the weights, there exists a one-step mutation to a weighted projective plane Y if and only if
1

λ0
pλ1, λ2q is a T -singularity. When this is the case, Y “ P

´

λ1, λ2,
pλ1`λ2q2

λ0

¯

. More generally,

there exists a one-step mutation from the fake weighted projective plane X{pZ{nq to the fake

weighted projective plane Y {pZ{n1q only if n “ n1 and 1

λ0
pλ1, λ2q is a T -singularity.

In Proposition 3.12 we associate to a weighted projective plane X a Diophantine equation

(1.1) mx0x1x2 “ kpc0x
2
0 ` c1x

2
1 ` c2x

2
2q.

The weights pλ0, λ1, λ2q of X correspond to a solution pa0, a1, a2q, where λi “ cia
2
i , i “ 0, 1, 2,

and the degree of X is given by

p´KXq2 “
m2

c0c1c2k2
.

One-step mutations of X correspond to transformations of the solutions to (1.1), and all such

solutions can be generated from the so-called minimal weights by mutation.

2010 Mathematics Subject Classification: 52B20 (Primary); 14J45, 11D99 (Secondary).

1

http://arxiv.org/abs/1302.1152v2


2 M. E. AKHTAR AND A. M. KASPRZYK

When X “ P2, equation (1.1) becomes the celebrated Markov equation [Mar80]. Certain

other special cases were studied by Rosenberger [Ros79]. These cases all have finitely many

minimal weights. In §4 we give an example where the corresponding Diophantine equation has

infinitely many minimal weights.

2. Mutations of Fano polytopes

Let N – Zn be a lattice with dual M :“ HompN,Zq. A lattice polytope P Ă NQ :“ N bZ Q

is called Fano if it satisfies three conditions:

(1) P is of maximum dimension, dimP “ dimN ;

(2) The origin is contained in the strict interior of P , 0 P intpP q;

(3) The vertices vertpP q of P are primitive lattice points, i.e. for any v P vertpP q there are

no other lattice points on the line segment 0v joining v and the origin.

The dual of P is defined to be the polyhedron

P_ :“ tu P MQ | upvq ě ´1 for all v P P u Ă MQ.

By condition (2) this is a polytope with 0 P intpP_q, although it need not be a lattice polytope.

See [KN12] for an overview of Fano polytopes.

We briefly recall the notation of [ACGK12, §3]. Any choice of primitive vector w P M

determines a lattice height function w : N Ñ Z which naturally extends to NQ Ñ Q. A subset

S Ă NQ is said to lie at height h P Q with respect to w if wpSq :“ twpsq | s P Su “ thu; we

write wpSq “ h. The set of all points of NQ lying at height h with respect to a given w is an

affine hyperplane Hw,h :“ tv P NQ | wpvq “ hu. In particular,

whpP q :“ convpHw,h X P X Nq Ă NQ

will denote the (possibly empty) convex hull of all lattice points in P at height h.

Define

hmin :“ mintwpvq | v P P u, hmax :“ maxtwpvq | v P P u.

Since P is a lattice polytope, both hmin and hmax are integers. Condition (2) guarantees that

hmin ă 0 and hmax ą 0.

Definition 2.1. A factor of P with respect to w is a lattice polytope F Ă NQ satisfying:

(1) wpF q “ 0;

(2) For every integer h, hmin ď h ă 0, there exists a (possibly empty) lattice polytope

Gh Ă NQ at height h such that

Hw,h X vertpP q Ď Gh ` p´hqF Ď whpP q.

Note that, for given polytope P Ă NQ and width vector w P M , a factor F need not exist.

When a factor does exist we make the following construction:
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Definition 2.2 ([ACGK12, Definition 5]). Let P Ă NQ be a polytope with width vector w P M ,

factor F , and polytopes tGhu. We define the corresponding combinatorial mutation to be the

convex lattice polytope

mutwpP,F ; tGhuq :“ conv

˜

´1
ď

h“hmin

Gh Y
hmax
ď

h“0

pwhpP q ` hF q

¸

Ă NQ.

For brevity we will refer to a combinatorial mutation simply as a mutation.

We summarise the key properties of mutation [ACGK12]:

(1) Since for any v P N such that wpvq “ 0 we have that

mutwpP,F ; tGhuq – mutwpP, v ` F ; tGh ` hvuq,

we need only consider factors F up to translation. In particular, choosing F to be a

point leaves P unchanged (up to isomorphism).

(2) If tGhu and tG1
hu are any two collections of polytopes for a factor F , then

mutwpP,F ; tGhuq – mutwpP,F ; tG1
huq.

Thus the choice of collection tGhu is irrelevant and we write mutwpP,F q.

(3) P is a Fano polytope if and only if mutwpP,F q is a Fano polytope.

(4) Let Q :“ mutwpP,F q. Then mut´wpQ,F q “ P , so mutations are invertible.

In [ACGK12] it was also shown that mutations have a natural description as a piecewise linear

transformation of the lattice M . We require the following definition.

Definition 2.3. The inner normal fan in M of a polytope F Ă NQ is generated by the cones

σvF consisting of those linear functions which are minimal on a given vertex vF of F . That is,

σvF :“
 

u P MQ | upvF q “ min
 

upv1q | v1 P F
((

.

(5) A mutation of P Ă NQ induces a piecewise linear transformation ϕ of MQ such that

pϕpP_qq_ “ mutwpP,F q, given by

ϕ : u ÞÑ u ´ uminw, u P MQ,

where umin :“ mintupvF q | vF P vertpF qu. The inner normal fan of F Ă NQ determines

a chamber decomposition of MQ, and ϕ acts as a linear transformation on the interior

of each maximal dimensional cone of this fan.

(6) As a consequence of (5), the toric varieties XP and XQ defined by the spanning fans

of P and Q :“ mutwpP,F q have the same degree (in fact they have the same Hilbert

series).

Example 2.4. Consider the triangle P “ convtp1,´1q, p´1, 2q, p0,´1qu Ă NQ corresponding

to the toric variety P2. Let w “ p0, 1q P M and set F “ convt0, p1, 0qu Ă NQ. This defines

a mutation from P to the triangle Q “ convtp1, 2q, p´1, 2q, p0,´1qu Ă NQ, as illustrated in
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NQ : ÞÝÑ

MQ : ÞÝÑ

Figure 1. A mutation from the triangle associated with P2 to the triangle as-

sociated with Pp1, 1, 4q.

Figure 1. On the dual side, this corresponds to a piecewise linear map ϕ : u ÞÑ uMσ for

u “ pα, βq P MQ, where

Mσ “

$

’

’

’

&

’

’

’

%

ˆ

1 0

0 1

˙

if α ě 0,
ˆ

1 ´1

0 1

˙

otherwise.

In particular, ϕpP_q “ Q_.

Mutations are particularly simple in the two-dimensional case. In this setting, w P M defines

a non-trivial mutation of P Ă NQ if and only if w P tu | u P vertpP_qu Ă M , where u P M is

the unique primitive lattice vector on the ray passing through u. Nontrivial factors F Ă NQ are

just line segments, so it suffices to restrict attention to those F which have vertex set t0, fu, for

some f P N with wpfq “ 0. The inner normal fan of any factor F of P with respect to a given

w is just the linear subspace of MQ spanned by w. This divides MQ into two chambers; the

piecewise linear transformation ϕ acts trivially in one of the chambers, and as u ÞÑ u ´ upfqw

in the other.

3. One-step mutations of triangles

Set N – Z2 and let P :“ convtv0, v1, v2u Ă NQ be a Fano triangle. Since 0 P intpP q there

exists a (unique) choice of coprime positive integers λ0, λ1, λ2 P Zą0 with λ0v0`λ1v1`λ2v2 “ 0.

The projective toric surface X given by the spanning fan of P has Picard rank 1, and is called a

fake weighted projective plane with weights pλ0, λ1, λ2q; X is the quotient of Ppλ0, λ1, λ2q by the

action of a finite group of order multpXq acting freely in codimension one [Con02, Buc08, Kas09].

Remark 3.1. Since the vertices of P are primitive, the weights pλ0, λ1, λ2q are well-formed :

that is, gcdtλi, λju “ 1, i ‰ j. In this paper we will always require that weights are well-formed.

Definition 3.2. We say that a fake weighted projective plane Y with defining Fano triangle

Q Ă NQ is obtained from X by a one-step mutation if Q – mutwpP,F q for some choice of w

and factor F .
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u =(α , β )1 44

u =(α , β )1 11

u =(0, β )33

u =(α , β )2 22

(0, β )=u
0 0

(0,0)

Figure 2. A one-step mutation, depicted in MQ, of the triangle convtu0, u1, u2u

to the triangle convtu2, u3, u4u.

3.1. One-step mutations in MQ and weights. First we address how the weights pλ0, λ1, λ2q

associated with a Fano triangle T Ă NQ transform under mutation. We will require the following

fact (see, for example, [Con02, Lemma 5.3]): Let T_ “ convtu0, u1, u2u by the triangle in MQ

dual to T . Then, after possible reordering, λ0u0 `λ1u1 `λ2u2 “ 0. Hence the weights of T and

the weights of T_ are equivalent.

Proposition 3.3. Let X be a fake weighted projective plane with weights pλ0, λ1, λ2q. Suppose

there exists a one-step mutation to a fake weighted projective plane Y . Then, up to relabelling,

λ0 � pλ1 ` λ2q2 and Y has weights
ˆ

λ1, λ2,
pλ1 ` λ2q2

λ0

˙

.

Proof. Consider a lattice triangle T1 Ă NQ, 0 P intpT1q, and suppose that there exists a width

vector w P M and factor F Ă NQ, wpF q “ 0, such that the mutation T2 “ mutwpT1, F q is also a

triangle. Without loss of generality we can assume that w “ p0, 1q P M and F “ convt0, pa, 0qu

for some a P Zą0. The mutation corresponds to a piecewise linear action on MQ via u ÞÑ uMσ

given by

Mσ “

$

’

’

’

&

’

’

’

%

ˆ

1 0

0 1

˙

if u P M`,

ˆ

1 ´a

0 1

˙

otherwise,

where M` is the half-space tpα, βq P MQ | α ą 0u. Let T1
_ “ convtu0, u1, u2u Ă MQ be the

(possibly rational) triangle dual to T1, where u2 P M` and so is fixed under the action of the

mutation, and u1 P M´ :“ tpα, βq P MQ | α ă 0u. Since T2
_ Ă MQ is also a triangle, the only

possibility is that u0 lies on the line 〈w〉 :“ tγw P MQ | γ P Qu, T2
_ “ convtu2, u3, u4u where u0

is contained in the line segment u2u4 joining u2 and u4, and u3 is contained in the line segment

u1u2. This situation is illustrated in Figure 2.
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Since 0 P T1
_ there exist unique weights pλ0, λ1, λ2q P Z3

ą0, gcdtλ0, λ1, λ2u “ 1, such that

(3.1) λ0u0 ` λ1u1 ` λ2u2 “ 0.

Since u3 “ p0, β3q P u1u2 there exists some 0 ă µ ă 1 such that µα1 ` p1 ´ µqα2 “ 0. But

λ1α1 ` λ2α2 “ 0, hence
λ1

λ1 ` λ2

α1 `
λ2

λ1 ` λ2

α2 “ 0.

By uniqueness of µ,

(3.2) u3 “
λ1

λ1 ` λ2

u1 `
λ2

λ1 ` λ2

u2.

Similarly, since u0 “ p0, β0q P u2u4 there exists some 0 ă ν ă 1 such that u0 “ νu2`p1´νqu4,

giving

u4 “
1

1 ´ ν
u0 ´

ν

1 ´ ν
u2.

Comparing coefficients we see that

(3.3) α1 “ ´
ν

1 ´ ν
α2.

But u4 “ u1 ` κu0 for some κ ą 0. Combining this with equation (3.1) we see that

u4 “
λ1κ ´ λ0

λ1

u0 ´
λ2

λ1

u2.

Comparing coefficients, we obtain

(3.4) α1 “ ´
λ2

λ1

α2.

Equating equations (3.3) and (3.4) gives

(3.5) u4 “
λ1 ` λ2

λ1

u0 ´
λ2

λ1

u2.

Notice that, since both u0 and u3 are contained in 〈w〉, there exists some γ ą 0 such that

´γu3 “ u0. Substituting into equation (3.5) we have

(3.6)
λ2

λ1

u2 ` u4 ` γ1u3 “ 0

where γ1 “ γpλ1 ` λ2q{λ1 ą 0. Substituting in equation (3.2) we obtain

λ2

λ1

u2 ` u4 `
γ1λ1

λ1 ` λ2

u1 `
γ1λ2

λ1 ` λ2

u2 “ 0.

Using equation (3.5) to rewrite the first two terms and clearing denominators gives:

(3.7) pλ1 ` λ2q2u0 ` γ1λ2
1u1 ` γ1λ1λ2u2 “ 0.

Set h :“ λ0 ` λ1 ` λ2 and Γ :“ pλ1 ` λ2q2 ` γ1λ2
1 ` γ1λ1λ2. By comparing equations (3.1)

and (3.7), uniqueness of barycentric coordinates gives:

hpλ1 ` λ2q2 “ Γλ0,

hγ1λ2
1 “ Γλ1,

hγ1λ1λ2 “ Γλ2.
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In particular,

γ1 “
pλ1 ` λ2q2

λ0λ1

.

Substituting this expression for γ1 back into equation (3.6) gives

(3.8) λ0λ2u2 ` pλ1 ` λ2q2u3 ` λ0λ1u4 “ 0.

Finally, we consider the situation where T1 Ă NQ is the triangle associated with a fake

weighted projective plane with weights pλ0, λ1, λ2q, and assume that there exists a one-step

mutation to some triangle T2 Ă NQ. If λ0 does not divide pλ1 `λ2q2, then by equation (3.8) the

associated weights are
`

λ0λ1, λ0λ2, pλ1 ` λ2q2
˘

,

and these fail to be well-formed when λ0 ą 1. Therefore, we must have λ0 � pλ1 ` λ2q2, giving

weights
ˆ

λ1, λ2,
pλ1 ` λ2q2

λ0

˙

.

�

Remark 3.4. Let pλ0, λ1, λ2q be well-formed weights such that λ0 � pλ1 ` λ2q2, and suppose

that there exists some prime p such that

p � λ1 and p �
pλ1 ` λ2q2

λ0

.

Then p � λ2
2 and so p � λ2. But this contradicts pλ0, λ1, λ2q being well-formed. Hence

ˆ

λ1, λ2,
pλ1 ` λ2q2

λ0

˙

are also well-formed.

Example 3.5. There exists no one-step mutation from Pp3, 5, 11q to any other weighted pro-

jective space, since 3 ffl p5 ` 11q2, 5 ffl p3 ` 11q2, and 11 ffl p3 ` 5q2.

Example 3.6. The requirement that λ0 � pλ1 ` λ2q2 in Proposition 3.3 is necessary but not

sufficient. For example, consider the triangle T “ convtp10,´7q, p´5, 2q, p0, 1qu Ă NQ. This has

weights p1, 2, 3q, however there exist no one-step mutations from T .

3.2. One-step mutations in NQ and T -singularities. Our aim in this section is to charac-

terise when a mutation exists. In order to do this, we require the definition of a T -singularity.

Definition 3.7 ([KSB88, Definition 3.7]). A quotient surface singularity is called a T -singularity

if it admits a Q-Gorenstein one-parameter smoothing.

T -singularities include the du Val singularities 1

r
p1, r´1q, and are cyclic quotient singularities

of the form 1

nd2
p1, dna ´ 1q, where gcdtd, au “ 1 [KSB88, Proposition 3.10].

Lemma 3.8. An isolated quotient singularity 1

r
pa, bq is a T -singularity if and only if r � pa`bq2.
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Proof. We begin by noting that the condition that r � pa ` bq2 is independent of the choice of

representation of 1

r
pa, bq. For let c be any integer coprime to r. Then r � pa ` bq2 if and only if

r � c2pa ` bq2 “ pca ` cbq2.

Suppose we are given a T -singularity. Writing the singularity in the form 1

nd2
p1, dna´1q where

gcdtd, au “ 1, we see that nd2 � d2n2a2. Conversely consider the isolated quotient singularity
1

r
pa, bq. Since a is invertible mod r, we can write this as 1

r
p1, b1´1q, where b1 ” ba´1`1 pmod rq.

Write r “ nd2 where n is square-free. Since nd2 � b12 by assumption, we see that nd � b1. In

particular, we can express our singularity in the form 1

nd2
p1, dnα´ 1q for some α P Zą0. Finally,

we note that this really is a T -singularity: if gcdtd, αu “ c then we can absorb this factor into

n1 “ nc2 whilst rescaling d1 “ d{c and α1 “ α{c. �

Proposition 3.9. Let X be a fake weighted projective plane corresponding to a triangle T Ă NQ,

and suppose that the cone C spanned by an edge E of T corresponds to a 1

r
pa, bq singularity.

There exists a one-step mutation to a fake weighted projective plane Y given by mutwpT, F q with

wpEq “ hmin if and only if 1

r
pa, bq is a T -singularity.

Proof. Let X correspond to the lattice triangle T “ convtv1, v2, v3u Ă NQ, where 0 P intpT q

and the vertices vertpT q Ă N are all primitive. Consider the cone C “ conetv1, v2u spanned by

the edge E “ v1v2; this is an isolated quotient singularity (possibly smooth), so is of the form
1

r
pa, bq for some r, a, b P Zą0, gcdtr, au “ gcdtr, bu “ 1.

Let w P M be a primitive lattice point such that wpv1q “ wpv2q “ h for some h ă 0. Then,

up to translation, there exists a factor F Ă NQ, wpF q “ 0, such that T 1 :“ mutwpT, F q is a

triangle if and only if v1 ` p´hqF “ E. Equivalently, if and only if h � |E X N | ´ 1.

Finally, we express the values of h and |E X N | ´ 1 in terms of the singularity 1

r
pa, bq. Set

k :“ gcdtr, a ` bu. Then the height h “ ´r{k, and the number of points on the edge E is given

by

|tm | m P t0, . . . , ru and pa ` bqm ” 0 pmod rqu| “ 1 `
r

h
“ 1 ` k.

Hence h � |E X N | ´ 1 if and only if r{k � k. But r{k � k if and only if r � gcdtr, a ` bu2 “

gcd
 

r2, pa ` bq2
(

, and r � gcd
 

r2, pa ` bq2
(

if and only if r � pa ` bq2. The result follows by

Lemma 3.8. �

Example 3.10. Returning to Example 3.6, we see that the corresponding fake weighted pro-

jective space X is a quotient of Pp1, 2, 3q with multpXq “ 5. The three singularities are 1

5
p1, 3q,

1

10
p1, 3q, and 1

15
p1, 11q, none of which is a T -singularity.

When X is a weighted projective plane, Proposition 3.9 tells us that the condition that

λ0 � pλ1 ` λ2q2 in Proposition 3.3 is both necessary and sufficient.

3.3. One-step mutations and Diophantine equations. Given the results of §3.1 and §3.2,

we are now in a position to relate one-step mutations of Fano triangles to solutions of certain

Diophantine equations.

Lemma 3.11. Let pλ0, λ1, λ2q P Z3
ą0 with d “ gcdtλ0, λ1, λ2u. Write:
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(1) λi “ dcia
2
i , where ai, ci P Zą0 and ci is square-free;

(2) pλ0 ` λ1 ` λ2q2{pλ0λ1λ2q “ m2{prk2q, where m,k, r P Zą0 and r is square-free;

(3) c0c1c2 “ gS2 and dr “ hT 2, where g, h, S, T P Zą0 and both g and h are square-free.

Then pda0, da1, da2q is a solution to the Diophantine equation

(3.9) Smx0x1x2 “ Tkpc0x
2
0 ` c1x

2
1 ` c2x

2
2q.

Proof. By substituting expressions (1) and (3) into (2) we obtain

gS2m2pda0q2pda1q2pda2q2 “ hT 2k2
`

c0pda0q2 ` c1pda1q2 ` c2pda2q2
˘2

.

Comparing square-free parts, we conclude that g “ h. Cancelling and taking square-roots on

both sides establishes the result. �

Since the weights are assumed to be well-formed, d “ S “ T “ 1 and equation (3.9) becomes

(3.10) mx0x1x2 “ kpc0x
2
0 ` c1x

2
1 ` c2x

2
2q.

Suppose that pa0, a1, a2q is a positive integral solution to equation (3.10), so that λi “ cia
2
i . The

expression

(3.11)
pλ0 ` λ1 ` λ2q2

λ0λ1λ2

occurring in Lemma 3.11 is equal to the degree of Ppλ0, λ1, λ2q. More generally if X is a fake

weighted projective plane with weights pλ0, λ1, λ2q then (3.11) is equal to multpXqp´KXq2.

Proposition 3.12. Let X be a fake weighted projective plane and suppose that there exists a

one-step mutation to a fake weighted projective plane Y . Then the weights of X and Y give

solutions to the same Diophantine equation (3.10). In particular, multpXq “ multpY q.

Proof. With notation as in Lemma 3.11, we can write the weights pλ0, λ1, λ2q of X in the form

λi “ cia
2
i , where the ci are square-free positive integers. From Proposition 3.3 we know that Y

has weights
ˆ

λ1, λ2,
pλ1 ` λ2q2

λ0

˙

“

ˆ

c1a
2
1, c2a

2
2,

pc1a
2
1

` c2a
2
2
q2

c0a
2
0

˙

.

The final weight is an integer; in particular, it has square-free part c0. Thus the ci are invariant

under mutation. Furthermore,
´

λ1 ` λ2 ` pλ1`λ2q2

λ0

¯2

λ1 ¨ λ2 ¨ pλ1`λ2q2

λ0

“

`

λ0λ1 ` λ0λ2 ` pλ1 ` λ2q2
˘2

λ0λ1λ2pλ1 ` λ2q2

“
pλ0 ` λ1 ` λ2q2

λ0λ1λ2

“
m2

rk2

and so the ratio m{k is also preserved by mutation. Hence the weights of X and of Y both

generate solutions to the same Diophantine equation (3.10).
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Finally we recall that degree is fixed under mutation, hence p´KXq2 “ p´KY q2. But

m2

rk2
“ multpXqp´KXq2 “ multpY qp´KY q2

and so multpXq “ multpY q. �

By combining Propositions 3.3, 3.9, and 3.12 we obtain Proposition 1.1.

Remark 3.13. The weights of a fake weighted projective plane correspond to a solution

pa0, a1, a2q of equation (3.10). A one-step mutation gives a second solution via the transfor-

mation:

pa0, a1, a2q ÞÑ

ˆ

m

k

a1a2

c0
´ a0, a1, a2

˙

.

Example 3.14. Consider P2. In this case m{k “ 3, c0 “ c1 “ c2 “ 1, and p1, 1, 1q P Z3
ą0 is a

solution of

(3.12) 3x0x1x2 “ x20 ` x21 ` x22.

Up to isomorphism, there is a single one-step mutation to Pp1, 1, 4q, giving a solution p1, 1, 2q P

Z3
ą0 of equation (3.12). Proceeding in this fashion we obtain a graph of one-step mutations

corresponding to solutions of (3.12), which we illustrate to a depth of five mutations:

(29,433,37666) (5,433,6466) (29,169,14701) (2,169,985) (13,194,7561) (5,194,2897) (13,34,1325) (1,34,89)

(5,29,433) (2,29,169) (5,13,194) (1,13,34)

(2,5,29) (1,5,13)

(1,2,5)

(1,1,2)

(1,1,1)

Definition 3.15. The height of the weights pλ0, λ1, λ2q is given by the sum h :“ λ0 ` λ1 ` λ2 P

Zą0. We call the weights minimal if for any sequence of one-step mutations pλ0, λ1, λ2q ÞÑ . . . ÞÑ

pλ1
0, λ

1
1, λ

1
2q we have that h ď h1.

Lemma 3.16. Given weights pλ0, λ1, λ2q at height h there exists at most one one-step mutation

such that h1 ď h. Moreover, if h1 “ h then the weights are the same.

Proof. Without loss of generality suppose we have two one-step mutations
ˆ

λ1, λ2,
pλ1 ` λ2q2

λ0

˙

and

ˆ

λ0,
pλ0 ` λ2q2

λ1

, λ2

˙
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with respective heights h1 and h2 such that h1 ď h and h2 ď h. Since h1 ď h we obtain

pλ1 ` λ2q2 ď λ2
0
, and so

(3.13) λ2
1 ` λ2

2 ă λ2
0.

From h2 ď h we obtain

(3.14) λ2
0 ` λ2

2 ă λ2
1.

Combining equations (3.13) and (3.14) gives a contradiction, hence there exists at most one

one-step mutation such that h1 ď h. If we suppose that h1 “ h then

pλ1 ` λ2q2

λ0

“ λ0

and equality of the weights is immediate. �

The height imposes a natural direction on the graph of all one-step mutations generated by

the weight pλ0, λ1, λ2q. Lemma 3.16 tells us that this directed graph is a tree, with a uniquely

defined minimal weight.

4. Example: An infinite number of minimal weights

In this section we shall focus on the Diophantine equation

(4.1) 12x0x1x2 “ 3x20 ` 5x21 ` 7x22.

Any solution pa0, a1, a2q such that p3a20, 5a
2
1, 7a

2
2q is well-formed corresponds to weighted pro-

jective space Pp3a20, 5a
2
1, 7a

2
2q of degree 144{105. One possible such solution is p2, 1, 1q giving

Pp12, 5, 7q. Consider the graph G of all such solutions. Two solutions lie in the same component

if and only if there exists a sequence of one-step mutations between the corresponding weighted

projective planes. Furthermore, each component is a tree with unique minimal weight. We shall

show that there exists an infinite number of components, and that every component contains at

most two solutions; in fact the only component with a single solution is p2, 1, 1q.

4.1. Coprime solutions give well-formed weights. Let pa0, a1, a2q be a solution of equa-

tion (4.1) such that gcdta0, a1, a2u “ 1. Clearly this is a necessary condition for the correspond-

ing weights p3a20, 5a
2
1, 7a

2
2q to be well-formed. We shall show that it is sufficient. For suppose that

there exists some prime p such that p � cia
2
i and p � cja

2
j , i ‰ j. Since p cannot simultaneously

divide both ci and cj , we have that p must divide either ai or aj . In particular, p � 12a0a1a2

and so, by equation (4.1), p divides the remaining weight cka
2
k. Similarly, since p can divide at

most one of 3, 5, and 7 we see that p2 � 12a0a1a2 and so p2 divides each of the three weights.

We conclude that p � gcdta0, a1, a2u, contradicting coprimality.
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4.2. A necessary and sufficient condition for rational solutions when a1 and a2 are

fixed. Fix a1, a2 P Zą0 and consider the quadratic

(4.2) 12xa1a2 “ 3x2 ` 5a21 ` 7a22.

The discriminant is given by

122a21a
2
2 ´ 12p5a21 ` 7a22q “ 12

`

5a21pa22 ´ 1q ` 7a22pa21 ´ 1q
˘

,

which is always non-negative. The discriminant is zero only in the case a1 “ a2 “ 1, corre-

sponding to the solution p2, 1, 1q of equation (4.1). Furthermore, we see that a rational solution

to equation (4.2) exists if and only if

(4.3) 5a21pa22 ´ 1q ` 7a22pa21 ´ 1q “ 3N2, for some N P Zą0.

4.3. Any rational solution is an integral solution. Suppose that α, β P R are the two

solutions of equation (4.2). We obtain:

α ` β “ 4a1a2,(4.4)

3αβ “ 5a21 ` 7a22.(4.5)

In particular, since the right-hand side in each case is a strictly positive integer, we see that

α, β ą 0. Furthermore, α is rational if and only if β is rational. Since we are only interested in

rational solutions, we can assume that both α and β are rational. Let us write

α “
n1

m1

and β “
n2

m2

,

where the fractions are expressed in their reduced form, i.e. gcdtni,miu “ 1. Then

m1m2 � 3n1n2,(4.6)

m1m2 � n1m2 ` n2m1.(4.7)

By (4.7), m2 � m1 and m1 � m2, forcing m1 “ m2. Without loss of generality, from (4.6) we

may assume that m1 � 3n2 and m2 � n1. But then m1 � n1, forcing m1 “ m2 “ 1. Hence

α, β P Zą0.

4.4. The values a1 and a2 are fixed under one-step mutations. We now show that, given

a solution pa0, a1, a2q such that gcdta0, a1, a2u “ 1, the values of a1 and a2 are fixed under

one-step mutation. For suppose that

(4.8)
p3a20 ` 7a22q2

5a2
1

P Z.

Without loss of generality we may take α “ a0. We see that 5 � 3a20 ` 7a22 “ 3α2 ` 3αβ ´ 5a21
by (4.5), hence 5 � 3αpα ` βq “ 12a0a1a2 by (4.4). Since the weights are pairwise coprime,

the only possibility is that 5 � a1. Returning to equation (4.8) we see that 52 � 3a20 ` 7a22,

and proceeding as before we find that 52 � a1. Clearly we can repeat this process an arbitrary

number of times, increasing the power of 5 at each step. This is a contradiction. The case when

p3a2
0

` 5a2
1
q2

7a2
2

P Z
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is dealt with similarly.

4.5. An infinite number of components. Set a1 “ 1 in condition (4.3). The condition

becomes a22 ´ 1 “ 15M2, where 5M “ N . This is a Pell equation, and Emerson [Eme69] has

shown that there exists an infinite number of integer solutions given by a recurrence relation.

In this case we see that a
pnq
2

and M pnq are generated by:

a
p0q
2

“ 1, M p0q “ 0,

a
p1q
2

“ 4, M p1q “ 1,

a
pn`1q
2

“ 8a
pnq
2

´ a
pn´1q
2

, M pn`1q “ 8M pnq ´ M pn´1q.

Substituting these expressions back into the original quadratic (4.2) gives:

a
pn`1q
0

“ 2a
pnq
2

˘ 5M pnq.

These solutions are coprime (since a1 “ 1) and so correspond to well-formed weights. We will

focus on the smaller of the two solutions, corresponding to the minimum of the two weights.

Substituting the expressions for a
pnq
2

and M pnq gives:

a
pn`1q
0

“ 2a
pn`1q
2

´ 5M pn`1q

“ 8
´

2a
pnq
2

´ 5M pnq
¯

´
´

2a
pn´1q
2

´ 5M pn´1q
¯

“ 8a
pnq
0

´ a
pn´1q
0

.

Hence we obtain the recurrence relation:

a
p0q
0

“ 2,

a
p1q
0

“ 3,

a
pn`1q
0

“ 8a
pnq
0

´ a
pn´1q
0

.

Remark 4.1. If instead we insist that a2 “ 1, we obtain the Pell equation a2
1

´ 1 “ 21M2,

where 7M “ N . In this case the recurrence relation is given by:

a
p0q
1

“ 1, M p0q “ 0,

a
p1q
1

“ 55, M p1q “ 12,

a
pn`1q
1

“ 110a
pnq
1

´ a
pn´1q
1

, M pn`1q “ 110M pnq ´ M pn´1q.

Proceeding as above we find that

a
p0q
0

“ 2,

a
p1q
0

“ 26,

a
pn`1q
0

“ 110a
pnq
0

´ a
pn´1q
0

.

Hence we have a second infinite family of components of G. Notice that these two families do

not exhaust all the possibilities: for example, a1 “ 5, a2 “ 4 satisfies condition (4.3), giving the

two solutions p1, 5, 4q and p79, 5, 4q.
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