
Labelling Strategies for Hierarchical Multi-Label

Classification Techniques

Isaac Trigueroa,b,∗, Celine Vensc

aDepartment of Respiratory Medicine, Ghent University, 9000 Ghent, Belgium
bData Mining and Modelling for Biomedicine group, VIB Inflammation Research Center,

9052 Zwijnaarde, Belgium
cDepartment of Public Health and Primary Care, KU Leuven Kulak, 8500 Kortrijk,

Belgium

Abstract

Many hierarchical multi-label classification systems predict a real valued
score for every (instance, class) couple, with a higher score reflecting more
confidence that the instance belongs to that class. These classifiers leave the
conversion of these scores to an actual label set to the user, who applies a
cut-off value to the scores. The predictive performance of these classifiers is
usually evaluated using threshold independent measures like precision-recall
curves. However, several applications require actual label sets, and thus an
automatic labelling strategy.

In this article, we present and evaluate different alternatives to perform
the actual labelling in hierarchical multi-label classification. We investigate
the selection of both single and multiple thresholds. Despite the existence
of multiple threshold selection strategies in non-hierarchical multi-label clas-
sification, they can not be applied directly to the hierarchical context. The
proposed strategies are implemented within two main approaches: optimi-
sation of a certain performance measure of interest (such as F-measure or
hierarchical loss), and simulating training set properties (such as class dis-
tribution or label cardinality) in the predictions. We assess the performance
of the proposed labelling schemes on 10 datasets from different application
domains. Our results show that selecting multiple thresholds may result in
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an efficient and effective solution for hierarchical multi-label problems.

Keywords: Hierarchical multi-label classification, Threshold optimisation,
Hierarchical loss, HMC-loss, F-measure

1. Introduction

Traditional classification problems deal with assigning a (single) class to
an instance. However, many applications require assigning a set of classes
(labels) to an instance. Examples are found in biology (e.g., gene function
prediction [1, 2]), text or image classification [3, 4], etc. Multi-label classifi-
cation algorithms have been proposed to tackle this task [5, 6, 7]. In many
applications, the set of possible labels is structured as a hierarchy, represent-
ing a superclass/subclass relation. For instance, gene functions are organised
as a tree structure in MIPS’s FunCat hierarchy [8], or as a directed acyclic
graph (DAG) in the Gene Ontology [9]. The corresponding classification
task, that also takes into account this structure, is then called hierarchical
multi-label classification (HMC) [10]. It thus involves predicting multiple
and partial paths in a hierarchy of labels. Allowing partial paths means that
the true and predicted paths need not necessarily to end in a leaf node. Sev-
eral HMC algorithms have been proposed in the literature, e.g., [11, 12, 13].
They exploit the label set hierarchy when labelling instances. These systems
also ensure (implicitly or using post-processing) that the hierarchy constraint
is fulfilled in the predictions they make: whenever a class is predicted, its
parent and ancestor classes are also predicted.

Rather than predicting an actual label set, most of the HMC algorithms
actually predict a real valued prediction score pi for every label li, that reflects
the confidence that an instance should be annotated with label li. These
values can be easily converted into a label set by applying a threshold on
them: if pi is above some threshold ti, then the instance is predicted to
belong to class li, otherwise not. To ensure that the predictions fulfil the
hierarchy constraint, it suffices to choose ti ≤ tj whenever li is a super class
of lj.

Often, the decision as to which thresholds to choose is left to the end
user, and the predictive performance of the classification algorithms is eval-
uated in a threshold independent way, for example by using precision-recall
curves. However, in some situations, it is preferable or necessary to fix the
thresholds. For instance, the gene function prediction task may be part of a
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larger pipeline of experiments, or the predicted image labels may be used as
tags in image retrieval systems to locate images of interest. The objective of
this article is to investigate and empirically compare different thresholding
strategies.

HMC studies that fix the thresholds typically choose one threshold shared
by all labels. In the non-hierarchical multi-label setting, however, studies ex-
ist that choose a separate threshold per label [14, 15]. It is currently an open
question how these two options compare in HMC, and this is addressed in
this article. Non-hierarchical optimisation techniques can not be straight-
forwardly applied in the HMC context, because of the aforementioned hier-
archy constraint, and thus, we propose adapted techniques. Depending on
the context, the user may want to set the thresholds such that the resulting
classifier maximises predictive performance or such that training set proper-
ties (such as class distribution) are reflected in the predictions. We consider
both approaches. In order to apply the former approach, we first critically
review several performance measures used in HMC to compare a predicted
label set to a true label set: hierarchical loss, HMC-loss and micro-averaged
F-measure.

The contributions of this work are as follows. First, we describe mea-
sures that evaluate the predicted label sets, and we identify problems with
the widely used (unweighted) hierarchical loss, which leads us to advise
against its use (Section 2). Second, we devise a number of multiple-threshold-
selection approaches for HMC (Section 3). Third, we empirically investigate
the designed schemes and their single-threshold-selection counterparts on ten
HMC datasets, showing that the multiple threshold approaches generally out-
perform their single threshold variants, both in predictive performance and
computationally (Section 4). We draw some conclusions and further research
directions (Section 5).

2. Evaluating HMC classifiers

In HMC we obtain for every instance and every label a prediction. As
mentioned in the introduction, this prediction is often real-valued. Given a
hierarchy of k labels, we represent the predicted multi-label of an instance x
with a vector p = (p1, ..., pk) ∈ Rk. The label hierarchy can be represented
by a partial order ≤h that represents the superclass relationship. For all
labels l1 and l2: l1 ≤h l2 if and only if l1 is a superclass of l2. In the
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following discussion, we assume that p fulfils the hierarchy constraint: pli ≥
plj whenever li ≤h lj.

In order to evaluate the predicted multi-labels in a test set, there are two
possible strategies. The first strategy keeps the real-valued predictions, and
evaluates them independently of any fixed thresholds. This is often done by
constructing an average precision-recall curve (PR curve) and reporting the
area under the curve. Precision gives the proportion of positive predictions
that are positive, while recall gives the proportion of positive instances that
are correctly predicted positive. A precision-recall curve plots the precision
of a model as a function of its recall. While a threshold corresponds to a
single point in PR space, by varying the threshold a curve is obtained. Vens
et al. [11] and Pillai et al. [15] describe how to compute PR curves in the
context of multiple labels.

The second strategy is to convert the predicted multi-labels to binary
vectors, by thresholding the predicted values, and to evaluate these binary
multi-labels. In non-hierarchical multi-label classification several evaluation
measures have been proposed for evaluating binary multi-labels. An overview
is given by Tsoumakas et al. [6]. However, these measures are less suited for
HMC tasks, exactly because they do not take into account the hierarchical
structure in the labels. Kiritchenko et al. [16] formulate three requirements
that should be fulfilled by a hierarchical evaluation measure (see the simple
label hierarchy in Fig. 1, where {I,J} is indicated as the true multi-label to
be predicted):

1. The measure should give credit to a partially correct classification. Thus,
predicting node K should be better than predicting node C, as the
prediction of K involves the path ABF that is part of the correct
multi-label.

2. The measure should punish distant errors more heavily. This require-
ment is split further into two parts:
(a) The measure should give a higher evaluation for correctly classi-

fying one level down, than to stay at the parent. Thus, predicting
F should be better than predicting B.

(b) The measure should give a lower evaluation for incorrectly classi-
fying one level down than to stay at the parent. Thus, predicting
H should be worse than predicting C.

3. The measure should punish errors at higher levels of the hierarchy more
heavily. This means that, e.g. predicting D when the true label is C
should be worse than predicting K when the true label is I.
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Figure 1: Toy class hierarchy.

Examples of evaluation measures for binary multi-labels that do take
into account a hierarchical label structure are hierarchical loss functions and
a hierarchical extension of the F-measure. In the following, we represent
the thresholded (binary) predicted multi-label of an instance with a vector
p̂ = (p̂1, ..., p̂k) ∈ {0, 1}k; similarly, we represent the true multi-label with a
vector l = (l1, ..., lk) ∈ {0, 1}k. Without loss of generality, we also assume a
single root node in the hierarchy. In case of a collection of separate hierarchies
(such as the Gene Ontology, which consists of three independent sub-graphs),
this means that we create an artificial root node, to which all instances
belong. This node then has as children the individual root nodes of the
sub-hierarchies.

2.1. Hierarchical loss functions

The hierarchical loss (H-loss) function [17] was proposed specifically for
HMC tasks. It assumes a tree structured label hierarchy. It is based on the
Hamming or symmetric difference loss, which returns the symmetric differ-
ence between the predicted and true multi-label vector for an instance. How-
ever, the H-loss does not punish mistakes that have already been punished
at a higher level in the hierarchy. In other words, whenever a classification
mistake is made on a label in the hierarchy, the H-loss does not charge any
loss for additional mistakes occurring in the subtree of that label:

H-loss(p̂, l) =
∑
i=1..k

ci{p̂i 6= li and p̂j = lj, j ∈ anc(i)}, (1)
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where anc(i) represents the set of ancestors of node i, and c1, ..., ck > 0 are
fixed cost coefficients. Cesa-Bianchi et al. [18] propose two variants of the H-
loss function: uniform H-loss with all coefficients set to one, and normalised
H-loss, where each node’s cost is equally split recursively among its children.
The latter is achieved by setting the coefficients as follows: croot = 1, and for
the other nodes i in the hierarchy ci = cj/|child(j)| with j the parent of i.
For the label hierarchy in Fig. 1, this yields cA = 1, cB = cC = cD = 1/3,
cE = cF = cG = cH = 1/6, and cI = cJ = cK = 1/18.

In practice, most HMC papers that use the H-loss use the uniform variant
(e.g., [19, 20, 21, 22, 23, 13, 24]). Here, we identify two problems with this
H-loss variant. First, surprisingly, none of the requirements by Kiritchenko et
al. [16] is met by the uniform H-loss. This can be easily verified by calculating
the H-loss for the examples given above. Second, it turns out that making
zero predictions (i.e., predicting only the root, which is by default present
in all instances) often results in a very good uniform H-loss score. Let us
call a class that appears in the first level (i.e., directly under the root) of the
class hierarchy a level1 class. If an instance has target labels that all belong
to paths that pass through a single level1 class, then an empty prediction
yields a H-loss of 1. This is the second best value that can be obtained.
Only a completely perfectly predicted multi-label can yield a H-loss of 0.
Since level1 classes are the most general classes in the taxonomy, it is to be
expected that, even though an instance belongs to many paths, these paths
will often pass through a single level1 class, and the multiple labels will only
differentiate at lower, more specialised, levels of the hierarchy1. For instance,
in gene function annotation, a gene involved in “aerobic respiration” (FunCat
category 02.13.03) and in “photosynthesis” (02.30), which both belong to the
level1 class “energy” (02) may be less likely to also have functions related
to other level1 classes like “storage protein” (04) or “transcription” (11).
Table 1 confirms the high rate of instances whose class(es) only pass(es)
through a single level1 class. Clearly, the uniform H-loss function does not
achieve what one would expect intuitively from a loss function designed for
hierarchical classification. Cerri et al. [13] have observed that uniform H-loss
can lead to results contradicting those of other evaluation measures, when
comparing global versus local HMC prediction models.

1Remark that for hierarchical single-label classification tasks, there is always only a
single level1 class involved.
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Table 1: Number of instances belonging to a single root child.

Dataset Total nb instances Instances belonging

to single root child

cellcycle GO 3751 174
diatoms 3121 3121

enron 1649 319
expr FUN 3779 1162
imclef07a 11006 11006

interpro ara FUN 3719 2895
reuters 6000 6000

seq FUN 3919 1265
struc ara GO 11763 11763

wipo 1710 1710

The normalised H-loss mostly solves the issues discussed above, because
(1) the coefficients decrease with increasing depth in the hierarchy, and (2)
the total loss obtained for mistakes in a subtree can never exceed the cost
associated with the root of the subtree. However, it still has a tendency
to favour empty predictions, when used in a threshold selection scheme (see
Section 4). Cesa-Bianchi et al. [18] list another disadvantage of this function:
if the hierarchy has large branching factors in the upper levels, then the co-
efficients quickly become very small, which in turn yields very small H-loss
values and makes it difficult to conduct comparisons among algorithms. Nev-
ertheless, it should be stressed that the normalised H-loss should be preferred
over the uniform H-loss.

Bi and Kwok [25] criticise H-loss, because it can never meet requirement
2b of Kiritchenko et al. [16]: when comparing two false positive predictions,
where one prediction is more specific than the other, intuitively, the more
specific prediction should receive a lower evaluation than the (more prudent)
general one. However, this is in contrast to the idea behind H-loss, which
gives them an equal evaluation. In response to this, Bi and Kwok designed
the HMC-loss, which is also applicable to DAG label hierarchies:

HMC-loss(p̂, l) = α
∑

i=1..k:p̂i=0,li=1

ci + β
∑

i=1..k:p̂i=1,li=0

ci, (2)

where c1, ..., ck > 0 are fixed cost coefficients, which are defined as in the nor-
malised H-loss for tree hierarchies. For DAGs, the cost for non-root nodes is
set as follows: ci =

∑
j cj/|child(j)| with j the set of parents of i. The coef-
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ficients α and β allow a cost-sensitive learning setting, where false positives
and false negatives are weighted differently. When α = β = 1, the HMC-loss
becomes equal to a weighted Hamming-loss, or to the uniform H-loss that
does not disregard subtrees whenever a mistake is counted. The HMC-loss
effectively solves the empty prediction issue of H-loss, because instead of
only punishing the root node, every node belonging to the multi-label con-
tributes to the loss. Moreover, all requirements for a hierarchical evaluation
measure [16] are fulfilled.

2.2. Hierarchical F-measure

Precision and recall are traditionally defined for single-label classification
problems. As these measures provide complementary information, they are
often combined, resulting in the F-measure:

Fβ =
(β2 + 1)× precision× recall
β2 × precision+ recall

, β ≥ 0 (3)

Parameter β weighs the importance of precision versus recall. In the rest
of the paper, we use β = 1, resulting in the harmonic mean of precision and
recall.

When dealing with multiple classes, precision, recall and F-measure are
averaged. There are two strategies to calculate the average. Consider a
prediction matrix, P , where each row represents an instance, each column
a label, and the values the corresponding binary predictions. The macro-
average computes the above measures for each column individually and then
averages them over the columns. Thus, each class obtains an equal weight in
the calculation. In contrast, the micro-average looks at all cells of the predic-
tion matrix together. Micro-averaged precision (denoted by precisionm) is
then the proportion of positively predicted cells that are positive and micro-
averaged recall (recallm) is the proportion of positive cells that are correctly
predicted positive. The corresponding micro-averaged F1 measure (Fm

1 ) is
given by:

Fm
1 =

2× precisionm × recallm

precisionm + recallm
(4)

While the macro-average gives an equal weight to each class, and thus
tends to over-estimate the importance of rare classes, the micro-average im-
plicitly gives more weight to more frequent classes. In the hierarchical setting,
it thus makes more sense to consider the Fm

1 measure. Moreover, Vens et
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al. [11] showed that PR curves generated from micro-averaged precision and
recall can better capture overfitting issues. If the true label set fulfils the hier-
archy constraint (which we assume in this article), i.e., whenever an instance
belongs to some class it also belongs to the parent class, then Kiritchenko
et al. [16] call the corresponding micro-averaged precision, recall and F1 the
hierarchical precision, recall and F1 measures, respectively. In addition, they
show that the hierarchical F1 measure fulfils the requirements for hierarchi-
cal evaluation measures. Other papers that use the hierarchical F1 measure
include the work of Valentini [26] and Cesa-Bianchi et al. [27]. This measure
can be applied to both tree and DAG structured hierarchies.

3. Threshold selection methods for HMC problems

In this section we present different alternatives to perform the final la-
belling of an HMC problem given a set of real-valued scores for the potential
classes.

Let us assume we have trained a HMC classifier with a given training
dataset TRS. Then, we classify a validation set V S, i.e. a set of Nv instances
that did not play any role in the construction of the classifier, and for which
the true multi-labels are known, i.e., we dispose of a binary matrix Lval that
indicates for each validation instance the actual labels. Moreover, we classify
a test set TS composed of Nt instances where the labels are unknown. As a
result, we obtain two prediction matrices Pval = {{p1

1, .., p
1
k}, ..., {p

Nv
1 , .., pNvk }}

and Ptest = {{p1
1, .., p

1
k}, ..., {p

Nt
1 , .., pNtk }} that are composed of Nv and Nt

prediction vectors pi, respectively.
The final objective is to determine the best labelling of the TS instances.

To do this, we utilise the Pval matrix as reference and we look for the best
thresholds that convert it into a binary prediction matrix P̂val, which is eval-
uated against the actual labels Lval. Then, the learned thresholds are applied
to the Ptest matrix. There are two aspects in determining the best thresh-
olding strategy.

First, we distinguish the number of thresholds that is considered. Num-
bers reported in the HMC literature range from a single global threshold
used for all datasets [13] to a single threshold per dataset [28, 29, 30, 31].
Although it has been done in non-hierarchical multi-label classification, to
our knowledge the selection of a separate threshold per class has not been
performed in the HMC context. In this work, we consider the problem of
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single and multiple thresholds selection. Both approaches are optimisation
schemes that are generically illustrated in Algorithms 1 and 2.

Algorithm 1 Generic STS pseudo-code

Require: A validation prediction matrix Pval.
Ensure: A global threshold t.

1: CutPoints= all different values from Pval sorted in ascending order.
2: bestThreshold = -1
3: bestPerformance = worst value // e.g.,∞ if performance is to be minimised

4: for each cutpoint in CutPoints do
5: performance = ComputePerformance(Pval, cutpoint,Lval)
6: if betterThan(performance,bestPerformance) then
7: bestPerformance = performance
8: bestThreshold = cutpoint;
9: end if

10: end for
11: return bestThreshold

• Single-threshold selection (STS) consists of computing a single cut-off
per dataset that optimises some value. A threshold t that is shared
between all the classes is obtained and used to transform Pval into
P̂val. Most HMC classifiers provide a Pval that preserves the hierarchy
constraint, so that the probability of belonging to label lj cannot be
higher than the probability associated to li whenever li ≤h lj (li is an
ancestor of lj). Therefore, the application of a single threshold over all
classes keeps the hierarchy constraint.

• Multiple-thresholds selection (MTS) optimises a threshold ti for every
label of a dataset, resulting in a vector t = (t1, ..., tk). As such, the
STS approach can be considered a particular case of the MTS in which
all the thresholds are forced to be equal. However, in this case, the
hierarchy constraint must be ensured during the selection process by
keeping any threshold ti ≤ tj whenever li ≤h lj.

Finding the optimal threshold value for the validation set in STS requires
the evaluation of all possible candidate threshold values, which in worst case
corresponds to the number of instances times the number of possible classes,
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Algorithm 2 Generic MTS pseudo-code

Require: A validation prediction matrix Pval.
Ensure: A threshold vector t = (t1, ..., tk).

1: for each class i do
2: CutPoints[i] = all different values from column i of Pval sorted in as-

cending order.
3: end for
4: bestThresholdVector = [-1,-1,...,-1]
5: bestPerformance = worst value // e.g.,∞ if performance is to be minimised

6: for each possible threshold vector t from CutPoints do
7: performance = ComputePerformance(Pval,t,Lval)
8: if betterThan(performance,bestPerformance) then
9: bestPerformance = performance

10: bestThresholdVector = t;
11: end if
12: end for
13: return bestThresholdVector

so, O(Nv × k). In general, however, the number of possible threshold values
is lower than Nv × k because of repeated values. The complexity of STS
can easily be reduced though, at the cost of a decrease in accuracy, by using
a sub-optimal approach. This approximation may consist of the evaluation
of limited number of possible candidate threshold values, which are equally
distributed in the range of the score values. For instance, if the score values
belong to the range [0, 1], we may investigate 100 thresholds as {0.01, 0.02,
..., 1}.

In MTS, for every class li we have to find a threshold ti ∈ [min(Pval(i)),max(Pval(i))],
where Pval(i) represents the column vector i of Pval. Thus, the number of
possible thresholds per class is upper bounded by the number of instances
in V S. For non-decomposable measures, seeking for the optimal solution in
this validation set requires to explore all the possible combinations at first
sight, resulting in an exponential complexity O((Nv)

k). However, the hierar-
chy constraint drastically reduces the number of possible valid combinations.
If the performance measure is decomposable over classes, it takes the same
complexity as STS. Nonetheless, the hierarchy complicates the search pro-
cess as the classes need to be processed in a hierarchical order. The set of
possible thresholds for each class is then constrained by the classes already
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processed. Thus, both for decomposable and non-decomposable measures,
the hierarchy has a positive influence on computational complexity.

Obtaining single or multiple thresholds according to the validation set
does not guarantee that the threshold/s is/are the most suitable for the test
set, due to overfitting phenomena. For this reason, in the proposed MTS
approaches, we do not pursue optimal approaches that may not be feasible in
time, but rather efficient search processes that guarantee that only coherent
threshold vectors (w.r.t. the hierarchy constraint) are evaluated.

The second aspect in the thresholding strategy is how to compute the
performance, which corresponds to the procedure ComputePerformance in
Algorithms 1 and 2:

• Compute the predictive performance in the validation set, using the
evaluation measure that will be used to evaluate the test set predictions
(Section 3.1).

• Reflect training or validation set properties in the test set predictions.

We now discuss each of these in detail.

3.1. Optimising the evaluation measure

One obvious strategy is to optimise the performance measure that will
be used in the end to evaluate the test set predictions. In the experiments
(Section 4), three evaluation measures will be used that were discussed in
Section 2: the normalised H-loss, the HMC-loss and the Fm

1 . Optimising
them under the STS scheme is straightforward following Algorithm 1. For
every possible threshold value, calculate the corresponding measure, and take
the threshold that yielded the best value. However, under the MTS scheme,
the optimisation process becomes more complicated. In what follows, we
propose three optimisation processes associated to the hierarchical loss (Sec-
tion 3.1.1), the HMC-loss (Section 3.1.2) and the micro-averaged F-measure
(Section 3.1.3), respectively.

3.1.1. Multiple Threshold Selection for the Normalised Hierarchical Loss.

The computation of the normalised H-loss can be partially decomposed
over classes. Observing Equation 1, we can see that the loss calculation for
one label directly depends on the predictions made for its ancestors. There-
fore, we need to establish the thresholds for the ancestor labels before the
threshold of a child label, giving rise to a top-down procedure as follows.
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We start by fixing the root’s threshold to zero: every instance belongs to
the root, so any threshold between 0 and 1 would be valid. However, as the
thresholds need to increase while going down the hierarchy, it is better to set
the root threshold as low as possible. Then we recursively move to the child
nodes, and for each of these nodes select the threshold that minimises the
normalised H-loss, only considering the nodes on the path from this node to
the root, and only considering candidate thresholds equal to or higher than
the parent’s threshold, to enforce the hierarchy constraint. This efficient pro-
cedure results in an optimal threshold vector, because the total loss incurred
in the subtree of a node can never exceed the loss associated with the node
itself.

The procedure is outlined in Algorithm 3. The NormHLoss function
calculates the normalised H-loss given a label matrix, a prediction matrix on
which it applies the previously calculated and current thresholds, and the
hierarchy path from the current node to the root.

For DAGs datasets we set the coefficients as in the HMC-loss (See Section
2.1). However, the optimality is not guaranteed in this case, because the
coefficients may increase while moving down in the hierarchy.

3.1.2. Multiple Threshold Selection for the HMC-loss

The HMC-loss simply adds the losses (false positives and false negatives)
for each label of the hierarchy. As stated by Equation 2, it takes into account
the hierarchy by using coefficients that decrease with the depth. As such,
this measure could be decomposed over the different classes. However, an
independent optimisation per class, as proposed for the normalised H-loss, is
not applicable, even though a top-down approach is considered. The reason
is that now the total loss incurred in the subtree of a node can exceed the loss
associated with the node itself. For example, in Fig. 1, node B has coefficient
1/3, but the subtree below it has total coefficient of 1/2. Thus, the subtree
needs to be considered when selecting a threshold for node B.

Algorithm 4 defines the MTS procedure for the HMC-loss. As in the
previous case, the root’s threshold is set to zero, while the other thresholds
are optimised in a top-down fashion. Following this top-down approach, for
each label i, we look for the best threshold that optimises the HMC-loss in
node i and its subtree at the same time. Following the previous example,
when analysing node B, we minimize the sum of the losses for nodes B, E, F,
I, J and K with their corresponding weights. Moreover, we limit the search to
appropriate values of the thresholds to take into consideration the hierarchy
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Algorithm 3 MTS for the Normalised H-loss

Require: A validation prediction matrix Pval and label matrix Lval.
Ensure: A threshold vector t = (t1, ..., tk).

1: bestThresholds[1,...,k] = [0,-1,...,-1]
2: for each non-root node i (top-down approach) do
3: bestLoss = ∞
4: Hi = hierarchy path starting in the root node and ending in i
5: CutPoints = all different values from the column of Pval that corre-

spond to i, that are equal to or larger than the threshold selected for
i’s parent

6: for each cutpoint in CutPoints do
7: loss = NormHLoss(Pval, Lval, cutpoint, bestThresholds,Hi)
8: if loss < bestLoss then
9: bestLoss = loss

10: bestThresholds[i] = cutpoint
11: end if
12: end for
13: end for
14: return bestThresholds
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constraint: the threshold for i should be equal to or larger than the threshold
for i’s parent.

Algorithm 4 MTS for the HMC-loss

Require: A validation prediction matrix Pval and label matrix Lval.
Ensure: A threshold vector t = (t1, ..., tk).

1: bestThresholds[1,...,k] = [0,-1,...,-1]
2: for each non-root node i (top-down approach) do
3: bestLoss = ∞
4: Subi = subtree of node i (including i itself)
5: CutPoints = all different values from the columns of Pval that corre-

spond to Subi, that are equal to or larger than the threshold selected
for i’s parent

6: for each cutpoint in CutPoints do
7: loss = HMCLoss(Pval, Lval, cutpoint, Subi)
8: if loss < bestLoss then
9: bestLoss = loss

10: bestThresholds[i] = cutpoint
11: end if
12: end for
13: end for
14: return bestThresholds

Note that this approach is sub-optimal: if the optimal threshold would be
0.6 for node B, and 0.7 for nodes E, F, I, J and K, then this can only be found
if, during the selection of B’s threshold, using 0.6 for all nodes (too many
false positives) is better than 0.7 for all nodes (too many false negatives).

3.1.3. Multiple Threshold Selection for the micro-averaged F-measure

The micro-averaged F-measure cannot be decomposed over classes, what
makes the optimisation of this measure non trivial. Pillai et al. [15] proposed
a technique to compute the global maximum micro-average F-measure with
a low computational cost (upper bounded by O(N2

v k
2)), in non-hierarchical

multi-label classification. This method initialises the threshold vector to the
smallest possible cut-off values. Then, iteratively, each threshold is con-
sidered for an update, and this is continued until no threshold can be up-
dated. The updates consist in increasing the value of a threshold, so that it
maximises the micro-averaged F-measure, while keeping the other thresholds
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fixed. The main problem in extending this approach towards HMC, is that
increasing the value of a single threshold will violate the hierarchy constraint.
Indeed, if a threshold for node i is increased, all thresholds corresponding to
i’s descendants need to be increased as well, as they should be larger than or
equal to i’s threshold. Here, we propose to set the thresholds of the descen-
dants equal to the threshold being updated, thus keeping the computational
cost advantage, at the cost of providing a sub-optimal solution, in the same
sense as when optimising the HMC-loss.

Following Pillai’s notation for sake of clarity, let t = (t1, ..., tk) denote a
specific value of the thresholds, and T = (T1, ..., Tk) the thresholds considered
as variable. Let us assume that all the score prediction vectors per class
Pval(i) = {Pval(i, 0), Pval(i, 1), ..., Pval(i, Nv)} have been sorted in ascending
order, so that, Pval(i, j) ≤ Pval(i, j + 1), ∀j = 1, ..., Nv − 1. Algorithm 5
presents the pseudo-code of the modified algorithm. In what follows we
describe the main changes performed to the method, referring to the lines in
the pseudo-code.

First of all, all the thresholds ti are originally initialised to any random
value between (0, Pval(i, 0)). In contrast, we set all thresholds to zero, in
order to ensure the hierarchy constraint is fulfilled at the start.

Then, based on two main properties, Pillai et al. demonstrated that an
iterative updating process is globally optimal. In this process, each threshold
Ti is increased to any value that locally increases the Fm

β , while keeping all
the other Tj, j 6= i fixed, until no improvement is achieved by changing any of
the thresholds (lines 6-29). This means that even though the Fm

β cannot be
decomposed over classes, the optimisation can be implemented in an iterative
way, and thereby reducing complexity.

In the original proposal, every Ti is checked with all the values contained
in the prediction vector Pval(i). Lines 2-4 extract all potential cut points for
every class from Pval.

When investigating the value of a given Ti, we have to check that the
fixed threshold values of the descendants of label li satisfy the hierarchy. In
this way, the descendant thresholds may become variable Td, where ld is any
children of class li (See lines 12-16).

When the best threshold has been determined for the current Ti and
its associated Td’s, the algorithm checks if this optimisation has yielded a
better performance. If yes, the thresholds values of ti and its descendants
are established accordingly (lines 23-26). Once again, this iterative process
needs to follow a top-down approach to ensure that the threshold of the
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Algorithm 5 MTS for the micro-averaged F-measure
Require: A validation prediction matrix Pval and label matrix Lval.
Ensure: A threshold vector t = (t1, ..., tk).
1: bestThresholds[1,...,k] = [0,0,...,0]
2: for all classes do
3: CutPoints[i] = All different values from column i of Pval sorted in ascending order.
4: end for
5: bestPerformance = −∞
6: repeat
7: updated < −false
8: for each node i (top-down approach) do
9: Descendants=listOfDescendants(i)
10: for all values Ti in CutPoints[i] ≥ ti do
11: %Enforce hierarchy
12: for each node d in Descendants do
13: if Ti > td then
14: Td = Ti
15: end if
16: end for
17: performance=Fmβ (Pval, Lval, {t1, .., Ti, Td, ..., tk}) with Td = Ti for all descendants

18: if better than(performance, bestPerformance) then
19: bestPerformance = performance
20: bestThresholds= Ti, Td (if Td has been modified);
21: end if
22: end for
23: if better than(performance, bestPerformance) then
24: {ti, td} = bestThresholds
25: updated=true
26: end if
27: end for
28: until updated==False
29: return bestThresholds
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parent of the current analysed label is already fixed.

3.2. Reflecting training set properties

Apart from optimising a certain error measure of interest, a second po-
tential strategy is to choose thresholds in such a way that some properties
of the training or validation sets remain in the predictions of the test set.
Specifically, we analyse two different strategies:

• To reflect the positive/negative distributions for each label in the re-
sulting predictions (Subsection 3.2.1).

• To make the label cardinalities as similar as possible (Subsection 3.2.2).

The aim of these proposals is to check whether a simple and fast approach
may yield successful thresholds, even though performance measures are not
considered.

3.2.1. Reflecting class distribution

The idea behind this strategy is to perform a STS or MTS process in which
the function to be optimised is the distance to the true class distribution.
The thresholds are chosen based on the validation set, in such a way that they
result in a positive/negative split for each class that is as close as possible
to the true positive/negative split. Therefore, the true class distribution is
also estimated from the validation set (and not from the training set, since
this might introduce noise if the training set class distributions differ slightly
from those of the validation set). To do so, we use the label matrix Lval and
for each class i compute the percentage of positive instances CDi.

Under STS, we follow Algorithm 1 in which the computePerformance
function computes, for a given cut point and the prediction matrix Pval, the
predicted percentage of positive instances CD′i for each label. The threshold
that minimises the Euclidean distance between the CD and CD′ vectors is
chosen.

Under MTS, we simply put the threshold for every label at the value that
gives an equal positive/negative ratio as in the true class distribution. To
make sure that the hierarchy constraint is guaranteed, a top-down approach
is again required. Thus, if the class distribution of a certain class implies a
lower threshold than the threshold established for (one of) its parent class(es),
it must be set to the same value as that parent.
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A very similar labelling strategy has been used in text categorisation, it
is referred to as PCut by Yang [32], and as proportional assignment by Lewis
and Ringuette [33] and Wiener et al. [34]. The difference is that these authors
did not use a separate validation set to determine the thresholds, they imme-
diately pick the positive/negative split in the test set that corresponds to the
class distribution of the training set. The disadvantage of their approach is
that, if the test set is changed (e.g., it grows because new instances become
available), then the prediction of individual test instances may change.

3.2.2. Reflecting label cardinalities

This alternative aims at reflecting the label cardinality of the validation
samples. Label cardinality is defined as the average number of labels associ-
ated with an instance [6]. This is related to the strategy used in [35] where
the authors compared the label cardinality of the predictions in the test set
to the label cardinality over the training set. Instead of using an averaged
label cardinality, we compare instance per instance the true number of labels
and the predicted number of labels over a validation set.

In STS, we count for each validation instance how many labels are present,
obtaining a vector of true label counts per example LCi, where 1 < i < n.
When analysing the different thresholds, we compute the resulting predicted
label counts LC

′
i . Afterwards, the Euclidean distance between both vectors

is minimised.
An MTS label cardinality approach is not applicable, since label cardi-

nalities are computed per instance, and not per class.

4. Experimental Study

In this section, we start by defining the experimental set-up in Section
4.1: we detail the problems chosen for the experimentation, the measures
employed to evaluate the performance of the algorithms and finally, the sta-
tistical tests conducted to contrast the results obtained. Then, Section 4.2
shows the results analysing the different proposed alternatives to perform the
final labelling in HMC problems.

4.1. Experimental set-up

To assess the performance of the proposed labelling strategies, we exper-
imentally evaluate them in 10 datasets. We focus on datasets that come
from three different domains: text categorisation, image annotation, and
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Table 2: Properties of the datasets considered.

Dataset Samples Attr. Classes

TRA VAL TST

cellcycle GO 1625 848 1278 77 4125
diatoms 1376 689 1054 371 397

enron 658 330 660 1001 56
expr FUN 1639 849 1291 551 499
imclef07a 6666 3334 1006 80 96

interpro ara FUN 1674 781 1264 2815 263
reuters 2000 1000 3000 47236 102

seq FUN 1701 879 1339 478 499
struc ara GO 5199 2579 3985 14804 629

wipo 901 451 358 74435 188

gene function prediction. These datasets have been collected from freely-
available repositories234. Two of the gene function prediction datasets have
annotations coming from the gene ontology (GO) [9]. This ontology forms a
directed acyclic graph instead of a tree: each node can have multiple parents.
We denote them as GO datasets.

All these data sets are originally split into a training and a test set. For
those datasets for which no validation set is available, we set aside a random
subset of 1/3 of the training set as validation set. Table 2 details the main
properties of these datasets. It shows the number of instances in the different
partitions, number of attributes (Attr.) and number of classes.

In our experiments, we use the Clus-HMC-Ens algorithm [2] as a repre-
sentative state-of-the-art HMC classifier. It constructs a random forest of 50
predictive clustering trees. Each individual tree makes a prediction for the
complete multi-label. All the predictions provided by this method preserve
the hierarchy constraint. In order to optimise the labelling strategies, a ran-
dom forest is first built on the training set and tested on the validation set.
Afterwards, the final model is built on the combination of training and vali-
dation sets, and tested on the test set. As a result, we obtain two prediction
matrices Pval and Ptest.

The STS and MTS approaches will be investigated under each of the 3

2https://dtai.cs.kuleuven.be/clus/hmcdatasets/
3https://dtai.cs.kuleuven.be/clus/hmc-ens/
4http://kt.ijs.si/DragiKocev/PhD/resources/doku.php?id=hmc_

classification
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different schemes presented before: optimising an error measure (EM), class
distribution (CD) and label cardinalities (LC). We will denote these ap-
proaches as EM(), CD() and LC(), indicating STS or MTS versions between
brackets. We will use three error measures: normalised H-loss, HMC-loss and
the micro-averaged F-measure with β = 1 (Fm

1 ). For the HMC-loss, as in
[25], we set α = λ·β while keeping α+β = 2, where λ becomes the parameter
that balances the misclassification cost between positive and negative exam-
ples and it is set to the ratio of negative examples in relation to the positive
ones: λ = #negatives/#positives. We also test two different settings for
the STS approach, either using all available threshold values (optimal so-
lution) or using a binning procedure. For the approximate STS approach,
we use 100 values equally distributed in [0,1], which is the output range of
Clus-HMC-Ens. Moreover, we compute the run time spent by the different
analysed approaches in order to compare their complexity in practice. Ten
executions of each algorithm have been performed and their run time has
been averaged. All the experiments have been carried out on an Intel(R)
Xeon(R) CPU E5-1650 v2 at 3.50GHz without any kind of parallellization.

To provide statistical support for the analysis of results performed, we
will apply hypothesis testing techniques. More specifically, we make use of
non-parametric tests that were suggested in the studies presented in [36, 37]
for machine learning applications. The Wilcoxon test [38] will be used to
perform pairwise comparisons between the STS and MTS labelling schemes.
It will be adopted considering a level of significance of α = 0.05.

Furthermore, in order to perform an all-versus-all comparison of our pro-
posed schemes, we will use the Friedman test [39] and the post hoc Nemenyi
test as recommend by [36], to find out which algorithms are distinctive. The
Friedman test ranks the algorithms in terms of their performance, so that,
the lower the rank is for an algorithm, the better it is. If the Friedman test
detects significant differences in the performance of the algorithms, we apply
the Nemenyi post hoc test. In this test, the performance of two classifiers
is significantly different only if their average ranks differ by a certain critical
distance. The critical distance depends on the number of algorithms, the
number of datasets, and the critical value for a significance level provided by
a Studentized range statistic. The result from the Nemenyi post hoc test is
plotted with an average ranks diagram. The ranks are depicted on the axis,
so that the best algorithms are at the right side of the diagram. A line with
the length of the critical distance is drawn between those algorithms that do
not differ significantly (in performance) for a significance level of 0.05. More
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information about these tests and other statistical procedures can be found
at http://sci2s.ugr.es/sicidm/.

4.2. Results and analysis

Tables 3 and 4 collect the obtained results in the validation and test set,
respectively. In both tables, the best result for each dataset and perfor-
mance measure has been highlighted in bold-face. We present the validation
set results to analyse the generalisation capabilities of the methods. Never-
theless, the conclusions related to the performance of the methods need to
be evaluated in the test set.

This study is divided into two parts. We first compare STS and MTS
approaches across the proposed optimisation strategies (Section 4.2.1). Af-
terwards, we perform a global study to determine which is the best alternative
according to every performance measure considered (Section 4.2.2). In both
studies, we evaluate the resulting threshold selection techniques in terms of
predictive performance, influence of the overfitting phenomena and required
run time.

Note that for the label cardinality and class distribution approaches we
computed the threshold/s once, and then the computed thresholds are used to
compute the final performance with the three considered measures. However,
for the error measure optimisation process we have independent threshold/s
for each measure.

4.2.1. STS vs. MTS

This subsection compares the STS and MTS approaches. As commented
before, there is no MTS variant for the label cardinality strategy. Thus,
only the error measure and class distribution approaches are included in the
following analysis.

To significantly characterise the differences between STS and MTS ap-
proaches, the Wilcoxon signed-ranks test has been applied for the possible
settings. A total of 12 Wilcoxon tests are conducted to compare STS and
MTS approach depending on the performance measure, the optimisation
strategy and the considered dataset (validation or test). Table 5 presents
the associated p-values for each statistical test conducted. Significant differ-
ences (α = 0.05) are stressed in bold-face. According to this table we can
state that:

• Looking at the EM optimisation techniques, the MTS approach is al-
ways statistically better at the validation set, but this not the case at
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Table 3: Results obtained at the validation set

.

Measure Dataset Error measure Class distribution Label cardinality
STS MTS STS MTS STS

cellcycle GO 0.0067 0.0065 0.0067 0.0109 0.0088
diatoms 0.0077 0.0063 0.0077 0.0089 0.0117

enron 0.1382 0.1325 0.1400 0.1734 0.1477
expr FUN 0.1279 0.1273 0.1416 0.1794 0.2870

Normalised H-loss imclef07a 0.0395 0.0366 0.0397 0.0388 0.0511
interpro ara FUN 0.0667 0.0655 0.0671 0.0956 0.1210

reuters 0.2382 0.1646 0.2436 0.1799 0.5233
seq FUN 0.1251 0.1242 0.1482 0.1735 0.2717

struc ara GO 0.0050 0.0045 0.0050 0.0063 0.0061
wipo 0.1092 0.0838 0.1105 0.1050 0.2385

cellcycle GO 0.0108 0.0083 0.0114 0.0105 0.0112
diatoms 0.0105 0.0062 0.0166 0.0119 0.0124

enron 0.2087 0.1738 0.2093 0.1935 0.2112
expr FUN 0.2719 0.2436 0.2916 0.2680 0.2740

HMC-loss imclef07a 0.0600 0.0440 0.0779 0.0636 0.0610
interpro ara FUN 0.1276 0.0991 0.1312 0.1188 0.1304

reuters 0.3697 0.2217 0.4015 0.2366 0.4412
seq FUN 0.2593 0.2306 0.2796 0.2589 0.2642

struc ara GO 0.0065 0.0042 0.0082 0.0062 0.0072
wipo 0.2409 0.1336 0.2451 0.1683 0.2689

cellcycle GO 0.4709 0.4906 0.4113 0.3516 0.4615
diatoms 0.5895 0.6782 0.5430 0.6018 0.5784

enron 0.7006 0.7198 0.6893 0.6423 0.6971
expr FUN 0.2975 0.3104 0.1440 0.2088 0.2913
imclef07a 0.8110 0.8254 0.7957 0.8074 0.8085

micro-averaged F1 interpro ara FUN 0.3560 0.3746 0.2486 0.3193 0.3427
reuters 0.3756 0.4232 0.1938 0.3982 0.3727

seq FUN 0.2983 0.3122 0.1797 0.2190 0.2897
struc ara GO 0.6374 0.6781 0.6225 0.6211 0.6322

wipo 0.5526 0.6060 0.5165 0.5831 0.5435

23



Table 4: Results at the test set

.

Measure Dataset Error measure Class distribution Label cardinality
STS MTS STS MTS STS

cellcycle GO 0.0071 0.0366 0.0071 0.0112 0.0088
diatoms 0.0082 0.0087 0.0082 0.0101 0.0119

enron 0.1980 0.1991 0.1929 0.2856 0.1955
expr FUN 0.1325 0.1328 0.1418 0.1755 0.2799

Normalised H-loss imclef07a 0.0423 0.0397 0.0420 0.0420 0.0552
interpro ara FUN 0.0650 0.0667 0.0653 0.1060 0.1039

reuters 0.2382 0.1830 0.2324 0.1952 0.5189
seq FUN 0.1274 0.1316 0.1505 0.1806 0.2665

struc ara GO 0.0049 0.0067 0.0049 0.0062 0.0058
wipo 0.1166 0.0811 0.1186 0.0995 0.2324

cellcycle GO 0.0113 0.0099 0.0120 0.0110 0.0118
diatoms 0.0098 0.0086 0.0162 0.0114 0.0117

enron 0.2761 0.2550 0.2767 0.2538 0.2870
expr FUN 0.2773 0.2597 0.2975 0.2733 0.2780

HMC-loss imclef07a 0.0656 0.0477 0.0821 0.0704 0.0666
interpro ara FUN 0.1272 0.1080 0.1333 0.1174 0.1268

reuters 0.3420 0.2346 0.3911 0.2246 0.4448
seq FUN 0.2705 0.2537 0.2875 0.2704 0.2703

struc ara GO 0.0062 0.0045 0.0080 0.0058 0.0068
wipo 0.2362 0.1405 0.2319 0.1526 0.2627

cellcycle GO 0.4744 0.4621 0.4070 0.3569 0.4740
diatoms 0.5856 0.5789 0.5228 0.5679 0.5731

enron 0.6574 0.6511 0.6256 0.5494 0.6643
expr FUN 0.3156 0.3119 0.1532 0.2163 0.3088
imclef07a 0.7955 0.8080 0.7887 0.7943 0.7960

micro-averaged F1 interpro ara FUN 0.3601 0.3662 0.2770 0.3177 0.3573
reuters 0.3777 0.4139 0.1864 0.3950 0.3734

seq FUN 0.3070 0.3061 0.1903 0.2221 0.3018
struc ara GO 0.6566 0.5959 0.6357 0.6366 0.6521

wipo 0.5378 0.5989 0.5043 0.5958 0.5191

Table 5: Wilcoxon tests: MTS vs. STS for each strategy. The obtained p-values are
presented.

Error measure Class distribution
MTS vs STS Validation Test Validation Test
Normalised H-loss 0.0020 >= 0.2 >= 0.2 >= 0.2
HMC-loss 0.0020 0.0020 0.0020 0.0020
micro-averaged F1 0.0020 >= 0.2 0.1055 0.1934
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Table 6: Run time spent by the different optimisation techniques (in seconds).

Normalised H-loss HMC-loss micro-averaged F1 CD LC
Dataset STS MTS STS MTS STS MTS STS MTS STS

cellcycle GO 18413.4500 90945.4850 21105.3310 10.0470 65620.1360 15.8070 17274.2500 0.4670 12712.0640
diatoms 2.0410 26.0260 1.8660 0.1990 5.0070 0.5170 1.5510 0.0550 0.9910

enron 2.2040 1.5810 6.1030 0.1290 2.6640 0.5080 1.6030 0.0160 1.3950
expr FUN 1028.9220 172.0720 19802.5300 0.2500 1443.8400 124.0440 817.0490 0.0690 699.4520
imclef07a 9.7390 64.2910 8.0860 1.4930 15.0000 4.3880 5.9010 0.0560 3.0510

interpro ara FUN 85.5010 21.4660 1310.2190 0.1640 149.3200 14.0550 66.8650 0.0460 47.3820
reuters 78.7760 4.6170 489.3710 0.0760 126.1640 26.0440 61.7710 0.0270 36.8200

seq FUN 15.9250 105.2940 102.2760 0.2000 30.3710 5.1530 14.2220 0.0590 9.2590
struc ara GO 432.4320 3466.8010 515.4660 3.2180 2309.8120 4.8010 621.4390 0.0980 277.2230

wipo 66.5090 3.3330 586.1680 0.2840 83.0170 15.6270 45.8270 0.0390 35.6880

the test set. This fact shows that the generalisation capabilities of the
MTS with F-measure and normalised H-loss are rather limited. Never-
theless, for the HMC-loss we can state that the MTS approach is the
most suitable approach.

• When the CD optimisation is considered, no significant differences are
found between the methods in both validation and test phase, except
for the HMC-loss, in which the MTS class distribution optimisation
has provided statistically better results.

To compare both STS and MTS in terms of efficiency, Figure 2 depicts
star plots representing the average run time obtained in each dataset for the
four STS vs. MTS comparisons considered (note that ClassDistribution is
only run once). This star plot presents the run time as the distance from the
center; thus, a lower area determines the most efficient methods. For sake of
clarity, logarithm scale has been used to counter the skewness between the
run times in the different datasets. Table 6 collects the complete list of run
time values in seconds. The fastest technique for each dataset is highlighted
in bold-face.

In 3 out of the 4 plots, we can observe that STS requires more time to
compute a single threshold than MTS to compute often hundreds of thresh-
olds. To fully understand these results, several points must be clarified:

• STS approaches have obtained an optimal threshold for the validation
set, while MTS approaches have not been designed to be optimal, but
efficient and effective. Therefore, despite the linear complexity of STS
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(a) Normalised H-loss comparison (b) HMC-loss comparison

(c) micro-averaged F1 comparison (d) ClassDistribution comparison

Figure 2: Run time comparison between STS and MTS approaches
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approaches, they must analyse all the possible thresholds Nv×k, inde-
pendently of the relation between classes.

• MTS approaches have the advantage that they can prune many of the
cut points, due to the followed top-down approach and the hierarchy
constraint checks.

• Nevertheless, as stated before, the complexity of the STS approach
could be further reduced by using a sub-optimal approach. Figure 3
presents a comparison of the run time required between a non-optimal
STS approach, the optimal STS and the proposed MTS model. This
figure considers the EM optimisation of the micro-averaged F1 measure
as an example. We can see that such kind of sub-optimal approach
(fixing 100 thresholds) provides a reduced run time. However, the
micro-averaged F1 obtained by the sub-optimal STS is always less than
the optimal approach, and a statistical comparison with Wilcoxon test
results in a p-value=0.0039.

Figure 3: micro-averaged F1 run time comparison for STS sub-optimal approach. Log
scale is utilised.

4.2.2. Global analysis

This subsection is devoted to perform a global analysis of all the pro-
posed approaches. Table 7 presents the results of the Friedman test for each
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Table 7: Average Friedman Rankings sorted from the best to the worst

Validation set Test set
EM(MTS) 1.0000 EM(STS) 2.1500
EM(STS) 2.4500 CD(STS) 2.3000

Normalised H-loss CD(STS) 3.1500 EM(MTS) 2.7000
CD(MTS) 3.7000 CD(MTS) 3.6500
LC(STS) 4.7000 LC(STS) 4.2000
EM(MTS) 1.0000 EM(MTS) 1.2000
CD(MTS) 2.3000 CD(MTS) 2.2000

HMC-loss EM(STS) 2.8000 EM(STS) 3.1000
LC(STS) 4.2000 LC(STS) 3.9000
CD(STS) 4.7000 CD(STS) 4.6000
EM(MTS) 1.0000 EM(STS) 1.8000
EM(STS) 2.3000 EM(MTS) 2.1000

micro-averaged F1 LC(STS) 3.3000 LC(STS) 2.7000
CD(MTS) 3.7000 CD(MTS) 3.7000
CD(STS) 4.7000 CD(STS) 4.7000

performance measure. In this table, algorithms are ordered from the best
(lowest) to the worst (highest) ranking.

The Friedman test has detected statistically significant differences be-
tween the performance of all the labelling schemes. Thus, the Nemenyi post
hoc test is applied to characterise the significant differences. Figure 4 plots
the corresponding average ranks diagrams.

Finally, Figure 5 establishes a global comparison in terms of run time
with all the considered methods.

From these figures and Table 7, we can conclude that:

• For normalised H-loss, EM techniques together with CD(STS) rank
in the first positions. The difference between EM techniques and the
rest of alternatives is more accentuated in the validation phase than in
the test phase. It may indicate that, for the considered datasets, EM
techniques have suffered from overfitting.

• In the case of the HMC-loss, EM(MTS) is ranked in the first position
in both validation and test sets. Thus, no overfitting seems to occur
for this measure. It is also noteworthy that the CD(MTS) has ranked
second in this study, without statistically significant differences with
the first one. As we can observe in Table 6 and Figure 5, it corresponds
to the fastest technique we have defined.
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(a) Normalised H-loss validation
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(b) Normalised H-loss test
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(c) HMC-loss validation
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(d) HMC-loss test
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(e) micro-averaged F1 validation
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(f) micro-averaged F1 test

Figure 4: Average ranks diagrams for the different performance measures in validation
and test sets. Better algorithms are located on the right side of the plot (rank closer to
1). Those that differ by less than the critical distance computed for a p-value=0.05 are
linked by a red line.
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Figure 5: Global run time comparison. Note that log scale has been used.

• In terms of the micro-averaged F-measure, the EM optimisation is the
best alternative. However, there is no significant difference between
STS or MTS approaches. Thus, the choice of using one or another may
rely on the run time needed to obtain the threshold/s. In this way, the
MTS approach would be preferred over STS.

• In general, EM techniques (either STS or MTS) always rank first in
all the performed experiments. The LC alternative does not seem to
provide very accurate thresholds for any of the measures. However, the
CD schemes provide a nice trade-off between performance and required
run time in most of the cases, especially the MTS version.

When establishing threshold values to determine the final labelling, there
is a risk of leaving instances without any labels. This occurs when the prob-
abilities of belonging to any class are lower than the computed threshold/s.
Next, we analyse to what extent this issue is present in the selected datasets
and the different threshold selection models.

Figure 6 plots the percentage of instances that have not been labelled
according to the threshold/s established by the different techniques in both
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(a) Percentage of unlabeled instances in the validation set

(b) Percentage of unlabeled instances in the test set

Figure 6: Percentage of examples that have not been labeled according to the established
threshold/s 31



validation (Fig. 6a) and test (Fig. 6b) set. The datasets not reported in the
figure did not experience the issue of unlabeled instances after applying the
threshold/s.

According to these figures, we can make the following observations:

• The optimisation of the normalised H-loss has resulted in very high
percentages of non-labelled instances in most of the data sets. This
result is particularly surprising at the validation set. Note that the
resulting normalised H-loss is computed as the average of all the losses
in the validation set. Thus, it means that according to this measure,
it is often better to provide many non-classified examples to achieve a
lower total loss in the whole set.

We can explain this as follows. Remember that for uniform H-loss,
making zero predictions results in the second best H-loss value for the
instances with target labels that all belong to a single level1 class (see
Section 2.1). For normalised H-loss, it is not the second best value, as
long as we do not predict more than the correct class at the first level.
Referring back to Fig. 1, where the correct label belongs to B’s subtree,
it is easy to see that correctly predicting B, and not C and D at the
first level, results in a normalised H-loss ≤ 1/3. Including also C or
D results in a H-loss ≥ 1/3. Making zero predictions yields a H-loss
= 1/3. Thus, for difficult classification tasks, where classes at the first
level are already hard to separate, the optimal result may come from a
high threshold that leaves many instances without prediction.

• On the contrary, the HMC-loss and the micro-averaged F-measure re-
port very low percentages of non-labelled instances for most of the
datasets. In contrast to the normalised H-loss, these measures add
losses from all classes, what prevents them to incur in this issue.

• For the CD optimisation, we can observe that this issue is also present
in some datasets, especially for the STS approach. In many datasets,
the CD of many classes (bottom classes) may be close to 0. Higher
thresholds may result in higher number of 0’s in the CD′ vector. As
this approach gives the same importance to every class, high thresholds
may result in lower Euclidean distances.

32



The issue discussed above also reflects the intrinsic complexity of HMC
problems, in which a high number of instances are very difficult to be classi-
fied properly.

5. Conclusions and further work

In this work we have proposed and investigated several alternatives to
perform the final labelling for hierarchical multi-label classification (HMC).
These alternatives consist of selecting single or multiple thresholds that trans-
form the real valued prediction scores provided by a HMC classifier into ac-
tual classes. To determine the threshold/s, two main approaches have been
proposed: optimisation of a given error measure of interest or simulating some
training set properties in the test set predictions. We have focused on three
well-known measures to evaluate the labelling performed: H-loss, HMC-loss
and micro-averaged F-measure. Training set properties were reflected by us-
ing thresholds yielding a similar class distribution or label cardinality. An
experimental comparison on 10 HMC dataset has resulted in the following
conclusions:

• Optimizing H-loss has a tendency to favour empty predictions. Es-
pecially the uniform H-loss suffers from this, but also the normalised
variant resulted in empty predictions for more than 60 percent of the
test instances in four datasets.

• In the optimisation of the HMC-loss, selecting multiple thresholds is
significantly better than a single threshold. In addition, the multiple
threshold scheme is also faster than the optimal single threshold ver-
sion.

• When the micro-averaged F-measure is considered, both single and
multiple threshold selection methods perform similarly. However, the
multiple threshold approach again requires a smaller computation cost.

• When evaluated using HMC-loss, selecting multiple thresholds by imi-
tating the class distribution has become a competitive alternative, es-
pecially when the run time matters.

We conclude that, although selecting different thresholds per class has
not been considered before in HMC, it provides a valid alternative, often
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resulting in better label sets than the single-threshold variant, and always
resulting in smaller computation time, because of the hierarchy constraint.

As future work we plan the application of these strategies to perform the
labelling of HMC predictions within a self-training semi-supervised learn-
ing context [40]. Another direction for future work is to compute macro- and
micro-averaged precision-recall curves for HMC in the multiple-threshold set-
ting.
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