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Abstract

We discuss the polarization dynamics during solid effect dynamic nuclear polarization (DNP) in a central spin model that consists
of an electron surrounded by many nuclei. To this end we use a recently developed formalism and validate first its performance by
comparing its predictions to results obtained by solving the Liouville von Neumann master equation. The use of a Monte Carlo
method in our formalism makes it possible to significantly increase the number of spins considered in the model system. We then
analyse the dependence of the nuclear bulk polarization on the presence of nuclei in the vicinity of the electron and demonstrate that
increasing the minimal distance between nuclei and electrons leads to a rise of the nuclear bulk polarization. These observations
have implications for the design of radicals that can lead to impoved values of nuclear spin polarization. Furthermore, we discuss
the potential to extend our formalism for more complex spin systems such as cross effect DNP.
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1. Introduction

Dynamic nuclear polarization (DNP) is a method for trans-
ferring spin polarization from radical electrons to surrounding
nuclei to create a highly polarized non-thermal state which sub-
sequently can be used to acquire a strongly enhanced NMR sig-
nal. Several applications of DNP have recently highlighted the
huge potential that this method offers for increasing the low sen-
sitivity of magnetic resonance imaging (MRI) and spectroscopy
experiments [1, 2, 3]. In particular, applications of dissolution
DNP [4, 5] to prepare highly polarized 13C labelled molecules
in conjuction with spectroscopic MRI have led to the devel-
opment of novel experimental protocols for human cancer di-
agnostics [6, 7]. Despite the recent success of the technique,
its mechanism is not yet fully understood and significant effort
has gone into developing suitable theoretical models to pre-
dict the polarization dynamics during DNP. Most model sim-
ulations have focused on the numerical analysis of spin sys-
tems that consist of only a few spins [8, 9] since the dimension
of the required state space of the quantum mechanical prob-
lem scales exponentially in the number of constituents and the
available computer memory limits the calculations to only up
to 10 - 14 spins. In addition, thermodynamical models based
on the concept of spin temperature have been used to analyze
the dependence of the spin polarization on experimental param-
eters [10, 11, 12] as well as several attempts have been made to
describe the polarization dynamics by a set of rate equations
[13, 14, 15]. We have recently developed a formalism that al-
lows simulations of the polarization dynamics in large many-
spin systems for solid effect DNP (SE DNP) [16]. The formal-
ism opens up the possibility of analysing polarization transport
in systems consisting up to a few thousand coupled spins. In
this contribution we demonstrate the insight that such simula-

tions can provide for understanding the dynamics of many cou-
pled spins during DNP. In particular, we show how the bulk po-
larization level crucially depends on the molecular environment
of the unpaired electron. Furthermore, we include a comparison
of our formalism with conventional simulation methods based
on solving the quantum mechanical master equation in the full
Liouville space. In addition, we discuss the prospects to extend
the formalism to more complex DNP pathways in systems with
interacting electrons and nuclear spins.

2. Full quantum mechanical description

SE DNP can be observed in systems where the electrons have
little or no g-anisotropy and their concentration is relatively
low, resulting in weak dipolar coupling between them and nar-
row ESR spectra with a linewidth less than the Zeeman splitting
of the surrounding nuclear spins [8, 17, 18, 19, 20]. A quantum
model, representative for a spin system in which SE DNP can
occur, is the central spin model, where an unpaired electron S
is surrounded by an ensemble of M nuclei Ik, k = 1, . . . ,M
[21, 22]. The nuclei are coupled by the hyperfine interaction
to the electron and form also a dipolar coupled network be-
tween themselves. Polarization can be transferred to nuclei di-
rectly surrounding the electron (core nuclei) by applying a mi-
crowave field off-resonance in respect to the electron Larmor
frequency and on resonance with either the zero (ZQ) or dou-
ble quantum (DQ) transitions ωS ± ωI of electron-nuclei spin
pairs [8, 17, 18, 19, 20]. The polarization is further distributed
between the bulk nuclei via spin diffusion mediated by inter-
nuclear dipolar interactions in the spin network. The Hamilto-
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nian in the reference frame of the microwaves

Ĥ = ∆Ŝ z +
∑

k

(
ωI Îkz + AkŜ z Îkz +

1
2 Bk+ Îk+Ŝ z

+ 1
2 Bk− Îk−Ŝ z

)
+ ωA

2

(
Ŝ + + Ŝ −

)
. (1)

∆ represents the microwave offset in respect to the electron
Larmor frequency, ωI is the nuclear Larmor frequency, Ak is
the strength of the secular part and Bk± is the strength of the
pseudo-secular part of the hyperfine interaction between the
electron S and the k-th nuclei Ik, and ωA is the strength of
the applied microwave field. Relaxation is introduced by a
Lindbladian dissipator, which has the general form: D

(
L̂k

)
ρ̂ =

L̂kρ̂L̂
†
k −
{
ρ̂, L̂†k L̂k

}
/2 with a set of jump operators defined in the

basis of Lk ∈
{
Ŝ ±, Ŝ z, Îk±, Îkz

}
, each with an associated effective

rate [23]. The Lindbladian is commonly used in quantum optics
and in the description of dissipation in open quantum systems
[24, 25]. The dissipator describes relaxation as jumps between
different states with effective jump rates that are in our case
related to the longitudinal relaxation rates R1, and dephasing
terms with effective rates that are given by the transverse relax-
ation rates R2 observed in the spin system. Using this dissipator
form it is straight-forward to introduce more complicated re-
laxation pathways for the system (e.g. spin cross-relaxation).
The action of the Lindbladian dissipator is identical to the use
of double-commutator relaxation superoperators, which can be
illustrated by the following simple rearrangement. If we take a
generic operator X̂ (which could for example be one of the low-
ering or raising operators) along with its hermitian conjugate
indicated by the dagger symbol, we can write it in a double-
commutator form of a relaxation superoperator

Γρ̂ = −R1

2

([
X̂,
[
X̂†, ρ̂
]]
+
[
X̂†,
[
X̂, ρ̂
]])

≡ −R1

2

(
−2X̂ρ̂X̂† − 2X̂†ρ̂X̂ + X̂X̂†ρ̂ + ρ̂X̂X̂† + X̂†X̂ρ̂ + ρ̂X̂†X̂

)
≡ R1

(
X̂ρ̂X̂† −

{
ρ̂, X̂†X̂

}
/2 + X̂†ρ̂X̂ −

{
ρ̂, X̂X̂†

}
/2
)

≡ R1

(
D
(
X̂
)
+ D
(
X̂†
))
ρ̂

The Lindbladian is therefore analogous to the Redfield relax-
ation superoperator. No normalisation term is required with the
Lindbladian for the system to relax to thermal equilibrium, as
the normalisation term may be included in the effective rate us-
ing the principle of detailed balance. In [23] we discussed the
differences in simulations seen between using a Lindblad style
dissipator defined in the Zeeman basis, and the relaxation su-
peroperator form used by Hovav et. al. [8] in the eigenbasis of
the stationary Hamiltonian. Furthermore, we describe in [23]
the possibility of addition of other dissipation parts to the re-
laxation superoperator. The operators S ±, Ik± are responsible
for transitions between eigenstates of the system and introduce
longitudinal relaxation in the system. The operators Ŝ z, Îkz are
mainly responsible for decay of coherences in the system. Writ-
ten explicitly for SE DNP, the dissipator arising from a standard
random fluctuation model for relaxation in the solid state has

the form [23]:

Γρ̂ =
R(I)

1

2

M∑
k

D
(
Îk±
)
ρ̂

+
R(S )

1

2
(1 ± p0) D

(
Ŝ ±
)
ρ̂

+ 2R(I)
2

M∑
k

D
(
Îkz

)
ρ̂

+ 2R(S )
2 D
(
Ŝ kz

)
ρ̂, (2)

where p0 is the electron thermal equilibrium polarization,
R(S )

1 ,R
(I)
1 are the rates of longitudinal relaxation to thermal equi-

librium of the electron and nuclei respectively, and R(S )
2 ,R

(I)
2 the

corresponding rates of transverse relaxation. The nuclear ther-
mal equilibrium polarization is assumed to be negligible com-
pared to the electron thermal polarization. A bold font is used
for superoperators throughout the text.
The spin dynamics are simulated by solving the Liouville von
Neumann master equation acting in Liouville space

˙̂ρ = −i
[
Ĥ, ρ̂
]
+ Γρ̂. (3)

3. Classical dynamics in the Zeeman subspace

We have recently demonstrated that the dynamics of the
nuclear spin polarization during SE DNP can be well ap-
proximated by using only the states contained in the Zeeman
subspace [16]. This subspace is spanned by the operators{
1, Ŝ z, Ŝ z Îkz, Ŝ z Îkz Îk′z . . .

}
. The effective master equation in the

Zeeman subspace can be written in the Lindblad form [24, 25]
using four jump operators and their corresponding effective
rates, representing only four different quantum jumps: electron
and nuclear single spin flips, flip-flops between the electron and
nuclear spins and flip-flops between spins in nuclear spin pairs.
The details of the mathematical procedure can be found in [16].
There we also discuss the advantages of many-body spin sim-
ulations, particularly when looking at diffusion of polarization
into the bulk of a sample. Limitations of the procedure and the
conditions when it can be applied are also provided. The effec-
tive master equation has the form

˙̂ρZ =

M∑
k

Γ
(I)
k±D
(
Îk±
)
ρ̂Z

+ Γ
(S )
± D
(
Ŝ ±
)
ρ̂Z

+

M∑
k

Γ
(IS )
k D

(
Ŷk

)
ρ̂Z

+

M∑
k< j

Γ
(II)
k, j D
(
X̂k j

)
ρ̂Z , (4)

where Ŷ = Îk+Ŝ − + Îk−Ŝ + and X̂k j = Îk+ Î j− + Îk− Î j+. The di-
mension of the density operator in this master equation scales
as 2N , where N = M + 1, with M given by the number of nuclei
in the system. This is a significant reduction in comparison to
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the full Liouville space which has dimension 4N . The effective
evolution of the spin polarization in the central electron system
is completely classical in the sense that the evolution relies on
classical state-dependent rate equations describing the evolu-
tion of system polarization, and it is only based on single spin
flips and two spin flip-flops and does not require the calcula-
tion of any quantum coherences. Hence the evolution connects
only classical states in the Zeeman basis and does not create
any superpostions unlike a general quantum Master equation
dynamics. The effective rates Γ(I)

k±, Γ
(S )
± , Γ

(IS )
k and Γ(II)

k, j describe
the rates by which these single spin flips and two spin flip-flops
occur in the quantum system. An analysis of the mathematical
form of the effective rates reveals the dependence of the polar-
ization dynamics on the various system parameters such as the
hyperfine interaction strengths Ak and Bk, the microwave field
strength ωA and the relaxation time constants. Moreover, the
effective rates can be used to distinguish between bulk and core
nuclei.

The effective rates for the single-spin flips are for the electron
and individual nuclear spins, respectively:

Γ
(S )
± =

1
2 (1 ∓ p0) R(S )

1 +
ω2

A

2ω2
I

R(S )
2 , (5)

Γ
(I)
k± =

1
2 R(I)

1k +
|Bk |2

8ω2
I

R(I)
2k . (6)

Eq. (5) represents the rates for up and down jumps of the elec-
tron spin. The different weighting of these two processes arises
from the requirement that the electron should relax due to lon-
gitudinal relaxation to its thermal equilibrium value p0. The
additional term in Eq. (5) stems from the microwave irradiation
which, due to the induced Rabi oscillations, can also lead to
re-orientation of the electron spin. Similarly, Eq. (6) describes
the effective longitudinal relaxation of the nuclei in the Zeeman
frame. The perturbation in this case is due to the coupling with
the electron. A more detailed analysis of the second order cor-
rection terms can be found in [16].
The dissipative processes acting on two spins describe polariza-
tion transfer through flip-flop jumps either involving the elec-
tron and a nucleus or two nuclei:

Γ
(IS )
k =

ω2
A |Bk |2

(
R(I)

2k + R(S )
2

)
8ω2

I

[(
R(I)

2k + R(S )
2

)2
+ D̂2

k

]−1
(7)

Γ
(II)
k, j =

d2
k j

(
R(I)

2k + R(I)
2 j

)
2

[(
R(I)

2k + R(I)
2 j

)2
+ Ĉ2

k j

]−1
, (8)

where D̂k and Ĉk j are operator valued terms

D̂k = λ +
ω2

A
2ωI
− |Bk |2

8ωI
+
∑
s,k

As Îsz (9)

Ĉk j =
(
Ak − A j

)
Ŝ z +

1
8ωI

(
|Bk |2 −

∣∣∣B j

∣∣∣2) . (10)

Eq. (7) describes transfer of polarization from the source elec-
tron to the surrounding nuclei. This process depends on the mi-
crowave field amplitude squared ω2

A, the pseudo secular hyper-
fine coupling strength Bk magnitude squared, the nuclear Lar-
mor frequency squared ω2

I , the rates of transverse relaxation of

the electron R(S )
2 and coupled nucleus R(I)

2k , and the operator-
valued term in Eq. (9). This term depends on the spin state of
the nuclear ensemble which can be intuitively understood be-
cause the effective rate for polarization transfer from the elec-
tron must at steady-state tend towards the rate by which po-
larization is lost in the nuclear ensemble due to longitudinal
relaxation. In cases of a mismatch of the microwave carrier fre-
quency with either the ZQ or DQ transition frequency, the offset
parameter λ is large and the polarization transport efficiency is
decreased.
Eq. (8) is the effective rate responsible for diffusion of po-
larization away from core nuclei close to the electron to the
bulk. Polarization transfer is driven by nuclear flip-flops, the
rate magnitude is dependent on the strength of the dipolar cou-
pling squared d2

k j. The presence of R2 values implies that the
underlying quantum-mechanical process is affected by trans-
verse relaxation. The effective flip-flop rate is also reduced in
cases where there is a large difference between the secular cou-
pling parameters Ak of two nuclei. This implies, that in the case
of nuclei very close to the electron, their transport of polariza-
tion into the bulk of the sample is inefficient.
The second part of Eq. (10) is much smaller than the first, and
hence Ĉk j can be approximated as (Ak − A j)Ŝ z, the square of

which is
(
Ak − A j

)2
/4 and therefore Eq. (8) becomes indepen-

dent of the spin state of the electron.

Γ
(II)
k, j =

d2
k j

2
(
R(I)

2k + R(I)
2 j

) 1 + 1
4

 Ak − A j

R(I)
2k + R(I)

2 j

2

−1

.

Comparison between the two rates (Eqs. (7) and 8) for a nu-
cleus determines whether it belongs to the core or to the bulk.
In the case that the effective hyperfine rate, Eq. (7), is greater
than the effective nuclear dipolar rate, Eq. (8), the interaction
with the electron will be dominating, indicating a core nucleus.
The opposite would be true for a bulk nucleus.

3.1. Comparison between Zeeman projection and Liouville von
Neuman equation

In the following we use a model system to demonstrate the
quality of the agreement between simulations based on the Li-
ouville von Neumann equation (Eq. 3) and an evolution in the
full Liouville state space and simulations based on the mas-
ter equation (Eq. 4) which was obtained by the projection to
the Zeeman subspace. The detailed derivation of the Zeeman-
subspace effective master equation in [16] provides the strict,
analytical form of conditions which need to be satisfied for the
projection to be valid. Here we demonstrate a ficticious sys-
tem for which we quantitatively verify the parameter regime in
which the projection is accurate, with respect to the full master
equation. The geometry of the spin system consisting of one
electron and five nuclei is shown in Fig. 1. The system was
selected to represent a variety of orientations of nuclei with re-
spect to the electron. Most of the spins are in the x − z plane,
as azimuthal changes do not affect the coupling parameters. All
the coupling parameters between nuclei as well as those be-
tween nuclei and the central electron were obtained from first-
principle calculations based on their positions.
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Figure 1: Geometry of the model system consisting of one electron (S ) and five
nuclei (Ik, k = 1, . . . , 5). The distance parameter a was varied between 2 Å and
10 Å in a set of simulation to compare the results obtained using the master
equation derived from the Zeeman subspace projection with the results of the
Liouville von Neuman equation.

Here a is a variable distance between spins which was varied
in simulations between 2 Å and 10 Å. The error δp was then
computed by taking the difference between the polarization val-
ues pLvN obtained from the Liouville von Neuman master equa-
tion (3), and the Zeeman-projected master equation (4) pZeeman ,
normalized to the results of the Liouville von Neuman equation,
i.e.

δp =
(
pLvN − pZeeman

)
/pLvN . (11)

The coordinates of the nuclei seen in Fig. 1 are listed in Tab.
1. For simulations a uniform 5% randomization in position was
used.

spin x y z
S 0 0 0
I1 −a 0 0
I2 0 0 −a
I3

a√
2

0 a√
2

I4
a√
2

0 a
(
1 +

√
2

2

)
I5 0 −a

√
3

2 - a
2

Table 1: Coordinates of the electron and the nuclei in the model configuration

The simulations were carried out using the gyromagnetic
constant of the 1H nucleus. It was necessary to use a microwave
strength ωA = 500 kHz in conjunction with the distance pa-
rameter value a = 2 Å to generate a significant nuclear polar-
ization enhancement. Such microwave strength is difficult to
experimentally implement without a cavity. The remaining pa-
rameters were T = 1 K, Bz = 3.4 T, T (S )

1 = 1 ms, T (I)
1 = 1 h,

T (S )
2 = 200 ns, T (I)

2 = 0.2 ms, simulation duration = 1 h. This
parameter set was used for consistency for all simulations with
a between 2-5 Å. Curves showing the polarization dynamics for
the nuclei and the electron are shown in Fig. 2.

Figure 2: Polarization curves for spin separation of 2 Å. Details of the simula-
tion parameters used are provided in the text.

Figure 3: Error between the calculation based on the Liouville von Neuman
equation and the Zeeman master equation for a model spin system with separa-
tion parameter value of 2Å

The error in polarization for this configuration of the model
spin system is shown in Fig. 3. It does not exceed 3%. If the
separation parameter a is set to 3 or 4 Å, the error decreases fur-
ther, e.g. for 4 Å the error never exceeds 1.5%. For separations
of 5-10 Å the microwave power was reduced to an experimen-
tally more realistic strength of ωA = 200 kHz and the electron
transverse relaxation time constant T2 was increased 5-fold to
T (S )

2 = 1µs. All other parameters were kept the same as de-
scribed previously. The maximum error never exceeded 1% for
any value choice of a between 5 Å and 10 Å. In all cases of the
error analysis, the steady-state error was lower than the maxi-
mum error, which usually was found for the data in the initial
fast polarization build-up phase.

In conclusion, generally a very good agreement is obtained
between Eq. (3) and Eq. (4) for a wide range of parameters that
reflect realistic experimental conditions. However, it is worth
mentioning that since a set of conditions needs to be fulfilled
for the Zeeman projection to provide an acceptable approxi-
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mation [16], there are also parameter regimes where the error is
likely to be greater than shown here. In particular, the dynamics
in model spin systems with very small average distances (below
2Å) or long transverse relaxation time constants is not well ap-
proximated by an adiabatic elimination procedure to project the
dynamics onto the Zeeman subspace. In this case coherences
are not negligible for the evolution of the spin system and need
to be taken into account by including states outside of the Zee-
man subspace into the calculations.

3.2. Kinetic Monte Carlo simulations

The dynamics of spin systems containing a large number N
of coupled spins cannot be calculated by conventional propa-
gation using Eq. (4) because the dimensions of the required
state space scales with 2N . However, because of the classical
nature of Eq. (4), the dynamics can be well approximated using
a kinetic Monte Carlo (KMC) method [26]. It provides a CPU
efficient way to find numerical solutions for the evolution of
the density operator in Eq. (4). Like the static variants, KMC
relies on averaging over many trajectories that correspond to
possible evolutions of the system. The Zeeman-projected mas-
ter equation (4) is already in a form suitable for this method.
The effective rates in Eqs. (5 - 8) along with their correspond-
ing Lindblad operators can be directly used. The formalism is
schematically described in Fig. 4.

Figure 4: Flow diagram of the kinetic Monte Carlo algorithm

The initial state for a trajectory is generated based on the ther-
mal equilibrium polarization values of the electron (the nuclear
spin polarization was assumed to be zero).
Due to the Markovian nature of the dynamics in the many spin
system only knowledge of the current state is sufficient to prop-
agate the system in time. The Lindblad rates (Eqs. (5) - (8)) are
first calculated based on the system parameters. The rate for
the flip-flop interaction between an electron and a nuclei (Eq.
(7)) is state-dependent and hence is initiated using the thermal
equilibrium state. Next, two random numbers r1 and r2 are gen-
erated. The time required for the next event to take place is
calculated using a natural logarithm of the first random number
and the inverse of the sum of all rates of jumps that are possible
in the system. In the next step it is decided which type of jump
will be carried out. For this purpose all rates are normalised to

sum up to ’1’, and arranged in a cumulative sum array. An ele-
ment in this array is identified which is higher in value than the
second random number. The operation corresponding to that
rate in the array element is carried out. Accordingly, operations
with higher rate values are statistically more likely to occur than
events with low rates. Once the operation or jump is carried out,
the effective rates for the flip flop jump between a nucleus and
the electron (Eq. (7)) are re-calculated based on the current sys-
tem state. The steps outlined are repeated until a desired time
is reached in the trajectory. Many trajectories are computed
and averaged to approximate the polarization dynamics of the
system. The method does not require vasts amounts of mem-
ory since only an N-element binary array is required that stores
the current orientation of the z-component of each individual
spin. The KMC method was implemented using MATLAB on
a 3GHz 20 core desktop computer. 1

A comparison of the polarization dynamics was carried out
for the model spin system described previously with a = 5 Å
inter-spin separation using the same parameter set as previously
listed.

Figure 5: Comparison between Zeeman master equation and KMC

1The full code can be made available by contacting the authors
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Figure 6: Error between Zeeman master equation and KMC

Fig. 5 shows polarization build-up curves computed using
the Zeeman master equation (Eq. (4), black solid lines) over-
layed with the polarization build-up curves approximated by
using the KMC algorithm (coloured, dashed lines). A total of
10 000 trajectories was averaged in the KMC procedure. Fig.
6 shows the difference between the results of the two meth-
ods. The KMC polarization curves match the curves obtained
by solving the Zeeman master equation very well, but are sub-
ject to a random error. This is an inherent property of the KMC
algorithm and its dependence on random events. The difference
does not generally exceed 2% in polarization value, with the
exception of early times. Averaging over a larger number of
trajectories decreases the random error seen in the polarization
curves obtained from the KMC method.

4. Central electron model consisting of many nuclei

To gain further insight into the optimal conditions for SE
DNP for achieving the highest nuclear spin polarization and
the fasted buildup rate simulations with many nuclear spins
were carried out. This kind of analysis provides important
information for a tailored radical design in which radical
compounds are synthesized with desired properties. To analyze
the spin dynamics during SE DNP in a central electron system
containing many nuclear spins, a cubic grid of 124 13C spins
with a nearest neighbour separation of 4Å was chosen with
1% uniform randomization in position of each nuclei. Such
average distance corresponds to 26 M of a 13C labeled molecule
or in other words it is slightly shorter then the average distance
between 13C nuclei in free pyruvic acid (4.8 Å) [27]. The
magnetic field was set to be 3.4T, the temperature was set 1K,
and a microwave field amplitude of 20 kHz was chosen to
approximate realistic experimental conditions. The relaxation
parameters were: T(S )

1 = 0.5 s, T(S )
2 = 10 µs, T(I)

1 =1 h, T(I)
2 =

0.5 ms. The polarization dynamics for one hour of microwave
irradiation was simulated using our KMC method.

Figs. 7 and 8 show the spatial dependence of the secular and
pseudosecular hyperfine interaction strengths Ak and Bk for the

124 13C nuclei.

Figure 7: Strength of the secular hyperfine interaction Ak between the central
electron (black) and the 124 13C nuclei. The colour scale indicates the coupling
strength in kHz.

Figure 8: Strength of the pseudosecular hyperfine interaction Bk between the
central electron (black) and the 124 13C nuclei. The colour scale indicates the
coupling strength in kHz.

The magnitudes of the secular part and the pseudosecular
part of the hyperfine interaction are given by

Ak =

∣∣∣∣∣∣γS γI

r3
k

(
1 − 3 cos2 θk

)∣∣∣∣∣∣ ,
Bk =

∣∣∣∣∣∣−3
2
γS γI

r3
k

sin θk cos θk

∣∣∣∣∣∣ ,
where γS and γI are the electron gyromagnetic constant and the
nuclear gyromagnetic constant, respectively, rk is the distance
between the nucleus Ik and the electron S and θk is the angle
that the distance vector connecting the electron with the nuclei
forms with the static magnetic field (conventionally chosen to
be along the z-direction). The strength of the secular part of
the hyperfine interaction Ak is strongest for nuclei at positions
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with angle θ = 0 or θ = π. Conversely, the strength of the
pseudosecular part of the hyperfine interaction is zero at these
positions and strongest at positions characterized by θ = π/4
or θ = 3π/4. The interaction strength scales also with r−3

k , so
drops off relatively quickly with increasing distance between
nuclei and the electron.

By calculating the effective rates, Eq. (7), for the flip-flop
jumps between the electron S and the nucleus Ik and comparing
it to the effective rates with which the nucleus Ik can carry out
flip-flop jumps with adjacent nuclei, Eq. (8), it is possible to
determine the nuclei that will predominately interact with the
electron. We call these the core nuclei. All the remaining nuclei
belong to the bulk (Fig. 9).

Figure 9: The nuclei in the ensemble around the central electron belong either
to the core (red, effective rate for flip-flop jumps between electron and nucleus,
Eq. (7), is higher than any of the effective inter-nuclei flip-flop rates, Eq. (8))
or to the bulk (blue, effective rate Eq. (7) is smaller than effective rate Eq.
(8)). Note that because of the 1% uniform randomization of the position the
configuration is not fully symmetric.

Fig. 10 shows the buildup of nuclear spin polarization in
the system at various points in time. As expected the highest
polarization increase is for nuclei with the highest strength of
the pseudosecular interaction Bk. The polarization is also dis-
tributed by effective spin diffusion to regions in which Bk is
very small. This can be shown by setting the effective rate for
internuclei flip-flops to zero in the simulation. In this case only
nuclei in regions with Bk , 0 receive significant electronic po-
larization during SE DNP.

5. The effect of nuclei close to the electron

We analyze now the effect on the average bulk polarization
if the configuration of this model system is changed by first re-
moving the six nuclei with the highest secular hyperfine inter-
action strength (Ak) and then subsequently also further nuclei
adjacent to the electron. To the best of our knowledge a study
as such is only possible with simulations involving large many-
body systems, using the KMC algorithm and Zeeman-subspace
master equation. The idea here is to understand the role of the
secular and pseudosecular term of the hyperfine interaction of

nuclei in immediate proximity of the electron for the bulk nu-
clear polarization. Every time one nucleus was removed the
polarization dynamics were simulated starting from the initial
thermal equilibrium state and the average nuclear spin polariza-
tion per nucleus has been calculated for the steady-state. Fig.
11 shows the order and the position of the removed nuclei.

Figure 11: The order by which the layer of nuclei adjacent to the electron
was removed in successive simulations is indicated by the numbers. Different
colour coding was used to group nuclei in four groups: The first six nuclei with
strong secular hyperfine interaction and weak pseudosecular hyperfine interac-
tion (dark blue), eight nuclei with relatively strong pseudosecular interaction
(light blue). Four nuclei with strong secular hyperfine interaction and weak
pseudosecular hyperfine interaction strength (green) and eight nuclei with rela-
tively strong pseudosecular interaction strength (purple)

Figure 12: Mean polarization per nucleus versus the number of nuclei removed
from the model system. The colour coding is identical to the one used in fig.
11. The first data point corresponds to the mean polarization without any nu-
cleus removed (black). The next six data points (dark blue) correspond to the
mean polarization if the six nuclei with strongest secular hyperfine interaction
strength Ak are removed. The next eight data points (light blue) corresponds to
the mean polarization if nuclei with strong pseudosecular interaction strength
are removed (Bk). The next four data points again corresponds to removal of
nuclei with high Ak values and the next eight data points (purple) corresponds
to removal of nuclei with high Bk values. The broken black line has been added
as a visual guide only

The dependence of the mean nuclear spin polarization per
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Figure 10: A) The distribution of the nuclear spin polarization at various time points during the buildup. A careful comparison with Fig. 8 reveals that the nuclei
with the strongest Bk values have in the initial phase the highest polarization. B) Nuclear steady-state polarization if the nuclear dipolar interaction coefficients di j
are set to zero . The nuclei are only polarized via the pseudo-secular part of the hyperfine interaction

nucleus at steady state on the number of the removed nuclei is
summarized in fig. 12. The first date point (black) represents
the average nuclear spin polarization in the system without
removal of any nuclei. The next six data points (dark blue)
indicate the average nuclear spin polarization if the six nuclei
with the strongest secular hyperfine interaction strength Ak

are successively removed. These are the nuclei just directly
above and below the electron and next to the electron in the
xy-plane in which the electron is located (see fig. 11 for the
position of the removed nuclei and fig. 7 for the Ak values).
The pseudosecular interaction strength Bk of these six nuclei
are all very low (see fig. 8) and none of the removed nuclei
belongs to the core nuclei group with high effective transfer
rates of polarization from the electron (fig. 9). The average
nuclear spin polarization improves by more than a factor 2
due to the removal of these nuclei. The next eight nuclei that
were successively removed (light blue colour) have the highest
pseudosecular interaction strength Bk and also relatively high
Ak values (see see figs. 11, 7 and 8). Removal of these nuclei
decreases the average nuclear spin polarization by about 15 %.
Seven of these eight nuclei belong to the core nuclei group. The
next four nuclei (green) that were removed have high Ak values
and low Bk values. The removal of these nuclei increases again
the average nuclear spin polarization in the ensemble. Com-
pared to the polarization level of the last bright blue data point
the increase is more than 30%. The polarization level compared
to the average polarization for the reference system without any
nuclei removed is increased by more than a factor of 2.3. The
last eight nuclei that were removed have high Bk values and the
average nuclear spin polarization level decreases by about 10%.

In order to interpret these results it is instructive to analyze
the distribution of frequencies which are characteristic for SE
DNP. The effect of the nuclei with strong secular hyperfine
interaction (high Ak values) is a splitting of the frequencies
ωS ± ωI at which SE DNP is mediated by an excitation of ZQ
or DQ transitions [28, 8]. The splitting of these frequencies for
each nuclei Ik can be calculated by using [28, 8]

ωDNP
Ik
= ωS ± ωI −

1
2

∑
i,k

siAi, si = ±1, (12)

where si is the sum means that one needs to add up over all
possible permutations. Because of the very high number of fre-
quencies that will result from the coupling of 124 nuclei to the

electron we have selected only 25 nuclei to calculate these fre-
quencies. The 25 nuclei were identified by ordering the nuclei
with decreasing secular hyperfine interaction strength Ak and
by selecting the first 25 with relatively high Ak values. The dis-
tributions of frequencies calculated using Eq. (12) are shown
in histograms (see fig. 13). In these histograms the fractional
number of transition frequency at which nucleus-electron flip-
flop occur are plotted against the frequency offset to the ZQ fre-
quency ωS + ωI . Note that with removal of the first six nuclei
the distribution becomes significantly narrower. Any further re-
moval of nuclei reduces the width of the distribution further un-
til the Ak values of the removed nuclei are so weak that no fur-
ther change can be observed. From fig. 13 we can conclude that
initially successive removal of nuclei increasingly causes nuclei
to have ZQ transition frequencies closer to the microwave car-
rier frequency set to ωS + ωI and hence SE DNP will become
more efficient. However, while this has a positive effect on the
average nuclear spin polarization, removal of nuclei with high
Bk values that can pass polarization on to the bulk by spin diffu-
sion has a negative effect of the average nuclear spin polariza-
tion. These considerations show the delicate interplay between
the various parameters in the spin ensemble.

We observed in our model simulations that the average
nuclear spin polarization is more than 2 times higher if the
26 nuclei adjacent to the central electron are removed. The
removal of the nuclei means that nearest distance between
nuclei and electron has increased by a factor of 2. If further
layers of nuclei are removed it is to be expected that the
average nuclear spin polarization will decrease to levels below
the inital level of the system without any nuclei removed since
the pseudosecular interaction strength becomes too weak for
efficient polarization transfer between the central electron and
the interacting nuclei. From these considerations it is clear
that there must be a set of parameters that gives the optimum
DNP efficiency and for which the nuclear spin polarization
will reach its highest level. Such an optimum does depend
in a complex way on all parameters including the microwave
irradiation strength, the average distance between the nuclei,
the nearest distance between nuclei and the central electron
and the various relaxation parameters.
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Figure 13: Histograms shows the distribution of frequencies for ZQ transitions that occur in the model spin ensemble. The frequencies are given as offset frequencies
in respect to the ZQ transition ωS + ωI . Successively nuclei are removed (none, 2, 6, 14, 18 and 24 removed) and the frequencies for ZQ transitions are calculated.
First two of the nuclei with the strongest secular hyperfine interaction A were removed followed by additional nuclei in descending order given by their secular
hyperfine interaction strength. Fig 11 shows the positions of the removed nuclei. Note that the width of the distribution becomes initially narrower with increasing
numbers of nuclei removed. However, since the six nuclei that were removed at the end have only very weak Ak values there is no significant change between the
last two histograms

6. Extension to systems with more electrons

With the success of the Zeeman projection for SE DNP dy-
namics, we are currently pursuing a similar approach for the
cross effect DNP mechanism (CE DNP), where electron pairs
play a key role, leading to polarization dynamics more efficient
than in the SE DNP case [29, 30]. Using again two adiabatic
eliminations it is possible to first project the dynamics onto a
subspace that contains all operators that commute with the nu-
clear Zeeman operators Ikz and the Zeeman operator of one of
the electrons [31], and subsequently project it on to the Zee-
man subspace to obtain a master equation that can be written in
the Lindblad form. However, in contrast to the Lindblad master
equation for SE DNP, Eq. 4), the set of jump operators contains
additional three spin operators that describe flip flops between
two electrons and a concomitant change of orientation of the
nuclear spin. The Lindblad master equation for CE DNP can
also be used in a wide parameter space but stricter conditions
apply in comparison to SE DNP. Further extensions of this for-
malism to the case of rotating solids for simulations of DNP
during magic angle spinning are also feasible. In addition, it
was shown recently that also the dynamics of a system contain-
ing several electrons and one nuclear spin can be described by
a master equation in Lindblad form [32].
There are only few experiments published in the literature
where SE DNP seems to be the sole mechanism for generating
the non-thermal nuclear spin state. Seminal work by Vega and
coworkers has demonstrated that rather a mixture of SE DNP
and CE DNP is responsible for the build up of nuclear polariza-
tion at cryo-temperatures using the trityl radical [15, 14]. Even
for such complex systems it appears to be feasible, based on our
work involving the reduction of the required state space, to de-
rive a set of equations that can describe the nuclear polarization

dynamics.

7. Radical design

The simulations presented in this work point to a possible ex-
planation why the trityl radical currently frequently used for 13C
dissolution DNP seems to perform particularly well [33, 34].
The explanation is based on the assumption that there is also
an optimal distance for CE DNP between the electron and the
nuclei. The bulky aromatic groups of the tritly compound keep
the molecules that carry the 13C-label (e.g. [1 − 13C] pyruvate)
at an appreciable distance to the electron (for an analysis using
1H see [35]). The relatively high value of the nearest distance
between 13C nuclei and the electron results in a relatively nar-
row distribution of the possible DNP transition frequencies in
the nuclear spin ensemble but on the other hand the 13C nuclei
are still near enough to ensure a high pseudosecular interac-
tion between the first layer of nuclei and the electron. Further-
more, in this case the difference between the secular hyperfine
interaction strength of adjacent nuclei will not be as high as for
a configuration in which the nuclei can get very close to the
electron. This in turn will lead to more efficient spin diffusion
(rate Eq. (8)) between nuclei closer to the electron and the next
layer further away. These considerations demonstrate that the
performance of DNP is critically dependent on the immediate
molecular environment of the paramagnetic centre and that im-
provements in the performance of DNP could be obtained by
specific radical design.

8. Conclusion

We have demonstrated the validity of a formalism, which
allows simulations of large many-spin systems. We tested
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the accuracy of the approach for a small spin system with a
varied inter-spin separation. Our results show that the Zeeman
projection agrees with the full quantum-mechanical master
equation down to 2 Å separations, where the maximal ob-
served relative error was less than 3%. The projection is valid
even for parameters which might be considered as extreme
in cases of DNP experiments. We show also that simulations
relying on the Kinetic Monte Carlo algorithm are in agreement
with the Zeeman-projected master equation, subject to random
error, which is reduced for simulations with higher numbers of
trajectories. The classical KMC algorithm presents a powerful
tool, suitable for use in any system where the dynamics are
incoherent and resemble classical behaviour.
We show the necessity and advantage of using large, many-
spin simulations when studying the mechanism of DNP by
analyzing the effect of the nuclei in immediate vicinity to
the electron on the DNP performance. We studied the effect
of removing core-nuclei from a virtual cubic lattice system
on polarization build-up rates of remaining nuclei, as well as
their steady-state values. A clear improvement in both can
be seen when core nuclei - those in the immediate vicinity
of the electron, are removed from the system. Build-up rates
increase significantly, and the mean steady-state polarization
level increases by more than a factor of 2. We explain this
using simulated DNP transition spectra, which show linewidth
narrowing with the removal of nuclei strongly coupled to the
electron. Crucially, the improvement can be explained using
the effective rates previously derived. The results presented
here may give an insight or guidance in radical-design for
optimised DNP experiments. The efficiency of designed
radicals can be theoretically predicted and assessed.
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