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Emergence of cooperative dynamics in fully packed classical dimers
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We study the behavior of classical dimer coverings of the square lattice—a paradigmatic model for systems
subject to constraints—evolving under local stochastic dynamics, by means of Monte Carlo simulations and
theoretical arguments. We observe clear signatures of correlated dynamics in both global and local observables
and over a broad range of time scales, indicating a breakdown of the simple continuum description that approx-
imates well the statics. We show that this collective dynamics can be understood in terms of one-dimensional
“strings” of high mobility, which govern both local and long-wavelength dynamical properties. We introduce a
coarse-grained description of the strings, based on the Edwards—Wilkinson model, which leads to exact results
in the limit of low string density and provides a detailed qualitative understanding of the dynamics in all flux
sectors. We discuss the implications of our results for the dynamics of constrained systems more generally.

I. INTRODUCTION

Dimer models are archetypal systems for the study of the
effects of strong local constraints [1}[2]. Despite their simplic-
ity, classical dimer models on bipartite lattices exhibit a num-
ber of interesting phenomena, such as macroscopic ground-
state degeneracy, topological order, and deconfinement of
monomers [3]. Their static properties are well understood,
and are captured by an effective coarse-grained theory, involv-
ing a height field [4] in two dimensions (2D) or an effective
gauge field in higher dimensions [5]]. In either case, the result
is a critical equilibrium phase, with power-law correlations
between local degrees of freedom. This class of systems pro-
vides the simplest examples of “exotic” thermodynamic be-
havior purely determined by entropy [3l].

Even when the thermodynamic properties of a system have
a simple effective description, its dynamics can be more intri-
cate and interesting [6]. It is natural to ask whether this is the
case for dynamical extensions of the classical dimer model,
about which much less is known. In particular, Ref. [[7] con-
sidered the simplest extension of the coarse-grained descrip-
tion to dynamics, predicting simple relaxational decay of cor-
relations, while Ref. [8] considered the dimer model with non-
local loop dynamics. These works should be contrasted with
studies of defect-driven dynamics in dimer models [9]] and of
monopole dynamics in spin ice [10} [L1]].

In this work, we consider local stochastic dynamics in the
defect-free square-lattice dimer model, using both simulations
and theoretical arguments. As far as we are aware, what we
report here are the first systematic simulation results for the
natural dynamics in these systems, i.e., one of locally flipping
plaquettes. We show that the simple continuum picture can
fail to describe the true physics even over long time scales and
that the phenomenology is, in fact, far richer than the simplic-
ity of the model would suggest.

The first main contribution of this paper is to demonstrate,
using simulations, significant deviations from exponential re-
laxation in global and local observables over a broad range
of time scales. We argue that a simple continuum description
fails because the dynamics is facilitated by local objects—in
this case, one-dimensional strings [[12H14]—and hence highly
heterogeneous. The understanding of the importance of these
objects, which has broad implications for the study of cooper-

ative dynamical phenomena, is our second main contribution.

Close-packed dimer models obey a topological constraint
[3] that amounts to conservation of strings, or, equivalently,
of the flux of an effective magnetic field. Any local rearrange-
ment of dimers conserves flux, and we exploit this by consid-
ering dynamics within a fixed flux sector. At large flux, the
system is spanned by a low density of strings, whose fluctu-
ations govern the relaxation. We introduce a coarse-grained
description of the strings, based on the Edwards—Wilkinson
model of fluctuating interfaces [15], from which we derive
exact expressions for dynamical observables, constituting the
third main contribution of this work. We confirm these results
using simulations at large flux, to which they can be compared
with at most one adjustable parameter.

We find that the behavior is qualitatively similar, and con-
sistent with the string picture, for smaller flux, and even in the
isotropic limit of vanishing flux. In these latter cases, strings
can still be defined and the string picture remains illuminating,
even though their density is so high that they cannot be treated
as independent. By application of dynamical scaling theory,
we furthermore predict a crossover to the Coulomb-phase re-
sults of Ref. [7]] at a time scale that diverges on approaching
the critical point at saturation flux (zero string density).

Outline

In Section |lI} we introduce the dimer model and the local
dynamics that we study in the remainder of the paper. We also
briefly review, in Section the coarse-grained theory intro-
duced by Henley [7] to describe dynamics of the height field,
which predicts exponential decay of correlations. The major-
ity of our original results are presented in Section where
we use an effective theory of string dynamics based on the
Edwards—Wilkinson equation to derive results for correlations
and for the persistence, a local probe of dynamics. We con-
clude in Section [[V|with a brief discussion of the broader sig-
nificance of our results for dynamics in strongly constrained
systems. Some technical details and additional simulation re-
sults are presented in appendices.



II. MODEL

We study a dimer model on an L X L square lattice with
periodic boundaries. The occupation variable d,,(r) gives the
number, 0 or 1, of dimers on the link joining sites  and r+ 4§,
where p € {x,y} and d,, is a lattice vector. A configuration is
allowed only if every site is occupied by a single dimer. We
refer to a plaquette as flippable when it contains two parallel
dimers; the flippability f of a configuration is defined as the
proportion of plaquettes that are flippable,

1
f= EZZdﬂ(r)d#(r+6v). (1)
v

r

We define the effective “magnetic field” B, (r) = &,[d,(r) -
%], where &, = +1 on the two sublattices [3]. The constraint
on dimer configurations then becomes Gauss’ law, div, B = 0,
where

div, B= )" [Bu(r) = Bu(r - 8,)] )
u

is the lattice divergence. The flux @ corresponding to B can be
defined by ®, = 3, B,(r) = X, &:d,(r). Because g,.5, = =&,
a pair of neighboring parallel dimers, of either orientation,
gives zero net contribution to @, and so plaquette-flip dynam-
ics conserves the flux.

A. Staggered configurations and strings

The flux is maximized by a staggered dimer configuration.
For example, if d,(r) = 0 for all r, d,(r) = 1 for &, = +1, and
d.(r) = 0 otherwise, then ® = +®,,, X, where O« = %Lz.
The other three staggered configurations, related by symme-
try, have flux of the same magnitude, |®| = @y, along other
lattice directions. We define the flux relative to its maximum
by ¢ = ®/®D.,x and, for flux along the x direction, the devia-
tion from maximum 6 = 1 — ¢,.

To reduce the flux from maximum, one can shift a row of
dimers spanning the system, which changes @, by —L. We
refer to such a set of shifted dimers as a string [[13}[16]. After
the shift, plaquettes along its length become flippable; flip-
ping these deforms the string but conserves the flux. A possi-
ble path for a single string and the resulting configuration are
shown in Fig. |l With N; strings introduced into a staggered
configuration, 6 = 2N,/L; the linear density is therefore %9.

B. Height mapping

The constraint div, B = 0 can be resolved by defining the
height z on each plaquette [7], in terms of which B,(r) =
—% curl(, ) z, where the curl is the difference between the pla-
quettes on each side of a link. Global shifts of z do not affect
B, corresponding to the gauge redundancy in 3D [3]]. With an
appropriate gauge choice, flipping a plaquette modifies z only
on that plaquette [7]. If B has periodic boundary conditions,

z(r + L,) = z(r) + 4L7' 3}, €,,®,, where € is the Levi-Civita
tensor. The spatial average of the derivative of the height (the
tilt) is therefore intensive and proportional to ¢. We define
{(r) = 2(r)-2 X,y €'y, with periodic boundary conditions.

C. Dynamics

The most natural dynamics for the dimer system is one
where individual plaquettes flip randomly. This dynamics
is efficiently implemented numerically via continuous-time
Monte Carlo (MC) [17], in which, when flippable, plaque-
ttes flip according to a Poisson process with rate constant 7.
Dynamics at equilibrium within a sector of fixed flux ¢ can
be studied by starting from a fixed configuration and equi-
librating using plaquette-flip dynamics. We will denote by
(---) an average both over the equilibrium ensemble (where
all allowed states with flux ¢ have equal weight) and, where
applicable, over subsequent trajectories.

The dynamical correlation function of the height is defined
by G;(q,1) = (Z(q,Z(—q,0)) where £ is the Fourier transform
of £. We also consider the persistence p(¢), the proportion of
plaquettes that have not flipped at any point up to time ¢, which
provides a local probe of the evolution.

D. Continuous height-field theory

The static properties of the dimer model can be described
by a continuum theory in terms of the coarse-grained height
h(r) resulting from averaging {(r) over short length scales [3]].
Apart from terms irrelevant at long distances, the effective di-
mensionless free energy is

F = % f &Ky (Voh)* + Ko(Vyh)’] 3)

for ¢ along %, implying correlations (ﬁ(q)fz(—q)) = [a)(q)]’1
for the Fourier transform h, where w(q) = K,q> + qug.

The simplest extension of the continuum description to dy-
namical properties is the Langevin equation [7]

0
§h(r, n=-T + np(r, 1), “)

Oh(r,t)
where the noise has correlations (r,(r, )nu(r',t")) = 2I'6(r —
r’)o(t — t'). The resulting two-time correlations are [7]]

o-Twl@)r

Gi(g,1) = (h(q, Hh(—q,0)) =

) &)
w(q)
implying exponential decay at long time scales. We show be-
low that this prediction can break down, even when the height-
field approach is accurate for the statics, due to cooperative
effects that dominate the dynamics.

III. STRING DYNAMICS

The collective character of the dynamics can be uncov-
ered by considering the behavior near maximal flux (i.e.,
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FIG. 1. Left: A dimer configuration with a single string, relative to a fully staggered configuration with maximal flux @, =

and right: Configurations with ¢, =

117 along the
2

horizontal direction. A single string spanning the system once reduces the flux @, by —L, the smallest possible amount, irrespective of its path.
Flippable plaquettes, which appear when the dimers are shifted, are marked with stars (x); the fully staggered configuration has none. Center

i evolved for time . Persistent plaquettes are white, while those that have flipped are blue; strings are

yellow. The dynamics is spatially heterogeneous: Even at relatively long times, extended regions are unvisited by strings and hence persistent.

for small ), where most of the system is unflippable. This
regime can be understood in terms of a low density of well-
separated strings. We first consider the dynamics of a single
string, using a continuum description based on the Edwards—
Wilkinson equation, before turning to the consequences for
the two classes of observables, correlation functions and the
persistence.

For a single string traversing the system horizontally, let
y(x, 1) be the vertical position at horizontal position x and time
t. By using a transfer matrix to enumerate all possible string
configurations (see Ref. [14] and Appendix [A), we find the
following two exact results regarding the equilibrium distri-
bution of a single string: (i) The mean number of flippable
plaquettes is given by

Ny=(2-V2)L+0(nL). 6)

(ii) For 1 < [x—x| <« L, y(x, t)—y(x’, f) is normally distributed
with zero mean and variance |x — x|/ V2.

A. Edwards—Wilkinson equation

At large length and time scales, we expect y(x, ) to obey
the Edwards—Wilkinson equation [13} [T8]],

0 1. 0

700 = S ATy ) + 1, 1), @)
where (n(x, H)n(x’,t'))g = DAS(x — x')6(t — '), and A and
D parameterize, respectively, the stiffness of the string and
the strength of the noise. The average (:--)( is taken over
trajectories starting from a given initial configuration y(x, 0).

Accounting for the periodicity in the x direction (but not in
¥), the Green function for Eq. is

1
A(x, 1= Z Z elkxe—-Atk (8)
k

where kL/2m € Z. To calculate the two-time correlation func-
tion in the equilibrium ensemble, we take both times to infinity
with their difference finite,

Vi(x, ) = ((x, 1) = y(0,007) ©)
= lim ([yCx.t0 +1) = Y0, 1))
~ % 2D 1— eikxe—%/\tk2

4+ —
2
L L k#0 k

(10)

The typical width of a string in equilibrium can be charac-
terized by the mean-square displacement between the points
x and O at equal time, which is given, for 0 < x < L, by
Vi(x,0) = Dx(1 — x/L). The time scales for dynamics can
similarly be understood through Vi (0, ¢), which is shown in
Appendix [B]to obey

D for At < L7
(30,0 - 30, 07) ~{ (an
Y for At > L2,

The short-time result, Az < L?, gives the dynamical scaling
relation between the characteristic length in the y direction
and time through the “growth exponent” S [18]],

1

L~#, B=-. (12)

4
At long times, At > L2, the whole string can be treated as a
random walker, with effective diffusion constant DA/L.



These results, along with those from the string microscop-
ics, fix the values of D and A. Comparison of Vi (x,0) with
the exact result for the equal-time displacement variance gives
D = 1/ V2. The mean rate of plaquette flips in equilibrium is
vNy. Since each flip changes the mean vertical position by
+L~!, the variance of the total shift is ytN;/L? in the long-
time limit. Comparison of Egs. (6) and (TT) therefore gives

A=2(V2-1)y.

B. Height correlation function

To calculate height correlations based on the coarse-grained
string description, we write

L
Vyh(r, 1) o f dx 8%(r — {x, y(x, 1)} (13)
0

)=
which treats the string as a step in the height plus a uniform
gradient to preserve the boundary conditions. The height cor-
relation function for ¢ # 0 can then be written, for a single
string, as G(q, 1) « (qu)‘le(q, 1), where

1t L . N
Cig.n =7 f dx f dx’ e—w—“(e—lq\b(m-ﬂx voﬂ).
0 0

For small-enough density %9, string contributions add inco-
herently, resulting in G(q,t) < Qq;zCs(q, t). Since y(x,1) —
y(x’,0) is Gaussian distributed with zero mean, we get

L
2 .
Ci(q.1) = f dx e_l‘b"e—%flfVL(x»l) , (14)

L
2

where the periodicity of Vi (x,f) under x — x + L has been
used to shift the limits of integration.

Asymptotic expressions for the correlations can be found in
various limits. For the static correlations, G,(g, 0) o< 8/w4(q),
where wy(q) = ¢> + %q;% in the thermodynamic limit. For
t < L2, we find time dependence

Gi(g.1) {exp [—%Afws(lI)] for Ar < g,'* as)

Gi(q,0) P exp [— VAt (I)S(q)] for qy_l/ﬁ < Af,

where @(g) = (4m)7'q} exp[2(erfi™" V84./g?)*]; the propor-
tionality constants are calculated exactly in Appendix [C] A
crossover from simple to stretched exponential therefore oc-
curs at At ~ g, Y the time scale corresponding, according
to Eq. , to the wavelength ~ ¢; !. The stretching is the
result of contributions from the continuum of modes of the
string. These expressions, along with the full result found by
numerical integration of Eq. (T4), are compared with simula-
tions in Fig. E} We find close agreement, with no adjustable
parameters, at large flux and small wavevector, and qualitative
agreement at smaller ¢, and larger ¢; see Appendix D}

The independent-string approximation should be valid for
At < 607VB_ the time corresponding to a y displacement equal
to the mean string separation. The stretched-exponential form
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FIG. 2. Normalized height correlations G,(q,1) = G/(q,1)/G;(q,0)
at wavevector ¢ = {%, 7} and flux ¢ = {¢,,0}. Symbols show MC
results (error bars are smaller than symbols), while the thick (black)
line is the theoretical prediction for the large-flux limit (i.e., close to
the maximum ¢, = 1). The short- and long-time limits, Eq. (I3), are
shown with dot-dashed and dashed lines, respectively. The system
size is L = 256; besides restricting ¢, to discrete values, finite-size
effects are minimal. Inset: Same data with double-logarithmic ver-
tical scale. On this plot, a stretched exponential e~/ of appears as a
straight line with slope —. A dot—dashed straight line with slope 1
is shown for comparison; the data deviate from this slope, indicating
stretching, even for zero flux.

therefore applies up to a time that diverges at 8 = 0. For
larger ¢, string interactions are important for the dynamics, and
Eq. is no longer valid. When At > 6~'/# many strings
contribute, their discreteness becomes unimportant, and so we
expect a crossover to the Coulomb-phase behavior of Eq. (5).
These crossovers can be understood via dynamical scaling
theory, based on the critical point at 6 = 0 [13| [16], whose
critical theory is that of hard-core bosons—or, equivalently,
free fermions—in 1D. All critical exponents are therefore ra-
tional and follow from dimensional analysis.

C. Persistence

The persistence p(¢) can similarly be understood in terms
of the behavior of strings. At very short times, p(t) = e /7"
plaquettes which are flippable at = 0 will flip independently
with rate y. For times y# > 1, each point x on a string
performs a subdiffusive random walk, according to Eq. (TI).
As only plaquettes adjacent to strings are flippable, the mean
persistence is equal to the probability that a plaquette is not
reached by any string up to time #, and is therefore given by the
survival probability for a stationary target in the presence of a
density %9 of subdiffusive traps. Using the results of Ref. [19]
relating the dynamic exponent to the persistence, we get

(p(t)) o exp [—ﬁ(mﬂ] fory' <t < A'g7VE. (16)
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FIG. 3. MC results for persistence p(¢) at flux ¢, labeled as in Fig.[2]
except where indicated. (Error bars are smaller than symbols.) Sys-
tem size L = 4096 is required to reach flux ¢, = 2047/2048 (see
Section ; for the other flux values, L = 256. As expected based
on the string picture, an initial exponential decay (straight line with
slope 1) is followed by a stretched exponential (slope < 1), lasting
until Az ~ (1 — ¢,)"""2. The dashed line at the right, with slope 1/4,
is the function p(r) o« e~ " in agreement with Eq. for the limit
¢ — 1.

This form ceases to apply for At ~ 67'/8, when string inter-
actions become important, or for At ~ L?, beyond which the
long-time behavior in Eq. applies and (p(?)) e
Our simulation results, Fig. 3] are in qualitative agreement
with these arguments, showing an initial exponential followed
by a stretched exponential, for all fluxes. The stretching expo-
nent decreases continuously with ¢,, approaching 8 = 1/4, in
agreement with Eq. (I6), as ¢, — 1. At longer times, a faster
decay, consistent with a single exponential, is observed.

IV. CONCLUSIONS

We have shown that the close-packed square-lattice dimer
model, subject to local, plaquette-flip dynamics, displays
emergent collective relaxation that is not anticipated by sim-
ple extensions of its static properties. Approximations to the
dynamics based on free-energy gradients plus noise, such as
Eq. (), fail to capture the intrinsic heterogeneity: Due to the
constrained nature of the system, motion is only allowed in
the vicinity of strings, and relaxation is dominated by spatial
fluctuations. In a sense, the noise that triggers rearrangements
is not uniform in space and time; rather, its strength depends
sensitively on the local configuration. Strings facilitate lo-
cal rearrangements, dynamics is heterogeneous and collective
(see Fig.[I), and relaxation functions are nonexponential.

This situation is reminiscent of glass-forming systems [20]:
In a slowly relaxing material such as a glass former, “facili-
tation” indicates the fact that local relaxation can occur only
near an already locally relaxing region [21]. Similarly, in the
dimer model, plaquette moves are only possible in the vicinity

of a string. This is the reason that the Langevin dynamics of
Eq. is not accurate for relaxation in regions where string
density is low. The additive noise assumed in that approxima-
tion would allow rearrangements to occur anywhere in space.
But if dynamics is facilitated, the noise that drives local re-
arrangements is not uniformly distributed, but rather concen-
trated near already mobile regions. A Langevin description,
along the lines of Eq. (@), would therefore require a form of
noise that is multiplicative and whose magnitude is strongly
dependent on the local flippability.

Instead we have developed a string description of the dy-
namics, which directly incorporates the local nature of the re-
laxation. At low string density (high flux), we are able to make
exact theoretical predictions for the correlations and persis-
tence, which are confirmed by our simulations. We in fact find
that much of the qualitative behavior is unchanged at smaller
flux, where interactions between strings are certainly impor-
tant. This indicates that the usefulness of the string picture, as
well as the concept of facilitated and heterogeneous dynamics,
extends well beyond the regime of high flux.

Besides their fundamental importance, our results are likely
to be of relevance to spin ice, where closely analogous string
excitations have been evidenced directly using neutron scat-
tering [22]], and where correlations with stretched-exponential
decay have been noted [23]]. Dynamical results for classical
dimers are also relevant to the corresponding quantum dimer
model at its Rokhsar—Kivelson point [24} 25].
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Appendix A: Transfer-matrix calculation of string
configurations

A string can be divided into four types of segment, illus-
trated in Fig. El]; the ensemble C; of configurations for a single
string is given by the set of ways in which these segments can
be combined to produce a closed path of length L. One can
write a transfer matrix

ik emikgn () ik
okt ik 0 et
Tkw =" | o 11

0 0 e 0

(AL)

such that Tg,(k, 1) is nonzero only when a segment of type
a can be followed by one of type 8 (labeled according to the
order in Fig.[). Each successive pair of segments is weighted
by e* for every flippable plaquette it produces and by e~ for
every step in the positive y direction. We define the partition
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function Z9 as the weighted sum over all open paths of length
L with any net vertical displacement y,

Zo(k, ) = Z e ke Ny

<

(A2)

where C} denotes the ensemble of such paths and Ny is the
number of flippable plaquettes in the resulting dimer config-
uration. Summing over all sequences of path segments and
(vertical) starting positions gives [? ]

L
10 p) = 3 T[Tk, )"

:15‘ Z AL,

/lEU—T(k,u)

(A3)

(A4)

where the sum is over the set oy, of eigenvalues A of
T(k, ).

The allowed paths for a single string are those that return to
their starting point after winding once around the system, and
hence have net displacement y = 0. The partition function for
such paths is

HOED (AS)
¢
™ dk ;
= Gy0e N = f > e e (A6)
- — 2m S
< <
L (" dk L
=— — . A
2 f_,, 21 Z A (A7)
A€T Tk p)
For large L, the saddle-point approximation gives
In Z; (1) = LIn|Amax ()| + O(n L), (A8)
where
[Amax (O] = m]?-XMmax(k, 0] (A9)
= mlflx max{|d]| : 4 € o} (A10)

is the largest eigenvalue (by magnitude) of T(k, ) for any k.
The maxima are Apme () = 1+ V2 — V2u + O(?), occurring

$ise

FIG. 4. Four types of segment that can be combined to form a string.
The first two are steps at which the vertical position of the string
changes by +1, while the last two are the two segments of a horizon-
tal step. (This step is split so that all four segments involve the same
horizontal displacement.)
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FIG. 5. Mean flippability in equilibrium (f) as a function of devia-
tion from maximum flux, § = 1 — ¢,. The solid (green) line shows
Monte Carlo results for system size L = 256 (error bars are smaller
than symbols), while the dashed (black) line shows the analytical

prediction from Eq. (AT6).

at the points k = 0 and +x, and hence

1

7 InZ5 () ~ In(1 + V2) - 2 - V2)u. (A11)
Setting u = 0 gives the entropy of a single string,

S3 =InZ;(0) (A12)

=LIn(1 + V2)+O(nL). (A13)

The mean number of flippable plaquettes in the presence of a
single string is given by

s _ _i S
N =g Zi| (A14)

=0

=(2-V2)L+0(nL). (A15)
At flux ¢ = {1 — 6,0}, the number of strings is Ny = 1L6.
If the strings can be treated as approximately independent,
as expected for sufficiently small 6, then the number of flip-
pable plaquettes is simply NyN%, and so the mean flippability
in equilibrium is

1 InL

=({l1-—]60+0|—].

0=(1-g)e ol
Numerical results, shown in Fig. [5] confirm Eq. (AT6) in
the limit of small 6 and are in approximate agreement even for
fairly large 6, suggesting that the independent-string picture is
reasonable. (The logarithmic corrections modify the coeffi-

cient of 6, and are of the order of a few percent for L = 256.)
The width distribution of a single string can be determined
by a similar approach: The probability distribution for the net
vertical displacement Y of a section of string with horizontal

(A16)



extent X is [? ]

2ce Oyy
P(X,Y) = =X 1 Al7
®N=Zo00; (A7)
- X
_ f dk sy Ziernan (A18)
_x 21 Z/lea-m‘o) X

For large X, the ratio of sums can be found by expanding

Amax(k, 0) in a Taylor expansion around its maxima, giving

a pair of Gaussians of variance g centred at k = 0 and +7.
Taking the Fourier transform, one finds that P5(X, Y) is given

by a normal distribution of variance «/LEX when X and Y have
the same parity, and vanishes otherwise (as required by the
structure of a string).

If, for a single string traversing the system in the horizontal
direction, we denote by y(x) the vertical position at horizontal
position x, this result can be restated as follows: At length
scales much larger than the lattice scale but smaller than the
system size, 1 < [x—x’| < L, the vertical displacement y(x) —
y(x’) is normally distributed with zero mean and

R
V2

Ix — x| (A19)

J
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This result is confirmed by the small-displacement limit in

Fig.[6]

Appendix B: Coarse-grained string picture

The Edwards—Wilkinson equation, Eq. (7), has general so-
lution (for ¢ > 0)

L
y(x, 1) = f dx’ A(x = X', )y(x’, 0)
0
L 00
+f dx'f df' A(x—x',t =)', 1) (B1)
0 0

(accounting for the periodicity in the x direction, but not in the
y direction), where

. 1 2
L—l 2 elkxe— s Atk
Ax, 1) = {O Lieyz

fort >0

B2
fort <0 (B2)

is the retarded propagator.

The two-time correlation function, within an ensemble of trajectories with fixed initial configuration, is therefore given by

L
(00 =y . OF) = { fo A [AGe—x",0) = A = &, )]y, 0>}

2

L 0o
+ DA f dx” f A" A= x" 1 =) = AKX =", F =) . (B3)
0 0

To calculate the equivalent correlation function in an equilibrium ensemble, (- - - ), we take both times to infinity while keeping

their difference finite:

(.0 =y, OF) = Jim [y o +1) =y 10 +0)F), (B4)

In this limit, A(x,#y + ) = L™, and so the first term in Eq. |i which depends on the initial configuration, vanishes. The

integrals in the second term can be performed to give

(y.n) =y, OOP) = Vi = X1t = 7). (BS)

where V, is given in Eq. (10).

For ¢ = 0, the sum in Eq. (I0) can be evaluated exactly,
using

Z 1 — cosnb _ 02 —0) (B6)

n? 4 ’
n=1

for 0 < 6 < 2m, to give

(e - ¥0.0P) = Vw0 = Dx(1- 7). B7)

for 0 < x < L. Comparison with the microscopic result of
Eq. l| fixes D = 1/V2. In Fig.@ both Eq. 1i and the

(

value of D are confirmed using results of Monte Carlo (MC)
simulations of the dimer model.

In calculating V;(0,1) for small ¢/L?, the sum can be re-
placed by an integral,

S © et P
ZTZI dnTz 57 (B3)
0

n=1

giving

2A
(0 -3 OP) = Vi = D\ =2, (B9)
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FIG. 6. Mean-square transverse displacement of a string y(x, ?) in
equilibrium, given by the equal-time correlation <[y(x, 1) —y(x, t)]2>,
as a function of displacement along the string, |x — x’|. The solid
(green) line shows Monte Carlo results using a dimer configuration
containing a single string in a system of size L = 1024. (Error bars

are smaller than symbols.) The dashed (black) line shows the analyt-
ical result of Eq. , with D = 1/ V2 determined using Eq. (A19).
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FIG. 7. Growth of mean-square transverse displacement of a string,

for At < L2. As argued in the main text, Eq. (A16) can be
used to fix A = 2(\/§ — 1)y. This result, including the value of
A, is confirmed using MC results in Fig. [7]

At large ¢ and x = 0, the first term in Eq. (I0) dominates,
and so

D
(Y0 1) =y, O0F) = Vi0.0) = T A, (B10)

for At > L2
Appendix C: Limiting forms of dynamical correlations

In the thermodynamic limit, L — oo, Eq. (T0) can be re-
placed by

D 00 1= ikx o— L A1k?
Vm(x,t)zgf dk%, 1

where the Cauchy principal value is to be taken, and the cor-
relation functions can be expressed in terms of

Ci(q,t) = f dx e_inxe_%q,xz-Vw(xvl) ) (C2)

00

For ¢ = 0, one has V. (x,0) = D|x|, and so

Dg;  Dg

<[y(x, 1) — y(x, 0)]2>, at a fixed position x, as a function of time ¢. The Cs(q,0) = iAW @’ (C3)
solid (green) line shows Monte Carlo results using a dimer configu- qx + 307°qy s\q
ration containing a single string in a system of size L = 1024. (Error
bars are smaller than symbols.) The dashed (black) line shows the
analytical result of Eq. (B9), using the values of D and A fixed using
Egs. (AT9) and (ATE). where wy(q) = ¢ + K;‘, with k, = \/éqy.
For small but nonzero ¢, consider the difference
Cu(g.1) — Ci(q.0) = f dxe 4t [e72 Vel — g2 Velx0)] (C4)
1 0 .
~ —qu, f dxe e 3B V00 [y (x ) — Vi (x, 0)] (C5)

2

—00

2 00 00 —lA kz
qu dx e—iqxxe—%qulx\ f dk eikx 1 —e2™ . (C6)

o k*



For At < ¢*, the integral over k can be replaced by %At X 216(x), and so the result is

1
Ci(g,0) = Ci(g, 0) = =5 Dgy At (C7)

Using Eq. (C3) gives

Ci(q,1)
Cs(q,0)

1
=~ exp [—EAtws(q)} for At < g;*, L. (C8)

For large time (but with Az < L?), one can use the saddle-point approximation. The closest saddle points to the real line are

at x = *+ixg, where

%o = V2ATerfi (’1_2) ()

and the resulting correlation function is

Cs(g.0) _ (5)3/4 (AD*wi(g)

Ci(q,0) ~ \2 KGEL

where 2 = exp[(erfi”! &

[2
exp [—:OK_‘Z, ;At] for q;,4 < At < L%

" )?]. (The precise condition for the validity of the saddle-point approximation also involves g,, but the

Ky

(C10)

quoted inequality is always sufficient, and also necessary except for very large ¢,/ Kﬁ.)

Appendix D: Numerical results for dynamical correlations

Our analytical results for the correlations are based on a
coarse-grained description of the strings, and so are expected
to be quantitatively accurate only for small . According to
Eq. (CI0), however, the stretched-exponential decay is visible
only for Az > ¢;*, a time scale that grows rapidly as g, is de-
creased. The value g = {{%, 7} used in Fig. 2 of the main text
is chosen to show the stretching most clearly on time scales
accessible in the continuous-time MC simulations. (Because
we have neglected the periodicity in the y direction, we also
require Lg, > 1.)

Results for other values of ¢ are shown in Fig.[§] As ex-
pected, the quantitative accuracy of the analytical results de-
creases as |q| is increased. Consistent with Eq. , clear
evidence of stretched-exponential decay is visible, as a de-
creased slope on a double-logarithmic scale, only for the
larger values of g,.

Appendix E: Persistence time

Given a trajectory, a plaquette is referred to as “persistent”
if it has not flipped at any point during the trajectory. At each

(

time ¢ during the trajectory, the persistence is defined as the
proportion of plaquettes that are persistent, i.e.,

1 1 if plaquette r is persistent
)= — El
P N Z {O otherwise. ED

r
The persistence time 7, is the average, over starting configu-

rations and trajectories, of the integral of the persistence,

T = < fo dr p(t)> . (E2)

According to Eq. (TT), in the thermodynamic limit the typi-
cal spread of y(x, ) is proportional to #'/4. The typical time to
reach a plaquette at a distance ¢ from the starting position of
the string is therefore £*. Since a plaquette can only flip when
a string is nearby, its persistence time is given by the time at
which a string first reaches it. The linear density of strings is
~ 6, and so the typical distance from a plaquette to the nearest
string is ~ 7!, The typical persistence time 7, is therefore
~ 674

In Fig.[9] this prediction is confirmed using MC simulations
for intermediate values of 6. For larger 6, the string density
is sufficiently high that interactions between strings become
important, while for the smallest values of 6, the distance from
a plaquette to its nearest string is bounded by the system size
L.
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